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Abstract

One of the most important obstacles to deploying predictive models is the fact that humans do not 

understand and trust them. Knowing which variables are important in a model’s prediction and 

how they are combined can be very powerful in helping people understand and trust automatic 

decision making systems.

Here we propose interpretable decision sets, a framework for building predictive models that are 

highly accurate, yet also highly interpretable. Decision sets are sets of independent if-then rules. 

Because each rule can be applied independently, decision sets are simple, concise, and easily 

interpretable. We formalize decision set learning through an objective function that simultaneously 

optimizes accuracy and interpretability of the rules. In particular, our approach learns short, 

accurate, and non-overlapping rules that cover the whole feature space and pay attention to small 

but important classes. Moreover, we prove that our objective is a non-monotone submodular 

function, which we efficiently optimize to find a near-optimal set of rules.

Experiments show that interpretable decision sets are as accurate at classification as state-of-the-

art machine learning techniques. They are also three times smaller on average than rule-based 

models learned by other methods. Finally, results of a user study show that people are able to 

answer multiple-choice questions about the decision boundaries of interpretable decision sets and 

write descriptions of classes based on them faster and more accurately than with other rule-based 

models that were designed for interpretability. Overall, our framework provides a new approach to 

interpretable machine learning that balances accuracy, interpretability, and computational 

efficiency.

1. INTRODUCTION

When using machine learning to build models from data, often it is not sufficient for a model 

to simply be accurate at predicting on held-out test data. Many applications require that 

models be interpretable, meaning that humans can easily understand the information they 

contain [12, 20, 43, 47]. For classification models, this requirement means that humans can 

understand where the decision boundaries between classes are and why particular labels are 
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predicted for different data points [44]. When there are multiple classes to predict, it is also 

important to characterize all the classes, not just the common ones.

Interpretable models are needed in many domains because they bridge the gap between 

domain experts and data scientists. When domain experts need to make important decisions, 

learning from data can improve their results, but this requires the human to understand and 

trust the model. From medical diagnosis to decision making in the justice and education 

systems, the ability to interpret a model enables decision makers to critique, refine, and 

ultimately trust it based on their expertise [39]. As machine learning is applied to new 

societal and high-stakes problems, the need for interpretable models will only continue to 

grow in the future.

Learning interpretable models is challenging because interpretability and accuracy are 

generally two competing objectives, one favoring simplicity and generalization, the other 

favoring nuance and exception. Further, even quantifying interpretability is a challenge. A 

popular approach to interpretable models is rule-based models, such as decision trees [8, 42] 

and decision lists [45], because they strike a balance between the two objectives. Their 

benefit is that they are stated in terms of the input features, without relying on any latent 

variables or representations, and they use concise, logical rules to make interpretable 

predictions. Just being rule-based, however, is not sufficient; the structure connecting a set of 

rules is also an important factor in interpretability. For example, decision lists [5, 34] make a 

prediction whenever a rule is true. This restricted structure can be thought of equivalently as 

a list of if-then-else statements, and is considered more interpretable than a general decision 

tree because of its reduced complexity. However, decision lists still have drawbacks. The 

chaining of rules via if-then-else statements means that new rules can only cover 

increasingly narrow slices of the feature space. Even if the first few rules in the list are 

interpretable, each additional rule becomes less so because it only applies to more and more 

narrow situations, i.e., a given rule only applies to those data points that do not satisfy any of 

the preceding rules. Understanding all of the conditions that must be satisfied before a rule 

can be applied is difficult, limiting the interpretability of decision lists. Further, in multi-

class classification, most of the classes can only be described by more narrow rules because 

they appear further down the list. In effect, some classes are only described as alternatives 

after other classes have been considered, a serious problem for domain experts who want 

equally good rules for all the classes in the data.

Present work: Interpretable decision sets

Here we propose a new framework, called interpretable decision sets (Figure 1 (left)), for 

learning decision sets that are interpretable, accurate, and address the shortcomings of 

previous approaches [34, 35]. Decision sets take a different approach to structuring 

classification rules. Rather than organizing them in a hierarchy, decision sets are collections 

of if-then rules that can be considered in any order. Any data point not covered by any rule 

or covered by rules indicating different classes is assigned a default label. This non-

hierarchical structure is the key to interpretability. Without any if-then-else structure to 

describe narrow cases, each rule in a decision set must be an accurate predictor in isolation. 

Humans can therefore read decision sets and understand how each rule works, one at a time.
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Learning an interpretable decision set is challenging because it requires finding as accurate 

model within a space specifically designed for interpretability. To balance these competing 

goals, we introduce a learning objective that scores both accuracy, measured by the precision 

and recall of the rules; and interpretability, measured by the conciseness, coverage, and 

overlap of the rule set. An important part of this objective is favoring decision sets with rules 

that overlap as a little as possible. We show that exactly optimizing the objective is an NP-

hard problem. However, we also show that the objective has a particular structure which 

allows for provably near-optimal solutions. In particular, we show that learning interpretable 

decision sets is an instance of a non-monotone sub-modular maximization problem. Such 

problems can be efficiently optimized with an algorithm that guarantees a near-optimal 

solution which will be at least 2/5 of the optimal solution [18]. Thus, in contrast with 

previous rule-based methods that construct a model in a greedy, incremental way, our 

approach guarantees a globally near-optimal set of rules.

To ensure that our method can scale to big data, we pre-mine the space of rules that we will 

search via association rule mining [1] techniques, which massively reduces computation. As 

long as the pre-mined set of rules is sufficiently comprehensive, the expressive power of the 

decision set is equivalent to that of a decision tree. The result is that we can learn accurate 

and interpretable decision sets for data with hundreds of thousands of instances in a few 

minutes.

