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ABSTRACT
Automatic malware classifiers often perform badly on the
detection of new malware, i.e., their robustness is poor. We
study the machine-learning-based mobile malware classifiers
and reveal one reason: the input features used by these clas-
sifiers can’t capture general behavioural patterns of mal-
ware instances. We extract the best-performing syntax-
based features like permissions and API calls, and some
semantics-based features like happen-befores and unwanted
behaviours, and train classifiers using popular supervised
and semi-supervised learning methods. By comparing their
classification performance on industrial datasets collected
across several years, we demonstrate that using semantics-
based features can dramatically improve robustness of mal-
ware classifiers.

Keywords
Mobile security; Android system; malware detection; ma-
chine learning

1. INTRODUCTION
The machine-learning-based classification plays an impor-

tant role in automatic mobile malware detection. The main
drawback is its poor robustness—the classification perfor-
mance on the detection of new malware is bad [4]. Re-
searchers have shown that well-trained classifiers can achieve
good classification performance, e.g., precision as high as
99% and false positive ratio as low as 1% [3, 7, 42]. How-
ever, in these and most other studies, the training and test-
ing data were collected in the same period and from the same
source. These classifiers only presented good fits to training
data. When these classifiers are applied in practice to detect
new malware, the classification accuracy drops dramatically.
A method adopted in industry to mitigate this problem is
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to replace some old training data by new data and re-train
classifiers to maintain good classification performance. But
it is hard to decide how much old data should be removed
and what kind of new data should be added.

In this paper we ask whether it is possible to improve
robustness of classifiers over time, by using more general and
abstract features, rather than simply substituting new data
for old training data. We want to figure out the main factor
which affects robustness of mobile malware classifiers and
develop an approach to improve it. The main contributions
of this paper are as follows.

• We show that the known best-performing classifiers,
e.g., those using API calls as input features, perform
badly on the detection of new malware; in particular,
the precision and recall respectively drop from around
95% and 99% on the validation dataset to on average
55% and 26% on the testing dataset.

• We compare the classification performance of classi-
fiers which were trained using popular supervised and
semi-supervised learning methods, and conclude that
the L1-Regularized Linear Regression is the most ro-
bust method, i.e., showing better and balanced perfor-
mance on the validation and testing datasets.

• We demonstrate that semantics-based features improve
robustness dramatically, in particular, increasing the
precision and recall on the testing dataset respectively
to as high as 73% and 67%, which are respectively 18
and 41 points better than those using syntax-based
features.

We train and test using Android apps from several indus-
trial datasets. They were collected and investigated between
2011 and 2014 by third-party researchers and malware ana-
lysts from anti-virus vendors.

• Training and Validation. We collected 3, 000 mal-
ware instances, which were released and identified be-
tween 2011 and 2013, and 3, 000 benign apps published
in the same period. They include all malware instances
from Malware Genome Project [45] and most from
Mobile-Sandbox [34]. These malware instances have
been manually investigated and organised into around
200 families by third-party researchers and malware
analysts [1, 2, 27]. They were divided into a training



dataset and a validation dataset. Each of them con-
sists of 1, 500 malware instances across all families and
1, 500 benign apps.

• Testing. We test using a collection of 1, 500 malware
instances, which were released and identified in 2014,
and 1, 500 benign apps published in the same year.
These malware instances were from Intel Security and
have been investigated by malware analysts. The col-
lection of benign appls is disjoint from those used for
training and validation. They were randomly chosen
from benign apps supplied by Intel Security.

We want to experiment on small datasets before testing on
market-scale datasets in further work. We found that when
the training dataset contained more than 1,000 apps, a well-
trained classifier performed stably; so, datasets containing
thousands of apps are enough for our purpose. Since the
distribution of malware in real world is unknown, for each
dataset we simply put in the same number of samples and
kept malware and benign half-and-half.

We report performance of classifiers which were trained
using the following machine learning methods:

- trees: decision trees [31], random forest [12], and the
adaptive boosting [22] using decision trees as the base
estimators;

- linear: the L1-regularized linear regression [37] and
support vector machines [35];

- semi-supervised: the work by Zhou et al. [44];

- others: k-nearest neighbours [5] and naive Bayes,

and the following features:

- syntax-based: permissions, actions, API calls, and key-
words;

- semantics-based: reachables, happen-befores, and un-
wanted behaviours.

These features were directly extracted from the bytecode
of Android apps using static analysis. All semantics-based
features are based on an abstract model called behaviour
automata, which are collections of finite control-sequences
of actions, events, and annotated API calls, to approximate
the behaviours of Android apps. We adopt the approach
proposed in [17] to construct behaviour automata and learn
unwanted behaviours from them. More details on the feature
extraction are given in Section 2.

A classifier is considered robust if its classification per-
formance is good and balanced on the validation and test-
ing datasets. Formally, we measure robustness of classifiers
by calculating the Fβ-measure [32] of F1-scores of precision
and recall on these two datasets. We trained 56 classifiers
by using the above methods and features. The comparison
between these classifiers demonstrates that semantics-based
features improve robustness of malware classifiers. The de-
tails are given in Figure 3 and Table 3.

Malicious behaviours in a group of apps might be innocu-
ous in another, e.g., sending text messages is normal for
messaging apps but suspicious for E-reader apps; so, to fur-
ther improve robustness we train and test cluster-specific
classifiers. That is, apps are organised into small groups by
using clustering methods; then, one classifier is trained for

each group. The evaluation shows that robustness of these
cluster-specific classifiers is better than general classifiers,
especially, when semantics-based features are applied in the
clustering process.

