
Arbitrage-Free Combinatorial Market Making via Integer Programming

CHRISTIAN KROER, Carnegie Mellon University
MIROSLAV DUDÍK, Microsoft Research
SÉBASTIEN LAHAIE, Microsoft Research
SIVARAMAN BALAKRISHNAN, Carnegie Mellon University

We present a new combinatorial market maker that operates arbitrage-free combinatorial prediction markets
specified by integer programs. Although the problem of arbitrage-free pricing, while maintaining a bound
on the subsidy provided by the market maker, is #P-hard in the worst case, we posit that the typical case
might be amenable to modern integer programming (IP) solvers. At the crux of our method is the Frank-Wolfe
(conditional gradient) algorithm which is used to implement a Bregman projection aligned with the market
maker’s cost function, using an IP solver as an oracle. We demonstrate the tractability and improved accuracy
of our approach on real-world prediction market data from combinatorial bets placed on the 2010 NCAA
Men’s Division I Basketball Tournament, where the outcome space is of size 263. To our knowledge, this is
the first implementation and empirical evaluation of an arbitrage-free combinatorial prediction market on
this scale.

1. INTRODUCTION
Prediction markets have been successfully used to elicit and aggregate forecasts in
a variety of domains, including business [Charette 2007; Spann and Skiera 2003],
politics [Berg et al. 2008], and entertainment [Pennock et al. 2002]. In a prediction
market, traders buy and sell securities with values that depend on some unknown
future outcome. For instance, a play-money prediction market that Yahoo! ran for the
2010 NCAA Men’s Division I Basketball Tournament included a security that paid out 1
point if the team from Duke were to win the championship and 0 points otherwise. Thus,
when the price of the security was 0.15, traders who believed that Duke’s probability of
winning was larger than 0.15 were incentivized to buy shares of the security, and those
that believed it was lower were incentivized to sell. The market price can be interpreted
as an aggregate belief and used as a forecast.

We study prediction markets implemented by a centralized algorithm called a cost-
based market maker [Abernethy et al. 2011; Chen and Pennock 2007]. All shares are
bought from and sold to the market maker, rather than between traders, and the market
maker uses a convex potential function to determine current security prices. Compared
with an exchange, which matches buyers and sellers, a market-maker mechanism is
particularly desirable in combinatorial markets, which offer securities on interrelated
propositions. For instance, the NCAA 2010 market included securities on events “Duke
wins more games than Cornell” and “a team from the Big East conference wins the
championship” as well as many others. Because of the large number of securities in
combinatorial markets, there may be no sellers interested in trading with a given buyer,

Author addresses: C. Kroer, Computer Science Dept, CMU; ckroer@cs.cmu.edu; M. Dudı́k and S. Lahaie,
Microsoft Research; {mdudik,slahaie}@microsoft.com; S. Balakrishnan, Dept of Statistics, CMU; siva@stat.
cmu.edu. This work was done while C. Kroer and S. Balakrishnan were at Microsoft Research.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EC’16, July 24–28, 2016, Maastricht, The Netherlands. ACM 978-1-4503-3936-0/16/07 ...$15.00.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
http://dx.doi.org/10.1145/2940716.2940767

ar
X

iv
:1

60
6.

02
82

5v
2

 [
cs

.G
T

]
 1

0
Ju

n
20

16

ckroer@cs.cmu.edu
siva@stat.cmu.edu
siva@stat.cmu.edu

a problem known as low liquidity. In contrast, a market maker is always available to
trade, thus providing liquidity and allowing incorporation of information in the market.

Designers of cost-based markets aim to meet several desirable properties, including
boundedness of loss suffered by the market maker and absence of arbitrage, that is,
risk-free profitable trades. Bounded loss is a necessity for money markets, otherwise
the market operator risks bankruptcy. Lack of arbitrage is also highly desirable. First,
we would like to attract traders that provide information rather than computation.
Second, arbitrage-free markets produce more accurate forecasts. While Abernethy
et al. [2011] provide a complete theoretical characterization of cost-based markets with
bounded loss and no arbitrage, pricing in such markets is NP-hard or #P-hard for even
the simplest combinatorial settings [Chen et al. 2008]. Previous solutions restrict the
betting language to allow polynomial time algorithms [e.g., Chen et al. 2007, 2008; Xia
and Pennock 2011] or devise approximations [Dudı́k et al. 2012].