We evaluate interpretable decision sets on three real-world classification problems: (1) 

diagnosing patients who have one of six different diseases, (2) identifying high-school 

students that are at risk of dropping out or not earning their diplomas on time, and (3) 

predicting which defendants are more likely to commit a violent or nonviolent crime if they 

are released on bail. These problems all require interpretable models because they involve 

important decisions by domain experts that have the potential to significantly affect people’s 

lives. They also are multi-class problems with a mix of common classes and rare but 

important ones. Experiments show that interpretable decision sets are more accurate 

classifiers than Bayesian decision lists [34], and come close to matching the accuracy of 

uninterpretable models like random forests. We analyze the learned models using multiple 

ways of quantifying interpretability, and show that the decision sets have simpler, more 

interpretable decision boundaries. For example, we find that interpretable decision sets have 

up to 62% fewer rules and 63% shorter rules than state-of-the-art methods for learning 

decision lists [34, 35].

We also conduct a user study in which we ask participants to interpret models learned during 

our empirical evaluation. We compare decision sets and decision lists using two types of 

tasks: answering multiple-choice questions about the decision boundaries of the models and 

writing descriptions of classes based on them. We find that the structure of decision sets 

enables users to better understand the predictions they will make. Humans were 17% more 

accurate when answering multiple-choice questions about the decision boundaries of a 

decision set versus a decision list. They were also 22% faster at answering the questions. 

Further, we find that users interpret both decision sets and decision lists in similar ways, 

most often writing descriptions of classes as a set of possible conditions without any 

structure connecting them. This is correct for decision sets but not decision lists, so humans 
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were three times more accurate given a decision set versus a decision list, and they used 74% 

fewer words and 71% less time to write their descriptions. Our results indicate that decision 

sets are a more natural and interpretable way of presenting class information to humans.

To summarize, we show that decision sets are a more interpretable way of organizing 

classification rules. They can be just as accurate as more complicated rule structures, but are 

easier for humans to understand. Users can interpret their decision boundaries, not just the 

mechanism that produced an individual prediction, in contrast with previous work. As 

machine learning and data mining are used more and more to address high-stakes problems, 

decision sets offer a new, more interpretable method for making important decisions using 

data.

2. RELATED WORK

Research on interpretable models has a long history [9, 12, 43, 44], but with the availability 

of ever larger datasets and the adoption of computer-based decision making in all parts of 

society, the need for interpretable machine learning models has only increased. Recent 

efforts have sought models that offer both high predictive accuracy and interpretability. For 

example, prototype vector machines [6], regression models [47, 49], generalized additive 

models [23, 36, 37, 55], Bayesian case models [27]. mind-the-gap models [28], and scoring 

systems [50] have all been proposed as interpretable models.

Our work here is motivated by rule-based methods. One family of such methods starts with 

association rule mining methods [1] to identify a set of rules and then sort them in order to 

identify the most predictive ones [54]. The resulting ordered rules are instances of decision 

lists [10, 11, 13, 45, 52, 56]. However, these methods focus only on maximizing 

classification accuracy and aim to achieve interpretability just by building the model from 

rules. Similarly, algorithms for problems such as subgroup discovery [24, 33, 40, 46], 

contrast set learning [3, 4, 30], and emerging pattern mining [17, 19] identify sets of rules to 

describe the relationships among variables and discover interesting patterns in the data. In 

contrast, our work explicitly defines an objective function that scores interpretability and 

accuracy, and by optimizing it, we find a globally near-optimal model.

Learning decision lists directly has been well studied [7, 15, 29, 51] and has been used for 

building parsimonious models [5, 34]. However, as we show in our user study, decision lists 

(Figure 1 (right)) have limited interpretability as rules are coupled by the “else” statements. 

In particular, reasoning about a rule in a decision list requires reasoning about all of the 

preceding rules as well, because a rule applies only when none of the preceding rules apply. 

For example, the third rule in Figure 1 (right): If  and  then , 

appears simple and easy to interpret. However, the rule only applies when the previous two 

rule conditions are false, so the correct interpretation of the third rule is actually: If not 

(  and  and  ) and not ( ) and 

 and , then .

Interpretable derision sets (Figure 1 (left)) do not suffer from the above problem and thus 

have greater interpretability. Rules in decision sets are self-contained and apply individually, 
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which means that no complicated reasoning about multiple rules is needed. As we show in 

Section 5.4, decision sets are much more interpretable to users and just as accurate.

Prior work has also considered learning unordered sets of rules, but has not considered how 

to minimize the overlap of the rules in order to maximize interpretability. One approach [14] 

modified the CN2 algorithm [15] for learning decision lists to produce rule sets using simple 

heuristics to grow the set greedily. In contrast, our approach finds globally near-optimal sets 

of rules that are on average six times smaller than a decision list trained on the same data, 

while also being much more easily understandable. Other methods attempt to construct sets 

with fewer rules [38, 48, 53], but again do not account for rule overlap. In contrast, 

interpretable decision sets also account for rule overlap and by optimizing a joint objective 

find a near-optimal set of rules.

3. INTERPRETABLE DECISION SETS

In this section, we define decision sets and formalize the properties that characterize them. 

These properties will form the basis of our approach to learning interpretable decision sets.

3.1 Decision Sets

We propose decision sets as a model class that can both accurately predict class labels and 

interpretably describe its decision boundaries. Decision sets are sets of classification rules, 

i.e., the rules are unordered (see example in Figure 1). Although similar in appearance to 

decision lists, the rules crucially are not connected by “else” statements. Each rule is an 

independent classifier that can assign its label without regard for any other rules. The 

expressive power of decision sets, decision lists, and decision trees are all equivalent because 

the decision boundaries captured by decision trees and lists can also be represented by rules 

in decision sets.