These evaluations confirm our intuition: semantics-based
features capture general behavioural invariants in malware,
which leads to better classification performance on the de-
tection of new malware than that of classifiers using syntax-
based features. We believe that by using more fine-grained
semantics-based features better classification performance
can be achieved.

Related Work.
Machine learning methods have been applied in Android

malware detection for some time. Researchers have tested
various supervised learning methods and different kinds of
features. For example, the tool DroidAPIMiner [3] uses
API calls as input features and relies on the KNN algo-
rithm; the method Drebin [7] trains an SVM classifier us-
ing a range of syntax-based features; Yerima et al. applied
naive Bayes [41] and ensemble learning [40] in training; Gas-
con et al. [23] proposed to use graph kernel of embedded
call graphs; Zhang et al. [43] exploited the edit distance be-
tween API dependency graphs; behaviour graphs were used
in DroidMiner [39]; Yuan et al. [42] designed a good deep-
learning-based classifier; Narudin et al. [28] compared sev-
eral methods and concluded that random forest and naive
Bayes have the best classification performance. Clustering
methods were applied as well. For instance, the tool Den-
droid [36] uses the cosine similarity between call graphs to
group malware instances into families; similar ideas were
applied in DroidLegacy [18] to detect piggybacking. Among
others, various probabilistic models were developed to rank
risks in apps. For example, Peng et al. [30] built models
on naive Bayes; the tool MAST [13] exploits the multiple
correspondence analysis to figure out the most indicative
features.

All of these tools and methods were trying to obtain good
fits to training data by combining different methods and
features. Robustness of malware classifiers, in particular,
the classifier specifically designed to detect new malware,
has received much less consideration. An early investiga-
tion of effects on classifiers caused by new malware has been
done by Allix et al. [4]. They concluded that training on
a random set of known malware could lead to significantly
biased results. This discovery is also confirmed in our study,
i.e., robustness of classifiers using syntax-based features is
poor. Our research is beyond this primitive investigation
and demonstrates a promising method to improve robust-
ness of classifiers.

2. FEATURES
Syntax-based features are the most popular and the best-

performing features known for malware classifiers, includ-
ing: meta-information of an app, e.g. permissions, actions,
intents, etc., and specific strings in code, e.g., API calls,
commands, keywords appearing in UI elements, URLs, frag-
ments of bytecode, etc. We call features “semantics-based”
when they start to relate syntax-based features using de-
pendency relations, e.g., an API method is invoked before
another, the data-flow from a variable to another, a call-
back is triggered by an event, call-graphs, etc. In this sec-



tion, we will discuss and compare several syntax-based and
semantics-based features.

2.1 Syntax-Based Features
An Android app consists of the manifest file AndroidMan-

ifest.xml, the bytecode classes.dex, the developer’s signa-
tures, libraries, and resources including: layouts, pictures,
strings, etc. The manifest file specifies permissions requested
by the app and components defined in the app. A compo-
nent is often associated with actions which are requests or
events it can deal with. By using the platform tool aapt we
extract permissions and actions from the manifest file, and
all strings defined in resources, from which we will choose
keywords. We decompile the bytecode into assembly code
by using the platform tool dexdump, from which we extract
API calls.

2.1.1 Permissions
Permissions reflect resource requirements from an app.

Although the developer can define their own permissions,
we only care about system permissions which are pre-defined
in the Android framework. We extract system permissions
from the manifest file, e.g., INTERNET, ACCESS FINE LO
CATION, CAMERA, etc. Around 200 system permissions
govern more than 32, 000 API methods [9]. To invoke a
permission-governed API method, the developer has to spec-
ify its corresponding permission in the manifest file; other-
wise, the app will crash at runtime. However, an app might
request more permissions than it actually needs, so-called
over-privileged [19, 21]. Thus, the list of system permis-
sions requested by an app is a lightweight but very coarse
characterisation of its behaviour.

2.1.2 Actions
Actions denote what kind of requests or events an app

can deal with. For example, the following fragment of the
manifest file tells us: a receiver component is defined in this
app; it can deal with the action SMS RECEIVED.

<receiver android:name="com.example.Receiver" >
<intent -filter >

<action android:name=
"android.provider.Telephony.SMS_RECEIVED"/>

</intent -filter >
</receiver >

We are interested in actions because a lot of identified mal-
ware instances will exploit specific actions. For example, an
instance in the malware family Zitmo [27] will intercept an
incoming SMS message to obtain the user’s online transac-
tion number, i.e., the unwanted behaviour is triggered by the
action SMS RECEIVED; the unwanted behaviours in the
malware families Arspam [34] and Ginmaster [45] are trig-
gered by the action BOOT COMPLETED, i.e., the device
finishes the booting; some instances in the malware families
Anserverbot and Basebridge [45] load classes from hidden
payloads when a USB mass storage is connected, i.e., the
action UMS CONNECTED.

Developers are allowed to define their own actions to im-
plement communications between components within the
same app. Since these developer-defined actions are too spe-
cific to be used as training features, we only extract from the
manifest file system actions which are pre-defined in the An-
droid framework. Around 800 system actions were collected
from more than 10, 000 sample apps.

2.1.3 API Calls
API calls appearing in code tell us what an app can pos-

sibly do. We collected more than 52, 000 API calls by going
through the assembly code of more than 10, 000 sample apps.
For example, from the following assembly code,

#1 : (in Lcom/example/main/Main;)
name : ’getPhoneNumber ’
type : ’()Ljava/lang/String;’

|0000: invoke -virtual {v3},
Lcom/example/main/Main;. getBaseContext

|0003: move -result -object v1
|0004: const -string v2, "phone"
|0006: invoke -virtual {v1, v2},

Landroid/content/Context ;. getSystemService
|0009: move -result -object v0
|000a: check -cast v0,

Landroid/telephony/TelephonyManager;
|000c: invoke -virtual {v0},

Landroid/telephony/TelephonyManager ;. getLine1Number
|000f: move -result -object v1
|0010: return -object v1

we extract the API calls Context.getSystemService and
TelephonyManager.getLine1Number by looking for the in-
structions invoke-*.