In this paper we move beyond the hardness barrier. We hypothesize that while
the pricing may be difficult in the worst case, a typical case is amenable to modern
integer programming solvers. Guided by this hypothesis, we propose a fully general,
bounded-loss, arbitrage-free market maker based on integer programming (IP) methods.
Our market maker is guaranteed to maintain bounded loss, and attempts to remove
arbitrage by making calls to the IP solver.

Our mechanism begins with any bounded-loss cost function and adds two ingredients.
First, we use an integer program to specify the set of valid payoff vectors, each of
which enumerates the security payoffs in a single outcome. Arbitrage-free prices are
exactly the convex combinations of valid payoff vectors. Second, as we run the cost-
based market, we periodically remove arbitrage by projecting the market state onto
the set of arbitrage-free prices, using the IP solver as an oracle within the projection
algorithm. The integer program for payoff vectors is typically compact in size and easy
to specify based on security definitions. For instance, when securities correspond to
logical propositions, outcomes correspond to truth-assignment of literals, and each valid
payoff vector enumerates 0 for false and 1 for true propositions in a given outcome.
Conjunctions and disjunctions are easily expressed within an IP, so we have a compact
representation for all problems in NP. To implement projection, we use the Frank-Wolfe
algorithm [Frank and Wolfe 1956; Jaggi 2013], also known as the conditional gradient
algorithm, which is well-suited to our setting because it only accesses the target set (in
our case, the set of valid payoff vectors) through the operation of linear optimization,
which can be handled by an IP solver. The projection that we consider is the Bregman
projection, which generalizes the Euclidean projection to arbitrary convex potentials.

There are two specific issues in applying the Frank-Wolfe (FW) algorithm within
cost-based markets. First, while all iterates of the FW algorithm are within the convex
hull of valid payoff vectors, and therefore arbitrage-free, we need to ensure that bounded
loss is maintained. In Sec. 4.2, we show how to achieve this by a suitable modification
of the stopping condition of FW. The second, seemingly more serious concern, is that
the projection problems that arise for common cost functions, such as Hanson’s [2003;
2007] logarithmic market scoring rule (LMSR), exhibit derivatives that go to infinity
at the border of the set of arbitrage-free prices, which violates the assumptions of the
FW algorithm. Fortunately, we can adapt a recently developed variant of FW [Krishnan
et al. 2015], designed for the case when the derivative might grow to infinity, but its
growth is suitably controlled, which is the case for LMSR.

Our approach, which we call the Frank-Wolfe market maker (FWMM), is related to
Dudı́k et al.’s [2012] linearly-constrained market maker (LCMM), which also alternates
trades and (partial) arbitrage removal. While FWMM uses linear constraints in the IP
to define valid payoff vectors, the arbitrage removal in LCMM is driven by a set of linear
constraints on the arbitrage-free prices (i.e., the convex hull of valid payoff vectors). The

IP constraints of FWMM can be used directly in LCMM, as linear-programming relax-
ations, but they are usually too loose, so tighter constraints need to be derived ad hoc
for each new security type, sometimes using involved combinatorial reasoning [Dudı́k
et al. 2012, 2013]. Since LCMM updates are usually substantially faster than solving
an IP, the arbitrage-removal steps of LCMM and FWMM can be interleaved, and the
more expensive projection step of FWMM should be invoked only after LCMM cannot
remove much arbitrage.