We define decision sets using itemsets. An itemset s is a filter for data points, defined as a 

conjunction of one or more predicates of the form (attribute, operator, value), e.g., (x1 > 5). 

Given attribute values x, we say that x satisfies s if all the predicates in s are true when 

evaluated on x. A rule is a tuple (s, c) where s is an itemset and c is a class label. We now 

state a formal definition of decision sets.

Definition 1—A decision set ℛ is a set of rules of the form (s, c) where s is an itemset and 

c is a class label. A decision set assigns a class label c to attribute values x as follows. If x 
satisfies exactly one itemset si, then its class label is the corresponding ci. If x satisfies zero 

itemsets then its class label is assigned using a default label, and if x satisfies more than one 

itemset, it is assigned a class using a tie-breaking function.

The choice of default class label and class tie-breaking function is up to the user. For our 

experiments, we report results with two simple choices. For data points that satisfy zero 

itemsets, we predict the majority class label in the training data, and for data points that 

satisfy more than one itemset, we predict using the rule with the highest F1 score on the 

training data. However, other choices of default class labels and class tie-breaking functions 

can be easily incorporated. For example, we could use the smallest minority class as the 
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default label. This would be appropriate for a problem in which recall is very important, 

such as fraud detection. Similarly, one could break ties using a majority vote for data points 

that satisfy more than one itemset. Regardless of a user’s choice, the default label and tie-

breaking function tend to be applied infrequently. Across the datasets in our experiments, 

either was used from 14% to 22% of the time.

3.2 Properties of Interpretable Decision Sets

We now define the properties of decision sets that we will optimize in order to balance 

interpretability and accuracy. We have already taken a significant step towards 

interpretability by choosing to learn decision sets. As we will show in our experimental 

evaluation, their if-then structure without any connecting “else” statements enables users to 

easily reason about the decision boundaries of classes. However, we still need to define the 

properties we optimize to find the best decision set for a particular dataset. Note that many 

of these properties are defined with respect to a given dataset  = {(x1, y1), …, (xN, yN)}, 

where each xi is a tuple of attribute values and yi is the corresponding label. When we use 

these properties to learn interpretable decision sets in Section 4, they will be computed with 

respect to the training data. We group the properties based on whether they relate to 

interpretability or accuracy.

3.2.1 Interpretability—Decision sets are naturally interpretable because of their 

simplicity, but there is still a cognitive limit on how complex a model can be while still also 

being understandable. We capture the interpretability of a decision set by defining four 

natural metrics: size, length, cover, and overlap. Minimizing size encourages decision sets 

with a small number of rules. Minimizing length captures the notion that interpretable rules 

are short and concise. We use cover to denote how many datapoints satisfy the itemset of a 

rule, which is necessary for defining subsequent metrics. Finally, minimizing overlap 
encourages each rule to cover an independent part of the feature space.

We shall next describe each of the four metrics that when combined produce interpretable 

decision sets.

Size: First, we consider the size of the decision set itself. The fewer the rules in a decision 

set, the easier it is for a user to understand all of the conditions that correspond to a 

particular class label.

Definition 2: size(ℛ) is the number of rules in a decision set ℛ.

Length: Second, we consider the size of rules in a decision set. Logical functions are 

generally easy for humans to understand [16], so it is natural to use them to specify itemsets. 

However, if the number of predicates in the itemset of a rule is too large, it will loose its 

natural interpretability. We use the term length to measure the size of a rule.

Definition 3: length(r) for some rule r = (s, c) is the number of predicates in the itemset s.

We will use these two properties to measure the conciseness of a decision set, a key 

component of its interpretability.
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However, conciseness alone is not sufficient for an interpretable decision set. Interpretability 

also requires providing the user with a clear description of decision boundaries for all the 

classes in the data.

Cover: The first step in assessing the clarity of a decision set’s description is measuring 

which points in the data set it covers, which we define on a per-rule basis.

Definition 4: cover(r) for a rule r = (s, c) is the set of data points in  with attribute values x 
that satisfy the itemset s.

Note that whether a point xi is in cover(r) does not depend on the observed label yi. 

Measuring cover will allow us to reason about how the data set is divided by rules.

Overlap: We measure whether the decision boundaries of a decision set are clearly defined, 

via the overlap of rules:

Definition 5: overlap(r, r′) for rules r = (s, c) and r′ = (s′, c′) is the set of data points that 

satisfy both s and s′:

Overlap is a very important property for decision sets. Anytime that two rules overlap at a 

data point, then the tie-breaking function must be invoked to make a prediction and 

interpretability is reduced. Therefore, we will seek rules that overlap as little possible, 

ensuring that users can understand where the decision boundaries of the model are. While 

metrics accounting for conciseness have been studied in the context of interpretable rule-

based models [34, 53], the property of overlap has not been previously considered.

3.2.2 Accuracy—A decision set must be an accurate predictor of the class labels. We can 

measure a decision set’s overall accuracy by evaluating it on test data, but we also need to 

measure the accuracy of its rules individually during learning. We define two properties to 

measure per-rule accuracy.

Definition 6: correct-cover(r) for a rule r = (s, c) is the set of data points in  which satisfy 

s and belong to class c:

Definition 7: incorrect-cover(r) for a rule r = (s, c) is the set of data points which satisfy s 
and do not belong to class c:

Defining these properties enables us to reason about how each rule contributes to the 

precision and recall of the entire decision set. If |correct-cover(r)| is high and |incorrect-
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cover(r)| is low, then the rule r is precise and contributes towards a higher precision for the 

decision set. (How much it contributes depends on |cover(r)|.) On the other hand, having a 

high recall requires many data points to be correctly covered. We say that a point (x, y) is 

correctly covered by a rule r if (x, y) ∈ correct-cover(r).