The list of API calls is the best-performing feature known
for malware classifiers. By carefully selecting salient API
calls, combining with other syntax-based features, and choos-
ing suitable machine learning methods, the precision of clas-
sifiers can usually reach as high as 99% and the false positive
ratio is maintained as low as 1% [3, 7]. However, API calls
have two drawbacks.

- It contains “noise” caused by the dead code and li-
braries, in particular, advertisement libraries [3].

- It can’t characterise more sophisticated app behaviours.
This is needed in practice: some malicious behaviours
only arise when some API methods are called in cer-
tain orders [16, 25, 39].

These drawbacks will result in overfitting to training data.
Accordingly, the performance on the detection of new mal-
ware is poor, as we will show later.

2.1.4 Keywords
We extract nouns from strings which are defined in re-

sources of Android apps, so-called keywords. These key-
words will be presented to the user in UI elements at run-
time. They reflect what an app declares to do. For instance,
the keywords “photo”, “gallery”, and “camera” often appear
in a Photo Editor app and the keywords “weather”, “city”,
and“temperature”are often seen in a Weather Forecast app.

These keywords are more precise than those extracted
from the descriptions of apps. For each app on the offi-
cial Android market—Google Play, a description explaining
its functionality is supplied by its developer. Researchers
have studied how to organise Android apps into groups by
using the keywords extracted from these descriptions and
how to identify the outliers in each group, e.g., abnormal
usages of APIs [24]. However, most malware instances were
collected from alternative Android markets. Their descrip-
tions might not exist or are not written in English. They
often contain a lot of redundant words, which are added to
boost the appearance in search results.



// ?>=<89:;76540123q0 MAIN //

SMS RECEIVED

��

?>=<89:;76540123q1 SEND SMS //

click

�� ?>=<89:;76540123q2
SEND SMS

��

?>=<89:;76540123q3
READ PHONE STATE

// ?>=<89:;76540123q4
READ PHONE STATE

OO

Figure 1: An example behaviour automaton.

Human-authored description Learned unwanted behaviours in regular expressions

Arspam. Sends spam SMS messages to contacts on the
compromised device.

1. BOOT COMPLETED . SEND SMS

Anserverbot. Downloads, installs, and executes payloads.
1. UMS CONNECTED .LOAD CLASS∗ . (ACCESS NETWORK STATE |

READ PHONE STATE | INTERNET) . (ACCESS NETWORK STATE |
READ PHONE STATE | INTERNET |LOAD CLASS)∗

Basebridge. Forwards confidential details (SMS, IMSI,
IMEI) to a remote server.Downloads and installs payloads.

1. UMS CONNECTED . (INTERNET |LOAD CLASS |READ PHONE

STATE |ACCESS NETWORK STATE)+

Cosha. Monitors and sends certain information to a re-
mote location.

1. MAIN . click . (click |ACCESS FINE LOCATION |DIAL)∗ . DIAL .
(click |ACCESS FINE LOCATION |DIAL)∗ . (INTERNET | ε)

2. SMS RECEIVED . (INTERNET |ACCESS FINE LOCATION)+

Droiddream. Gains root access, gathers information (de-
vice ID, IMEI, IMSI) from an infected mobile phone and
connects to several URLs in order to upload this data.

1. PHONE STATE . (ACCESS NETWORK STATE |READ PHONE

STATE+ . INTERNET) . (ACCESS NETWORK STATE | INTERNET)∗

Geinimi. Monitors and sends certain information to a re-
mote location.Introduces botnet capabilities with clear in-
dications that command and control (C&C) functionality
could be a part of the Geinimi code base.

1. ε |MAIN . click+ . VIBRATE . (click |VIBRATE)∗ . RESTART PACKAGES .
(MAIN . (click |VIBRATE)∗ . RESTART PACKAGES)∗

2. BOOT COMPLETED . (ACCESS NETWORK STATE |
click | INTERNET |RESTART PACKAGES |ACCESS FINE LOCATION)+

Ggtracker. Monitors received SMS messages and inter-
cepts SMS messages.

1. MAIN .READ PHONE STATE
2. SMS RECEIVED . SEND SMS

Ginmaster. Sends received SMS messages to a remote
server. Downloads and installs applications without user
concern.

1. BOOT COMPLETED .LOAD CLASS
2. MAIN . SEND SMS

Spitmo. Filters SMS messages to steal banking confirma-
tion codes.

1. NEW OUTGOING CALL .READ PHONE STATE .
INTERNET . (INTERNET | ε)

Zitmo. Opens a backdoor that allows a remote attacker
to steal information from SMS messages received on the
compromised device.

1. SMS RECEIVED . SEND SMS
2. MAIN .READ PHONE STATE
3. MAIN . SEND SMS

Table 1: Human-authored descriptions versus learned unwanted behaviours.

2.2 Semantics-Based Features
We approximate an app’s behaviour by an automaton,

i.e., a collection of finite control-sequences of events, ac-
tions, and annotated API calls. Some API calls might in-
dicate the same behaviour, for instance, getDeviceId, get-
Line1 Number, and getSimSerialNumber are all related to
the behaviour of reading phone state; so we aggregate API
calls into permission-like phrases and abstract automata by
substituting phrases for API calls, so-called behaviour au-
tomata [17].

An example behaviour automaton is given in Figure 1.
It tells us: this app has two entries which are respectively
specified by the actions MAIN and SMS RECEIVED; it will
collect information like the phone state, then send SMS mes-
sages out; it can deal with the interaction from the user, e.g.,
clicking a button, touching the screen, long-pressing a pic-
ture, etc., which is denoted by the word “click”. All states
in this automaton are accepting states since any prefix of an
app’s behaviours is one of its behaviours as well.

We have designed and implemented a static analysis tool
to construct behaviour automata. This tool models com-
plex real-world features of the Android framework, includ-
ing: inter-procedural calls, callbacks, component life-cycles,

inter-component communications, multiple threads, multi-
ple entries, nested classes, and runtime-registered listeners.
We don’t model registers, fields, assignments, operators,
pointer-aliases, arrays or exceptions. The choice of which as-
pects to model is a trade-off between efficiency and precision.
In our implementation, we use an extension of permission-
governed API methods generated by PScout [9] as the an-
notations. The Android platform tool dexdump is used to
decompile the bytecode into assembly code, from which we
construct automata.

From behaviour automata we produce the following fea-
tures: reachables, happen-befores, and unwanted behaviours.

2.2.1 Reachables
Reachables denote the labels on edges which can be reached

along a path from one of the entries in a behaviour automa-
ton. For instance, all labels on the edges of the automaton
in Figure 1 are reachables. They are more precise than per-
missions, actions, and API calls appearing in code. This
semantics-based feature removes the “noise” caused by dead
code and libraries. It reflects what an app can actually do
but no order.



2.2.2 Happen-Befores
The happen-before denotes that something happens be-

fore another in a behaviour automaton. For example, the
following pairs:

(MAIN , click), (SMS_RECEIVED , SEND_SMS),
(MAIN , SEND_SMS), (SMS_RECEIVED , click),
(SMS_RECEIVED , READ_PHONE_STATE),
(READ_PHONE_STATE , SEND_SMS),
(READ_PHONE_STATE , click), (click , SEND_SMS),

are happen-before features extracted from the automaton
in Figure 1. These pairs characterise some interesting ma-
licious behaviours which the reachables can’t capture. For
instance, the pair (SMS_RECEIVED, SEND_SMS) is a charac-
terisation of a common malicious behaviour shared by mal-
ware instances in the family Zitmo [27]: obtaining the online
transaction number from the incoming messages then send-
ing it out by SMS messages to a specific phone number, to
finish the online transaction instead of the real user.

In general, one can extract n-tuples as features from be-
haviour automata, i.e., things happening in certain orders.
But, this will introduce a lot of redundant sequences, e.g.,
a “click” list, which waste the space for other more indica-
tive features. Also, we found that constructing triples was
already too expensive.

The happen-befores are less precise than pairs of sources
and sinks produced by the data-flow analysis tools like Flow-
Droid [8] or Amandroid [38]. However, compared with gen-
erating data-flow models, it is much easier to produce happen-
befores for a large number of apps.

2.2.3 Unwanted Behaviours
An unwanted behaviour is a common sub-automaton which

is shared by malware instances but rarely identified in be-
nign apps. As an example, let us consider a malware family
called Ggtracker [2]. A brief human-authored description of
this family produced by Symantec is as follows.

It sends SMS messages to a premium-rate num-
ber. It monitors received SMS messages and in-
tercepts SMS messages. It may also steal infor-
mation from the device.

One unwanted behaviour we have constructed from malware
instances in this family can be expressed as the regular ex-
pression: SMS RECEIVED.SEND SMS. It denotes the be-
haviour of sending an SMS message out immediately after an
incoming SMS message is received without the interaction
from the user.

To construct unwanted behaviours from malware instances
and benign apps, we generate sub-automata by calculating
the intersection and difference between the behaviour au-
tomata of sample apps, and select the sub-automata which
are strongly associated with and largely cover malware in-
stances. Since this combinatorial construction and selec-
tion process is expensive, we adopt the approach proposed
in [17] to accelerate it by exploiting the behavioural differ-
ence between malware instances and benign apps, and the
family names of malware instances. This approach combines
machine learning methods and text-mining techniques, and
proceeds as follows.

1. Malware instances are organised into small groups ac-
cording to their family names. Benign apps are added
into each group to form a balanced training dataset.

2. For each group, we generate sub-automata by comput-
ing the intersection and difference between behaviour
automata of apps in the same group, then train a lin-
ear classifier by taking these sub-automata as input
features—checking whether a feature is a sub-automaton
of the behaviour automaton of an app.

3. Those features which are actually used by the linear
classifier are called salient features, i.e., their weights
assigned by the linear classifier are not zero. We com-
bine two groups by computing the intersection and dif-
ference between their salient features, then training a
linear classifier on sample apps from these two groups
to produce new salient features. This process contin-
ues until all groups are combined into a single group
with a collection of salient sub-automata.

4. From these salient sub-automata an optimal subset
is selected as unwanted behaviours. We apply text-
mining techniques, e.g., subset-searching, weight rank-
ing, and TF-IDF (term frequency - inverse document
frequency) optimisation, etc., to help choose this sub-
set, i.e., taking the salient features of the malware in-
stances belonging to the same family as a document.

It took around two weeks to generate unwanted behaviours
from apps in the training dataset using a multi-core desktop
computer. We use the classification accuracy as the thresh-
old to decide whether all features or only salient features
are kept for each group. It was set to 90% in our imple-
mentation. At the end of computation, around 200 salient
sub-automata are chosen as unwanted behaviours.