4. LEARNING DECISION SETS

In this section we present our framework for learning decision sets that jointly maximizes 

their interpretability and predictive accuracy. We assume that we are given a training set  a 

set of itemsets , and a set of possible class labels . Our goal is to find a decision set that 

makes accurate predictions with clearly described decision boundaries by balancing the 

properties introduced in Section 3.2. We search over subsets of  ×  (itemset and class 

label pairs) to define our decision set. Note that we do not assume a particular structure for 

the itemsets . In practice, we follow a two step approach where we first use frequent 

itemset mining [1] to extract itemsets  and then apply our method lo select a set of rules 

that form an interpretable decision set.

4.1 Objective

Our algorithm maximizes a joint objective that scores decision sets based on both how 

interpretable and accurate they are. To facilitate analysis, we always construct the terms of 

the objective as non-negative reward functions which we want to maximize.

Interpretability—First, we favor decision sets with a smaller number of rules:

where | | is the total number of itemsets provided as input, which is an upper bound on the 

size of the decision set.

Second, we favor a decision set with fewer predicates in its rules:

where Lmax is the maximum length of any rule that can be constructed from an itemset in , 

i.e.,

Next, we introduce a pair of objective terms to favor decision sets with rules that do not 

overlap in the feature space:
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and

Recall that N is the number of points in the data set and therefore an upper bound on the 

overlap of two rules. Further, there could be a maximum of |S|2 pairs of rules in a given 

decision set Overlapping rules blur the decision boundaries of the model, and with less 

overlap, it is easier for users to see which attribute values lead to particular class labels. We 

include two terms, one for rules with the same class and one for rules with different classes, 

so that we can weight them individually. We also include a term to encourage the decision 

set to have at least one rule that predicts each class:

(The indicator function 𝟙 is 1 whenever the condition it takes as an argument is true and 0 

otherwise.) Characterizing all of the classes in the data is important to users. Often, rare 

classes are important, such as a rare disease, and this term balances the need to cover them 

with the need for conciseness.

Accuracy—First, to encourage precision, we favor rules with small incorrect-cover sets:

Second, to encourage recall, we favor decision sets that correctly cover data points with at 

least one rule:

Full Objective—We can now state our full learning objective:

(1)
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where λ1, …, λ7 are non-negative weights that scale the relative influence of the terms. 

They may be application-dependent or fit with cross-validation, as we do in our experiments.

4.2 Optimizing the Objective

We now describe our approach to optimizing objective (1). Since the objective scores 

decision sets on a rich variety of properties, its optimization is non-trivial. However, it has a 

structure that can be exploited for optimizing it approximately with good theoretical 

guarantees.

Theorem 1—The function  is non-negative, non-normal, non-monotone, and 
submodular on (  × ), the power set of  × .

Algorithm 1

Smooth Local Search (SLS) [18]

1: Input: Objective f, domain X =  × , parameters δ and δ′

2:

3: A = ∅

4: OPT = f(ΦX(X, 0))

5: for each element x ∈ X do

6:
  Estimate [f(ΦX(A, δ) ∪ x)] − [f(ΦX(A, δ) \ x)] within an

error of  OPT

7:   Call this estimate ω̃A, δ(x)

8: end for

9:

for each element x ∈ X \ A such that  OPT do

10:   A = A ∪ x

11:   Goto Line 5

12: end for

13:

for each element x ∈ A such that  OPT do

14:   A = A \ x

15:   Goto Line 5

16: end for

17: return ΦX(A, δ′)

Proof (Sketch): Non-negative functions and submodular functions are each closed under 

addition and multiplication with non-negative scalars. Each term fi(ℛ) is non-negative by 

construction. f1(ℛ) and f2(ℛ) are modular and therefore submodular. The remaining terns 

fi(ℛ), i = 3, …, 7, are submodular. Since λi, ≥ 0, objective (1) is non-negative and 

submodular.
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To show that the objective is non-normal and non-monotone, it suffices to show that fi is 

non-normal and non-monotone for some i. Since f3(∅) = N · |S|2, f3(ℛ) is non-normal. 

Since f3(ℛ1) ≥ f3(ℛ2) for any ℛ1 ⊆ ℛ2, f3(ℛ) is non-monotone. Therefore, objective (1) is 

non-normal and non-monotone.

The full proof is provided in the extended version of this paper [32]. Since our objective is to 

maximize a submodular function, an NP-hard problem [26], we will approximate the 

solution. The best known algorithm for maximizing a non-negative, non-normal, non-

monotone, and submodular function is smooth local search (SLS) [18].

Smooth Local Search (SLS)—The SLS algorithm finds a decision set ℛ by sampling 

elements in X =  ×  with different probabilities based on some underlying set A ⊆ X. 

Elements (or rules) in the set A are chosen as a function of our objective. The decision set ℛ 
thus obtained is a smoothed local optimum. Before we describe SLS in detail, we first define 

the sampling procedure which forms the core subroutine of the SLS algorithm.

Definition 8: Let ΦX (A, δ) denote a subset of X sampled with bias δ on some set A ⊆ X 
according to the following procedure: each element x ∈ X is sampled independently with 

probability p = (1 + δ)/2 if x ∈ A and with probability p = (1 − δ)/2 if x ∉ A.

SLS is presented in Algorithm 1. We first initialize A = ∅ (line 3) and obtain an estimate of 

the optimal value of the objective function f by computing OPT = f(ΦX(X, 0)) (line 4). Note 

that ΦX (X, 0) denotes a set of elements randomly sampled from X, i.e., each element in X is 

chosen with probability 1/2. Then, we estimate the effect of each element x ∈ X by 

computing the difference in the objective value when x is added to ΦX (A, δ) and when x is 

subtracted from it (lines 5–8). We compute these estimates by repeatedly sampling from 

ΦX(A, δ) until the standard error for the difference in scores is less than 1/|X|2·OPT [22]. 

After computing these estimates, we look for an x ∈ X to add to A by checking if the 

estimate for some x ∈ X greater than 2/|X|2·OPT (line 9). If such an element is found, we add 

it to A, and start over (lines 10–11). If no such element is found, we then look for an x ∈ X 
to remove from A by checking if the estimate for x is less than −2/|X|2·OPT (line 13). If such 

an element is found, we remove it from A and start over (lines 14–15). When elements can 

no longer be added or removed from A, SLS returns ΦX(A, δ′), a random subset of X 
sampled with bias δ′ on A (line 17).

SLS will terminate in polynomial time and produce a solution of guaranteed quality. If we 

run SLS for two choices of parameters, (δ = 1/3, δ′ = 1/3) and (δ = 1/3, δ′ = −1), the better 

of the two solutions has expected value at least (2/5 − o(l)) f*, where f* is the optimal value 

of f over X [18]. To construct a decision set that maximizes Equation 1, we run SLS twice 

with the two aforementioned choices of parameters and return the better of the two solutions 

according to objective (1).

5. EXPERIMENTAL EVALUATION

In this section, we discuss the detailed experimental evaluation of interpretable decision sets. 

First, we analyze their classification performance. Second, we propose metrics for 
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quantifying interpretability and use them to evaluate interpretable decision sets. For each of 

these experiments, we compare interpretable decision sets with various state-of-the-art 

baselines. Third, we also present a detailed ablation study where we explore the effects of 

various components of our objective function on the predictive accuracy and interpretability 

of the resulting decision sets. Lastly, we conclude this section by presenting the results of a 

user study which we carried out to understand how easy it is for people to interpret our 

models.

Dataset Description

We analyzed three real-world datasets from diverse domains such as the judicial system, 

education, and medicine. These domains rely heavily on human decision making, and hence 

would benefit a great deal from the design of predictive models which are interpretable.

Our first dataset is a sample of bail outcomes collected from several state courts in the US 

between 1990–2009 [25]. This dataset consists of past criminal records, demographic 

attributes, and other details of about 86K defendants who were released on bail (Table 2). 

Whenever a defendant is released on bail, there are four possible outcomes: (1) the 

defendant is not arrested while out on bail and appears for further court dates (No Risk), (2) 

the defendant fails to appear for further court dates (FTA), (3) the defendant commits a non-

violent crime (NCA) and, (3) the defendant commits a violent crime (NVCA) when released 

on bail. Our goal is to predict these outcomes.

Our second dataset consists of student performance records for about 21K students who 

were set to graduate in 2012 and 2013 from schools in a medium-sized district on the east 

coast [31]. Grades, demographic attributes, absence rates, suspensions, and withdrawals 

were tracked from grade 6 to 8 for each of these students. The target prediction is whether a 

student graduated high school on time or not or dropped out mid way (Table 2).

Lastly, our third dataset comprises medical diagnosis records of about 150K patients 

collected by a web-based electronic health record company [41]. This dataset documents 

information about patients who are suffering from asthma, diabetes, depression, lung cancer 

and rare blood cancers such as leukemia and myelofibrosis. Several attributes such as current 

medical conditions and symptoms, medical history, and age are recorded for each of the 

150K patients (Table 2).

Baselines for Comparison

We compared interpretable decision sets with the following state of the art interpretable rule-

based systems for classification: Bayesian Decision Lists (BDL) [34], CN2 [15], and 

Classification Based on Associations (CBA) [35]. CBA was designed to bridge the gap 

between association rule mining and classification and thus focuses mostly on optimizing for 

predictive accuracy. CN2 is a classic decision set learning algorithm which does not 

explicitly account for conciseness or overlap of the rules. On the other hand, BDL, a more 

recently proposed framework optimizes for conciseness alongside predictive accuracy when 

generating the decision lists. In addition to these baselines, we also compare our approach 
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with several other standard classification models such as logistic regression, random forests, 

gradient boosting, and decision trees.

Parameter Selection

The formulation that we proposed for learning decision sets in Section 4 has parameters λ1 

… λ7. We set aside 5% of our data as a validation set to estimate these parameters. We 

searched the parameter space using coordinate ascent to find parameters that produced a 

decision set with the highest AUC on the validation set and also satisfied some simple 

bounds on the interpretability metrics: Fraction Overlap ≤ 0.10, Fraction Uncovered ≤ 0.15, 

Avg. Rule Length ≤ 10, Number of Rules ≤ 15 and Fraction Classes = 1.0. Each of the 

aforementioned metrics are discussed in detail in Section 5.2. See the extended version of 

this paper [32] for additional details.

The baseline model BDL has three hyperparameters: α, λ, and η. The hyperparameter α 
controls the Dirichlet prior on the distribution of labels and is chosen so that the prior is 

uniform. λ controls the prior on the number of the rules in the decision list and η controls a 

prior on the average number of predicates per rule in the decision list. In order to set λ and 

η, we experimented with all the values in the range {2 … 25} and picked those which 

resulted in a decision list that was both interpretable as well as accurate according to the 

metrics defined in Sections 5.1 and 5.2. Our approach IDS as well as the baselines BDL and 

CBA utilize the Apriori algorithm [2] for generation of candidate itemsets. The Apriori 

algorithm has a support threshold parameter ε which ensures that the candidate itemsets are 

present in at least ε data points. We set the value of this parameter to 1% of the total dataset 

size. In the case of CN2, we set the maximum rule length to 10. In the case of tree-based 

models, we stop splitting a node when the number of data points per leaf falls below 1% of 

the total dataset size.