We list human-authored descriptions and learned unwanted
behaviours for 10 prevalent families in Table 1. These de-
scriptions for families were collected from their online anal-
ysis reports [2, 27, 34, 45]. A subjective comparison shows
that unwanted behaviours compare well to human-authored
descriptions. Also, they reveal the trigger conditions of some
behaviours, which were often lacking in human-authored
descriptions. For example, the expression BOOT COMPL
ETED.SEND SMS denotes that after the device finishes boot-
ing, this app will send a message out; the expression UMS CO
NNECTED.LOAD CLASS means that when a USB mass
storage is connected to the device, this app will load some
code from a library or a hidden payload; and the unwanted
behaviour for Droiddream shows that if the phone state
changes (the action PHONE STATE), this app will collect
some information then access Internet. In Table 1 only two
behaviours are not captured by unwanted behaviours: “gain
root access” for Droiddream and the behaviour of Spitmo.

Some behaviours of sample apps are not the same as un-
wanted behaviours, but, they often contain some unwanted
behaviours as sub-sequences. For example, the behaviour
SMS RECEIVED.READ PHONE STATE.SEND SMS con-
tains the unwanted behaviour SMS RECEIVED.SEND SMS
as a subsequence. To capture behaviours sharing the same
patterns with the unwanted behaviours, if a behaviour con-
tains an unwanted behaviour as a sub-sequence, we consider
this behaviour as unwanted as well. We call them extended
unwanted behaviours. For instance, we can generalise from
the above unwanted behaviour and construct the automaton
in Figure 2 as an extended unwanted behaviour. Here, we
use the symbol Σ to denote the collection of events, actions,
and permission-like phrases.



// ?>=<89:;q0 SMS RECEIVED //

Σ−{click}

�� ?>=<89:;q1 SEND SMS //

Σ−{click}

�� ?>=<89:;76540123q2
Σ−{click}

��

Figure 2: An example extended unwanted behaviour.

We check whether a target app has any unwanted be-
haviour ψ by testing whether A∩ψ = ∅, where A is the be-
haviour automaton of the target app. These testing results
will be used as input features in further training. Another
usage of unwanted behaviours is to test whether ψ ⊆ A.
This will result in high false negatives because A might not
contain all unwanted behaviours specified in ψ.

3. GENERAL CLASSIFIERS
In this section, we will investigate robustness of general

mobile malware classifiers. These classifiers were trained
by applying supervised learning methods, including: de-
cision trees [31], naive Bayes, L1-regularized linear regres-
sion [37], support vector machines [35], random forest [12],
adaptive boosting [22], and k-nearest neighbours [5], and
a semi-supervised learning method [15]. For each machine
learning method, we trained using different syntax-based
and semantics-based features which have been discussed in
previous section, and tested on the validation and testing
datasets which are described in Section 1. We will demon-
strate that the best-performing features on the validation
dataset, which are often syntax-based features, have poor
classification performance on the testing dataset. We will
show that semantics-based features dramatically improve
the classification performance of the detection of new mal-
ware and achieve the best classification performance on the
testing dataset for most machine learning methods we will
compare.

The methods KNN (k-nearest neighbours), SVM (sup-
port vector machines) and NB (naive Bayes) are included
in our study, because these methods have been success-
fully applied in the Android malware classification, e.g.,
DroidAPIMiner [3], Drebin [7], Yerima et.al. [41], etc. We
will compare their classification performance, combine them
with the semantics-based features and test on new malware.

The L1LR (L1-regularized linear regression) was deliber-
ately designed to train classifiers on sparse data, i.e, only
a small part of features is responsible for a decision. This
assumption coincides with our intuition: features like API
calls and happen-befores contain a lot of redundant infor-
mation and most API calls or happen-befores are actually
useless for the classification. Thus, we choose the L1LR as a
candidate method to improve the classification performance.

The RF (random forest) is an ensemble learning method.
It was designed to mitigate the overfitting problem in the
DT (decision trees). Instead of training a single decision
tree, it trains several trees respectively on random subsets of
samples using random subsets of input features, and makes
decisions by taking majority votings. This leads to a bet-
ter model by decreasing the variance without increasing the
bias, which is needed in our experience to obtain better ro-
bustness. Except for the RF, as a baseline, we include the
DT in our comparison as well.

The AdaBoost (Adaptive Boosting) is another supervised

learning method we have tested. It is an iterative process to
produce stronger learners from weak learners. It improves
the performance of a weak learner by adjusting the weights
assigned to samples in favour of those misclassified by weak
learners.

The SEMI (semi-supervised learning) is applied on a col-
lection of labelled and unlabelled samples. It makes use of
unlabelled samples for training to achieve a better classi-
fier than doing supervised learning on the labelled samples
or doing unsupervised learning on the unlabelled samples.
This matches with our goal to detect new malware.

We use the tools liblinear [20] and libsvm [14] respectively
to train L1LR and SVM classifiers. As for other methods,
we use their implementations in scikit-learn [29]. We use
the decision trees as the base estimators in the AdaBoost
classifiers. For the semi-supervised learning, we adapt the
model LabelSpreading to label unlabelled samples, which is
an implementation of Zhou et al.’s work [44].

We report performance of general classifiers on the test-
ing dataset in Figure 3. It shows that semantics-based fea-
tures have better classification performance than syntax-
based features. In particular, the best F1-score of preci-
sion and recall is achieved by the classifier using unwanted
behaviours and L1-Regularized Linear Regression. The pre-
cision and recall are calculated as follows:

precision =
tp

tp+ fp
and recall =

tp

tp+ fn
,

where tp, fp, and fn respectively denote the true positives,
false positives, and false negatives.

The detailed classification performance is reported in Ta-
ble 2. We summarise the main results as follows.

- API calls achieve the best classification performance
on the validation dataset. The precision and recall of
the classifiers using API calls as input features are re-
spectively as high as 95% and 99%, e.g., in DT, RF,
and SEMI classifiers.