5.1 Classification Performance

We evaluated the classification performance of our model on three different prediction tasks: 

(1) predicting the behavior of a defendant who was released on bail; (2) predicting if a 

student will not graduate high school on time or drop out; (3) predicting which of the six 

different diseases a patient is likely to be diagnosed with. We evaluated the performance of 

our approach as well as the baselines using standard metrics such as AUC ROC and F1-

score via 10-fold cross validation.

In order to compute the AUC metric, we need to estimate the probability that a given data 

point d belongs to a particular class c. In the context of rule-based frameworks such as ours, 

such probabilities can be easily computed as follows: Let r be the rule which determined the 

class label of data point d. The probability that data point d belongs to some class c is the 

precision of rule r. That is, the fraction of data points classified by r to class c that truly 

belong to c. Since our prediction tasks are multi-class, we used micro-averaged AUC [21]. 

We binarized the classes in the data using a one vs. all strategy and computed the AUC for 

each class. Micro-averaged AUC is the average of these per-class AUCs.

Table 3 records the AUC scores for our framework and other baselines. It can be seen that 

the ensemble models comprising 50 trees exhibit higher AUC scores compared to other 
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models. Further, our IDS framework, CBA, CN2, and decision trees exhibit comparable 

performance on bail outcomes and student performance data while our model slightly under-

performs on the medical diagnosis data (based on paired t-tests at 95% CI). BDL and 

logistic regression turn out to be the worst performing baselines across all the datasets. It is 

interesting to note that in terms of classification accuracy our framework performs on par 

with models such as CBA and decision trees which optimize exclusively for predictive 

accuracy.

5.2 Quantifying Interpretability

We define metrics for evaluating the interpretability of rule-based models. We then use these 

metrics to compare and contrast the interpretability of our framework with that of other 

baselines. As discussed in Section 3.2, a set of rules is considered interpretable if (1) the 

rules in the set describe non-overlapping feature spaces, (2) most (ideally all) data points are 

covered by some rule in the set, (3) the set comprises a small number of rules and each of 

the rules is concise, and (4) the rules in the set describe most (ideally all) of the classes in 

the data.

Below, we present a list of interpretability metrics designed based on the aforementioned 

criteria. We first define these metrics for decision sets and then explain how they can be 

generalized to decision lists (i.e., if-then-else rules used by BDL and CBA methods).

Fraction Overlap—This metric captures the extent of overlap between every pair of rules 

of a decision set ℛ. Smaller values on this metric signify higher interpretability.

This metric has a lower bound of 0.0 which corresponds to zero overlap between every pair 

of rules in ℛ and an upper bound of 1.0 which corresponds to a scenario where all the data 

points are covered by all the rules in ℛ. This metric takes a value zero for any decision list 

because the if-else if structure of a decision list ensures that a rule in the list applies only to 

those data points which have not been covered by any of the preceding rules.

Fraction Uncovered—This metric computes the fraction of data points which are not 

covered by any rule in a decision set ℛ:

This metric assumes a minimum value of 0.0 when all the data points are covered by some 

rule in ℛ and it takes a maximum value of 1.0 when no data point is covered by any rule in 

ℛ which could imply that ℛ is empty. In the case of decision lists, this metric can be 

computed as the fraction of those data points which are covered by the final else clause of 

the list.
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Avg. Rule Length—The metric captures the average number of predicates a human reader 

must parse to understand a rule in a decision set ℛ. It is computed as the mean length of the 

rules in ℛ:

When computing this metric for a decision list, it is important to account for the fact that a 

rule ri, in the list applies only to those data points which are not covered by any of the 

preceding rules ri − 1, ri − 2 … r1. This implies that the data points covered by rule ri, satisfy 

the pattern si ⋀ ¬ si − 1 ⋀ ¬ si − 2 ⋀ ⋯ ⋀ ¬ s1 where si … s1 denote the itemsets 

corresponding to ri … r1 respectively. This also means that a human reader who is trying to 

parse the rule ri must go through all the predicates of the preceding rules. Therefore, the 

length of a rule ri in a decision list is computed as length(ri) + length (ri − 1) + ⋯ + 

length(r1).

Number of Rules—This is the number of rules in a decision set ℛ denoted by size(ℛ) 

(Refer to the notation in Section 3.2.) It is straightforward to see how this metric applies to 

decision lists. When counting the number of rules in a decision list, we exclude the final else 

clause.

Fraction of Classes—This metric measures what fraction of the class labels in the data 

are predicted by at least one rule in a decision set ℛ:

This metric has a lower bound of 0.0 which corresponds to the scenario where no class is 

described by the decision set ℛ which could possibly mean that ℛ is empty. The maximum 

value that this metric can take is 1.0 which corresponds to the case where every class is 

described by some rule in ℛ. This metric can be easily generalized to decision lists. When 

computing the number of classes described by a decision list, we do not consider the final 

else clause.

Results—We evaluated the interpretability of our model and the baselines using all the 

aforementioned metrics. Results for the medical diagnosis data are presented in Table 4. The 

overlap among the rules produced by our approach is much smaller than the overlap among 

the rules generated by CN2. On the other hand, there is zero overlap among the rules 

produced by BDL and CBA and, as discussed earlier in this section, this is due to their if-

then-else structure. The fraction of data points left uncovered by IDS is smaller than that of 

the other baselines. The average rule length of the decision set produced by IDS is about 

three times smaller than that of the decision sets or lists output by the baselines. The number 

of rules in the decision set produced by our approach is comparable to that of BDL, where as 

CBA and CN2 generate models which have almost thrice the number of rules. In terms of 

accounting for all the classes, the rules generated by our framework, CN2, and CBA explain 
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all the classes in the data. On the other hand, BDL produces a decision list which leaves out 

two of the less common but very important classes corresponding to rare types of blood 

cancers.

5.3 Ablation Studies

We also explore the impact of various components of our objective function on the 

interpretability and predictive accuracy of the resulting decisions sets. To this end, we 

experiment with various ablations of our model obtained by excluding some key components 

from the objective function one at a time.

Our first ablated model called No Precision is obtained by excluding the term which 

encourages precision, f6(ℛ), from the learning objective. Similarly, another ablated model, 

which we refer to as No Recall, is learned by excluding the term which encourages recall, 

f7(ℛ) from the objective. Other ablations, namely, No Overlap, No Conciseness, and No 
Class are obtained by removing the terms which favor each of these aspects, f3(ℛ) and 

f4(ℛ), f1(ℛ) and f2(ℛ), and f5(ℛ), respectively.

We quantitatively evaluate the predictive power and interpretability of these ablated models. 

Results for medical diagnosis data are presented in Table 5. It can be seen that No Precision 
and No Recall exhibit poor predictive performance demonstrating the effect of excluding the 

precision and recall terms from the objective. It is interesting to note that decision set 

produced by the No Precision model leaves a large fraction of data points uncovered. This is 

because the precision term of our objective function ensures the coverage of data points and 

removing this term from the objective leaves the learning algorithm with no incentive to find 

a decision set which covers all the data points. Analogous observations can be made about 

other ablation models. Removing the overlap constraints from the objective (No Overlap) 

results in an increase in the fraction overlap metric and excluding the class coverage 

constraint from the objective in the No Class model results in a decision set which does not 

describe a rare type of blood cancer called Myelofibrosis. Not accounting for conciseness 

(No Conciseness) produces rules which are about twice as long compared to those output by 

the full learning objective. These results demonstrate that each term in objective (1) 

contributes to the overall goal of learning accurate and interpretable decision sets.

5.4 Human Judgment of Interpretability

Our goal is to produce rule-based models which are interpretable as well as accurate. While 

most prior research [35, 34] used the term interpretable to loosely refer to any rule-based 

model since it can be parsed by humans, we proposed a much stronger notion of 

interpretability. We call a rule-based model interpretable if a human can understand the 

model’s decision boundaries by looking at the rules. There can be no better judges than 

humans to evaluate this notion of interpretability. Therefore, we performed a user study to 

determine how well humans are able to understand and describe the patterns of various 

classes in the data by looking at the rules produced by our framework.

User Study Design—We designed an online user study where each participant was 

presented with either a decision set produced by our framework or a decision list generated 
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by the baseline BDL. We also evaluated the interpretability of BDL in the same setting so 

that we could compare and contrast the two approaches. In order to carry out this study, we 

recruited a set of 47 students who were taking a data mining course at Stanford. These 

students were familiar with concepts such as logical conjunctions, disjunctions and if-

then/if-then-else structures. Each user was asked a series of descriptive and multiple-choice 

questions based on the rules shown to them. These questions were designed to test the user’s 

understanding of the decision boundaries of the classes in the data. Each user was presented 

with twelve questions, out of which ten were multiple choice questions and two were 

descriptive. Each user was allowed to participate in the study only once. Therefore, every 

student who participated in the study either answered questions based on a decision set or a 

decision list, but not both. We also recorded the time taken to answer every single question 

for each individual user. We used the decision sets and lists learned from the medical 

diagnosis data for this study. Figure 2 shows a screenshot of the interface used in the study.

Descriptive Questions—Each user was asked two descriptive questions. Each of the 

questions required the user to explain in plain language all the characteristics of a patient 

suffering from a particular disease based on the rules presented. For instance, if a user were 

presented with the model in Figure 1 (right), an example question would be: Please write a 

short paragraph describing the characteristics of  patients based on the rules 
provided above. These questions gauge how easy it is for a user to understand and describe 

the decision boundaries of the model.

Multiple Choice Questions—Each user was asked ten questions which could be 

answered with “true” or “false.” Each question provided a small subset of attribute values or 

symptoms associated with some hypothetical patient and asked the user if the information 

provided was sufficient to conclude that the patient suffered from a particular disease. For 

instance, if a user were presented with the model in Figure 1 (left), an example question 

would be: Given a patient with the following attributes,  and 

, can you be absolutely sure that this patient suffers from  These 

questions measure if the rules provided to the users enable an easy understanding of the 

decision boundaries. Further, these questions closely resemble several real-world settings 

where decisions need to be made based on partial information and decision makers typically 

evaluate if the available information is sufficient to make an accurate decision.

Evaluation—The multiple choice questions that we asked users always had unambiguous 

answers. On the other hand, we had to set some rough guidelines to evaluate the correctness 

of the descriptive answers. An important guideline was that a right answer to a descriptive 

question should correctly explain all the rules characterizing a particular class while 

respecting the structure guided by the conjunctions, disjunctions and if-then/if-then-else 

statements.

Each descriptive answer was examined by two independent evaluators and tagged as right or 

wrong based on the guidelines highlighted above and their individual judgment. The 

interevaluator agreement was 89.36%. We excluded from our analysis those responses on 

which the evaluators did not agree.
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We selected a list of metrics to evaluate the results: (1) Human Accuracy, which denotes 

the fraction of correct answers; (2) Avg. Time Spent, which denotes the average time spent 

in seconds to answer a question; (3) # of Words, which represents the average number of 

words used to write a descriptive answer. When computing metrics (2) and (3) for 

descriptive answers, we only considered those responses which were labeled as correct by 

both the evaluators.