- The best-performing methods on the validation dataset
are: DT, L1LR, RF, and SEMI, by using syntax-based
features. In particular, the average precision and recall
for syntax-based features are respectively as high as
90% and 98%.

- Syntax-based features have better classification perfor-
mance on the validation dataset than semantics-based
features. The average precision and recall for syntax-
based features on all tested methods are respectively
88% and 98%, while for semantics-based features these
numbers are respectively 86% and 82%. That is, clas-
sifiers using syntax-based features have higher recall.

- Syntax-based features perform badly on the testing data.
The average precision and recall on all tested methods
are respectively 55% and 26%. In the worst case, the



1: permissions; 2: actions; 3: API calls; 4: keywords;
5: reachables; 6: happen-befores; 7: unwanted.

Figure 3: The classification performance of general classifiers on the testing dataset.



Decision Trees
validation testing

precision recall precision recall

signature-based features

permissions 90% 99% 58% 22%

actions 91% 99% 54% 12%

API calls 95% 99% 75% 8%

keywords 86% 93% 58% 39%

average 91% 98% 61% 20%

semantics-based features

reachables 93% 86% 58% 17%

happen-befores 68% 92% 56% 71%

unwanted 95% 73% 78% 18%

average 85% 84% 64% ↑ 35% ↑

Naive Bayes
validation testing

precision recall precision recall

signature-based features

permissions 74% 100% 58% 65%

actions 74% 99% 60% 79%

API calls 93% 99% 54% 6%

keywords 87% 91% 66% 47%

average 82% 97% 60% 49%

semantics-based features

reachables 61% 99% 53% 97%

happen-befores 61% 98% 51% 90%

unwanted 96% 47% 81% 15%

average 73% 81% 62% ↑ 67% ↑

L1-Regularized validation testing

Linear Regression precision recall precision recall

signature-based features

permissions 89% 99% 55% 23%

actions 90% 99% 38% 7%

API calls 93% 98% 62% 13%

keywords 88% 94% 62% 41%

average 90% 98% 54% 21%

semantics-based features

reachables 73% 90% 64% 72%

happen-befores 68% 92% 55% 70%

unwanted 72% 72% 73% 66%

average 71% 85% 64% ↑ 69% ↑

Support Vector validation testing

Machines precision recall precision recall

signature-based features

permissions 88% 99% 50% 22%

actions 88% 99% 24% 7%

API calls 91% 100% 41% 9%

keywords 82% 97% 63% 61%

average 87% 99% 45% 25%

semantics-based features

reachables 93% 86% 63% 21%

happen-befores 93% 77% 66% 18%

unwanted 96% 71% 80% 19%

average 94% 78% 70% ↑ 19% ↓

Random Forest
validation testing

precision recall precision recall

signature-based features

permissions 91% 100% 59% 17%

actions 92% 99% 56% 10%

API calls 95% 99% 59% 4%

keywords 89% 92% 59% 35%

average 92% 98% 58% 17%

semantics-based features

reachables 94% 87% 59% 17%

happen-befores 69% 92% 56% 67%

unwanted 96% 73% 83% 19%

average 86% 84% 66% ↑ 34% ↑

AdaBoost
validation testing

precision recall precision recall

signature-based features

permissions 87% 99% 43% 19%

actions 91% 99% 42% 7%

API calls 94% 99% 66% 9%

keywords 84% 94% 64% 56%

average 89% 98% 54% 23%

semantics-based features

reachables 90% 89% 55% 26%

happen-befores 94% 78% 68% 17%

unwanted 94% 72% 75% 22%

average 93% 80% 66% ↑ 22% ↓

k-Nearest validation testing

Neighbours precision recall precision recall

signature-based features

permissions 89% 99% 54% 23%

actions 89% 99% 34% 10%

API calls 87% 99% 39% 14%

keywords 77% 97% 56% 65%

average 86% 99% 46% 31%

semantics-based features

reachables 92% 85% 59% 22%

happen-befores 94% 77% 66% 17%

unwanted 95% 70% 85% 21%

average 94% 77% 70% ↑ 20% ↓

Semi-Supervised validation testing

Learning precision recall precision recall

signature-based features

permissions 91% 100% 61% 21%

actions 91% 99% 58% 11%

API calls 95% 99% 57% 4%

keywords 87% 93% 61% 42%

average 91% 98% 59% 20%

semantics-based features

reachables 94% 85% 56% 16%

happen-befores 69% 92% 55% 66%

unwanted 95% 72% 82% 19%

average 86% 83% 66% ↑ 34% ↑

Table 2: The classification performance of general classifiers.



Training Training
ρ1 ρ0.5 ↓

method feature

NB actions 76 71

L1LR reachables 74 70

NB reachables 72 70

L1LR unwanted 71 70

NB happen-befores 70 67

SVM keywords 73 66

DT happen-befores 70 65

AdaBoost keywords 71 64

KNN keywords 71 64

NB permissions 71 64

L1LR happen-befores 69 64

RF happen-befores 69 64

SEMI happen-befores 68 63

NB keywords 68 59

Training Training
ρ1 ρ0.5 ↑

method feature

SEMI API calls 14 9

RF API calls 14 9

NB API calls 19 13

SVM actions 19 13

L1LR actions 21 14

AdaBoost actions 21 15

DT API calls 25 17

SVM API calls 26 18

KNN actions 27 19

AdaBoost API calls 27 19

RF actions 29 20

SEMI actions 31 22

DT actions 33 23

L1LR API calls 35 25

Table 3: The most and the least robust general classifiers.

precision and recall are respectively 24% and 7%, i.e.,
those of the SVM classifier using actions as input fea-
tures; in the best case, these numbers are respectively
60% and 79%, i.e., those of the NB classifier using ac-
tions as input features.

- Semantics-based features have better classification per-
formance on the testing dataset than syntax-based fea-
tures. The average precision and recall for semantics-
based features on all tested methods are respectively
67% and 38%. In the worst case, the precision and
recall are respectively 56% and 16%, i.e., those of the
SEMI classifier using reachables as input features; in
the best case, these numbers are respectively 73% and
66%, i.e., those of the L1LR classifier using unwanted
behaviours as input features.

- The best-performing method on the testing dataset is
L1LR, by using semantics-based features. In partic-
ular, the average precision and recall for L1LR clas-
sifiers using the semantics-based features are respec-
tively 64% and 69%.

- Unwanted behaviours achieve the best classification per-
formance on the testing dataset. The L1LR classifier
using unwanted behaviours as input features performs
best on the testing dataset, in particular, the precision
is 73% and the recall is 66%.

A robust classifier is required to perform well on the vali-
dation dataset as well as on the testing dataset. To achieve
more robust classifiers, we want to pick up suitable features
and machine learning methods according to the classification
performance of 56 trained classifiers reported in Table 2. For
this purpose, we introduce the following measure:

ρβ = (1 + β2)
Ft × Fv

β2 × Ft + Fv

Ft = 2× Pt ×Rt
Pt +Rt

Fv = 2× Pv ×Rv
Pv +Rv

Here, the symbols Pt, Rt, Pv and Rv respectively denote
the precision and recall of a classifier on the testing and

the validation dataset. It is actually the Fβ measure of two
F1-scores. The parameter β is usually set to 1 to get the har-
monic mean of the classification performance on the testing
and the validation datasets. By setting it to 0.5 we put more
emphasis on the classification performance on the testing
dataset. Table 3 displays the most robust 14 and the least
robust 14 classifiers out of 56 general classifiers. We rank
them by their ρ0.5 values. From this table, we conclude:

• semantics-based features dramatically improve robust-
ness of mobile malware classifiers;

• robustness of L1LR and NB classifiers is better than
that of other classifiers.

This study reveals that syntax-based features usually lead
to overfitting to training data. This is why their classifica-
tion performance is good on the validation dataset but poor
on the testing dataset. This drawback limits applications of
classifiers trained using syntax-based features.

Since semantics-based features capture general behavioural
invariants in malware, they can better characterise unwanted
patterns in new samples. This leads to better classification
performance on the testing dataset than syntax-based fea-
tures. This success convinces us that semantics-based fea-
tures have the potential to cope with zero-day malware.

4. CLUSTER-SPECIFIC CLASSIFIERS
A malicious behaviour in a group of mobile apps might

be normal or innocuous in another group. For instance,
sending SMS messages is normal for messaging apps, but
unwanted for an E-reader app; accessing location is expected
in a jogging tracer app but abnormal for a wallpaper app.

This observation motivates us to train using fine-grained
groups of apps instead of the whole training dataset. The
approach proceeds as follows.

1. Apps in the training dataset are orgranised into small
groups by applying a clustering method. In our imple-
mentation, we use the method k-means [26] to cluster
apps by computing the Euclidean distance between the
binary vectors of features.



Clustering Training Training
ρ1 ρ0.5 ↓

feature method feature

reachables L1LR unwanted 74 72

- NB actions 76 71

keywords L1LR reachables 74 71

reachables KNN keywords 75 70

- L1LR reachables 74 70

happen-befores L1LR unwanted 72 70

- NB reachables 72 70

- L1LR unwanted 71 70

happen-befores L1LR reachables 73 69

unwanted L1LR reachables 73 69

reachables L1LR reachables 72 69

unwanted L1LR unwanted 70 69

keywords KNN keywords 73 68

Clustering Training Training
ρ1 ρ0.5 ↓

feature method feature

reachables NB reachables 71 68

unwanted KNN keywords 72 67

keywords L1LR unwanted 70 67

happen-befores NB reachables 70 67

- NB happen-befores 70 67

- SVM keywords 73 66

happen-befores KNN keywords 72 66

keywords SVM keywords 72 66

reachables SVM keywords 72 65

happen-befores SVM keywords 72 65

- DT happen-befores 70 65

happen-befores SEMI happen-befores 69 65

happen-befores RF happen-befores 68 65

Table 4: The most robust general and cluster-specific classifiers.

2. We train a classifier for each group by using the ma-
chine learning methods and features which lead to the
most robust general classifiers, e.g., L1-Regularised Lin-
ear Regression and unwanted behaviours, naive Bayes
and reachables, decision trees and happen-befores, etc.,
so-called cluster-specific classifiers.

3. We select a group for each target app. In particular,
we compute the Euclidean distance between the binary
vectors of features and adopt the average-linkage [33]
to measure the distance between a group and the tar-
get app. The closest group is chosen.

4. The cluster-specific classifier for the chosen group is
applied to decide whether the target app is malware.

We trained 60 cluster-specific classifiers using top combi-
nations of methods and features in Table 3. We evaluated
their robustness and compared to that of general classifiers.
The most robust (general and cluster-specific) classifiers are
listed in Table 4. The detailed classification performance of
cluster-specific classifiers is reported in appendix. We con-
clude:

• robustness of cluster-specific classifiers is better than
general classifiers, especially, when the method L1LR,
KNN, RF, AdaBoost, or SEMI is applied in training
and semantics-based features are used for clustering;

• except for keywords, using syntax-based features for
clustering will result in less robust cluster-specific clas-
sifiers than general classifiers;

• the most robust cluster-specific classifier is achieved by
using the L1LR as the training method and semantics-
based features for clustering and training.