Results—Table 6 presents the results of the user study. About 81% of the class descriptions 

written based on interpretable decision sets were accurate. In comparison, only 17% of the 

descriptions which were written based on BDLs were accurate.

The key to providing right answers to the descriptive questions was to correctly parse the 

conjunctions, disjunctions and the associated if-then/if-then-else statements. The most 

common mistakes users made when answering descriptive questions pertaining to our 

decision sets framework were: (1) explaining just one rule when there were multiple rules 

associated with a particular class, and (2) ignoring some predicate when explaining a rule. In 

the case of decision lists, the most common mistakes were: (1) not accounting for the 

negations induced by preceding rules when explaining a particular rule, (2) using other class 

labels when describing a particular class (for instance, we found answers such as “If a 

patient has not been diagnosed with lung cancer, then he/she is likely to have depression.”), 

and (3) explaining just one rule when there were multiple rules associated with a class. 

These additional mistake patterns introduced by the if-then-else structure of decision lists 

indicate that they are less interpretable than decision sets.

The average time taken to write a description based on a decision list is thrice as much as the 

time taken to write a description based on a decision set. In addition, the descriptions based 

on interpretable decision sets had 74% fewer words compared to the descriptions based on 

BDLs. This indicates that users find it much easier to describe classes based on the decision 

sets.

Our results even demonstrate that in the case of multiple choice questions, people were more 

accurate and much faster in answering questions based on our decision sets in comparison 

with those based on decision lists. This result confirms our hypothesis that users find it much 

simpler to reason about decision boundaries when presented with interpretable decision sets.

6. CONCLUSIONS

In this paper, we presented a method for learning interpretable decision sets. We formulated 

the problem of learning decision sets via an objective function that simultaneously optimizes 

for accuracy and interpretability. We proved that our objective is a non-monotone 

submodular function which can be efficiently optimized with a 2/5 approximation guarantee. 

Our experiments demonstrated that decision sets are as accurate as other state-of-the-art 

methods but are much more interpretable. Our user study demonstrated that humans can 

reason much more accurately about the decision boundaries of a decision set than those of a 

decision list. Humans were also dramatically better at describing a decision set’s decision 

boundaries in words. There are multiple, interesting lines of future work to explore. It would 
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be useful to extend decision sets to a regression setting. Another important direction is to 

incorporate human-in-the-loop feedback when learning interpretable decision sets so that 

human experts can help train and correct a model as it is learned.
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Figure 1. 
An interpretable decision set, our proposed approach (left), and a decision list [45] (right) 

learned from the same medical diagnosis dataset. Decision sets (left) are more 

comprehensible to humans because rules apply independently. In decision lists (right), rules 

implicitly depend on all the rules above it not being true. Thus, while the order of the rules 

in decision lists is crucial, it does not matter for decision sets.
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Figure 2. 
A screenshot of the interface for the user study. In this example, the user is asked to write a 

paragraph describing a class based on the provided decision set.
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Table 1

Summary of notation.

Notation Definition Term

Input set of data points
{(x1, y1), …, (xN, yN)}

Dataset

x Observed attribute
values of a data point

y Class label
of a data point

Set of class labels in 

p (attribute, operator, value)
tuple, e.g., Age ≥ 50

Predicate

s Conjunction of one or more
predicates, e.g., Age ≥ 50

and Gender = Female

Itemset

Input set of itemsets

r Itemset-class pair (s, c) Rule

ℛ Set of rules
{(s1, c1), …, (sk, ck)}

Decision set
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Table 2

Summary of datasets.

Dataset # of Data Points Features Classes

Bail Outcomes 86,152 gender, age, current offense details,
past criminal behavior of defendants

No Risk, FTA, NCA, NVCA

Student Performance 21,713 gender, age, grades, absence rates & tardiness
behavior recorded through grades 6 to 8,

suspension/withdrawal/transfer history of students

Graduated on Time,
Delayed Graduation, Dropped Out

Medical Diagnosis 150,743 current ailments, age, BMI, gender,
smoking habits, medical history,

family medical history of patients

Asthma, Diabetes, Depression,
Lung Cancer, Leukemia, Myelofibrosis
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Table 3

Area Under the ROC curve for all the datasets.

Method AUC ROC

Bail Student Medical

IDS 69.78 75.12 61.19

BDL 67.18 72.54 59.18

CBA 70.68 76.02 63.03

CN2 71.02 76.36 64.78

DT 70.08 75.31 63.28

GB (50 trees) 71.23 77.18 64.21

RF (50 trees) 70.87 77.12 63.92

LR 66.39 73.76 60.02

IDS: Interpretable Decision Sets (our method); BDL: Bayesian Decision Lists; CBA: Classification Based on Association; DT: Decision Tree; GB: 
Gradient Boosting; RF: Random Forests; LR: Logistic Regression.
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Table 6

Results of a user study comparing interpretability of Interpretable Decision Sets (IDS) and Bayesian Decision 

Lists (BDL).

Task Metrics IDS BDL

Descriptive
Human Accuracy
Avg. Time Spent (secs.)
# of Words

0.81 (0.06) 0.17 (0.06)

113.4 (8.29) 396.86 (47.93)

31.11 (1.13) 120.57 (16.84)

Multiple
Choice

Human Accuracy
Avg. Time Spent (secs.)

0.97 (0.01) 0.82 (0.02)

28.18 (1.54) 36.34 (3.81)

Numbers in parentheses are standard errors.
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