By using semantics-based features in clustering, we organ-
ise apps based on their behaviours rather than signatures.
This is why using semantics-based features to group apps
leads to more robust classifiers than using syntax-based fea-
tures. It confirms our intuition: an unwanted behaviour is
a common behavioural pattern shared by malware within a
group of apps which have similar behaviours.

5. CONCLUSION AND FURTHER WORK
We investigate robustness of machine-learning-based mo-

bile malware classifiers. We apply supervised and semi-
supervised learning methods, and extract syntax-based and
semantics-based features to train general classifiers. By com-
paring the classification performance of these classifiers on
the validation and testing datasets, we conclude: semantics-
based features improve robustness of malware classifiers, in
particular, it dramatically improves the classification perfor-
mance on the testing dataset. A similar study on clustering-
specific classifiers supports this argument as well.

However, semantics-based features might lead to under-
fitting to training data, i.e., their classification performance
is not as good as syntax-based features on the validation
dataset. A potential improvement is to add more fine-grained
semantics-based features to achieve better fits to training
data. Another is to combine syntax-based and semantics-
based features in training. We will test these potential im-
provements in further work.

Extracting semantics-based features from apps is more
expensive than extracting syntax-based features. It takes
around 1 hour on average per app. But this effort is worth-
while. It will not only improve robustness of malware classi-
fiers but also offer potential to understand and predict ma-
licious behaviours in mobile apps.

In future, we want to further improve robustness of mo-
bile malware classifiers by: (a) refining semantics-based fea-
tures; (b) making use of the similarity between identified
patterns and their variants in new unlabelled samples; (c)
training and testing on market-scale datasets. It is also in-
teresting to test the same argument on classifiers trained
using the cutting-edge machine learning methods, e.g., deep
learning [10, 42].

To efficiently learn unwanted behaviours from apps, we
also want to develop a novel approach to combine machine
learning methods and learning automata techniques [6, 11],
such that semantics-based features can be applied in indus-
try to obtain more robust classifiers over time.
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APPENDIX
A. THE CLASSIFICATION PERFORMANCE

OF CLUSTER-SPECIFIC CLASSIFIERS

Decision Trees and Happen-Befores

clustering validation testing

feature precision recall precision recall

- 68% 92% 56% 71%

permissions 84% 98% 38% 19%

actions 86% 99% 34% 12%

keywords 69% 91% 54% 69%

reachables 93% 86% 68% 20%

happen-befores 65% 91% 54% 72%

unwanted 95% 80% 75% 17%

Naive Bayes and Actions

clustering validation testing

feature precision recall precision recall

- 74% 99% 60% 79%

permissions 85% 99% 63% 38%

actions 69% 100% 52% 73%

keywords 76% 99% 55% 63%

reachables 83% 100% 61% 54%

happen-befores 79% 100% 58% 57%

unwanted 79% 100% 54% 45%

Naive Bayes and Reachables

clustering validation testing

feature precision recall precision recall

- 61% 99% 53% 97%

permissions 95% 85% 79% 20%

actions 80% 81% 45% 29%

keywords 90% 68% 60% 15%

reachables 66% 90% 57% 80%

happen-befores 64% 94% 53% 84%

unwanted 63% 89% 52% 79%

L1-Regularized Linear Regression and Unwanted

clustering validation testing

feature precision recall precision recall

- 72% 72% 73% 66%

permissions 71% 99% 54% 55%

actions 73% 99% 59% 51%

keywords 64% 91% 54% 81%

reachables 74% 86% 73% 67%

happen-befores 74% 78% 74% 63%

unwanted 72% 71% 74% 64%

L1-Regularized Linear Regression and Reachables

clustering validation testing

feature precision recall precision recall

- 73% 90% 64% 72%

permissions 71% 99% 56% 60%

actions 71% 99% 56% 55%

keywords 68% 93% 65% 74%

reachables 71% 88% 64% 69%

happen-befores 74% 86% 64% 70%

unwanted 74% 86% 69% 65%

Support Vector Machines and Keywords

clustering validation testing

feature precision recall precision recall

- 82% 97% 63% 61%

permissions 86% 98% 47% 24%

actions 87% 99% 47% 20%

keywords 79% 91% 61% 64%

reachables 83% 92% 65% 57%

happen-befores 81% 93% 62% 60%

unwanted 84% 92% 52% 37%

Random Forest and Happen-Befores

clustering validation testing

feature precision recall precision recall

- 69% 92% 56% 67%

permissions 83% 99% 45% 26%

actions 87% 99% 26% 8%

keywords 74% 90% 57% 64%

reachables 90% 87% 56% 23%

happen-befores 66% 84% 56% 71%

unwanted 95% 81% 77% 16%

AdaBoost and Keywords

clustering validation testing

feature precision recall precision recall

- 84% 94% 64% 56%

permissions 86% 98% 55% 33%

actions 86% 99% 49% 24%

keywords 85% 87% 59% 40%

reachables 90% 93% 66% 32%

happen-befores 88% 90% 64% 41%

unwanted 85% 92% 63% 47%

k-Nearest Neighbours and Keywords

clustering validation testing

feature precision recall precision recall

- 77% 97% 56% 65%

permissions 82% 99% 38% 23%

actions 85% 99% 51% 30%

keywords 73% 97% 54% 83%

reachables 73% 96% 61% 76%

happen-befores 74% 97% 56% 72%

unwanted 74% 96% 57% 73%

Semi-Supervised Learning and Happen-Befores

clustering validation testing

feature precision recall precision recall

- 69% 92% 55% 66%

permissions 85% 98% 42% 19%

actions 87% 98% 44% 18%

keywords 73% 89% 54% 66%

reachables 93% 84% 70% 20%

happen-befores 67% 87% 56% 71%

unwanted 96% 80% 73% 16%