We evaluate the efficacy of FWMM on Yahoo!’s NCAA 2010 basketball tournament
prediction market data, from which we extracted 88k trades on 5k securities in a
combinatorial market with 263 outcomes. Once the projections become practically fast,
FWMM achieves superior accuracy to LCMM. Our experiments also show that the
initial phase of the projection algorithm, which involves calls to the IP solver to decide
which securities can be logically settled given the games completed so far, is fast even
for the largest problem sizes. The results from this initial phase can be propagated as a
partial outcome into the cost function, which yields an improvement over LCMM even
when the overall projection algorithm is too slow.

Tournaments have previously been considered by Chen et al. [2008] and Xia and
Pennock [2011]. Both focus on restricted (but non-trivial) tournament betting languages
that yield tractability, but cannot, for instance, handle comparisons. In contrast, our
approach works for general outcome spaces that can be represented by an IP, rather than
only tournaments. Our work is closely related to the applications of Frank-Wolfe and
integer programming to inference in graphical models [Belanger et al. 2013; Krishnan
et al. 2015], but needs to address several issues specific to incentives and information
revelation in prediction markets.

2. PRELIMINARIES
We begin with an overview of cost-based market making [Abernethy et al. 2011; Chen
and Pennock 2007] and then provide a high-level outline of our approach. As a running
example we use the NCAA 2010 Tournament: a single-elimination tournament with 64
teams playing over 6 rounds, meaning that in each round, half of the remaining teams
are eliminated.

2.1. Cost-based market making
Let Ω denote a finite set of outcomes, corresponding to mutually exclusive and exhaus-
tive states of the world. We are interested in eliciting expectations of binary random
variables φi : Ω → {0, 1}, indexed by i ∈ I, which model the occurrence of various
events such as “Duke wins the NCAA championship.” Each variable φi is associated
with a security, which is a contract that pays out φi(ω) dollars when the outcome ω
occurs. Therefore, the random variable φi is also called the payoff function. Binary
securities pay out $1 if the specified event occurs and $0 otherwise. The vector (φi)i∈I
is denoted φ. Traders buy bundles δ ∈ RI of security shares issued by a central market
maker; negative entries in δ are permitted and correspond to short-selling. A trader
holding a bundle δ receives a (possibly negative) payoff δ · φ(ω) when ω ∈ Ω occurs.

Following Chen and Pennock [2007] and Abernethy et al. [2011], we assume that the
market maker determines security prices using a convex and differentiable potential
function C : RI → R called a cost function. The state of the market is specified by a
vector θ ∈ RI listing the number of shares of each security sold so far by the market
maker. A trader wishing to buy a bundle δ in the market state θ must pay C(θ+δ)−C(θ)
to the market maker, after which the new state becomes θ + δ. Thus, the vector of
instantaneous prices in the state θ is p(θ) := ∇C(θ). Its entries can be interpreted as
market estimates of E[φi]: a trader can make an expected profit by buying (at least a
small amount) of the security i if she believes that E[φi] is larger than the instantaneous

price pi(θ) = ∂C(θ)/∂θi, and by selling if she believes that E[φi] is lower than pi(θ);
therefore, risk neutral traders with sufficient budgets maximize their expected profits
by moving the price vector to match their expectation of φ.

Example 2.1. Logarithmic market-scoring rule (LMSR). Hanson’s [2003; 2007] log-
arithmic market scoring rule (LMSR) is a cost function for a complete market. In
a complete market, I = Ω and securities are indicators of individual outcomes,
φi(ω) = 1{ω = i}, where 1{·} denotes the binary indicator, equal to 1 if true and 0 if
false. Thus, traders can express arbitrary probability distributions over Ω. For instance,
to set up a complete market for the number of wins of Duke in the six-round NCAA tour-
nament, we would set I = Ω = {0, 1, . . . , 6}. LMSR has the form C(θ) = log(

∑
i∈I e

θi)

and prices pi(θ) = eθi/(
∑
j∈I e

θj).

Example 2.2. Sum of independent markets. Now consider a market with 7 securities
for the number of wins of Duke and an additional 7 securities for the number of wins of
Cornell. The outcome space consists of pairs of numbers between 0 and 6, but not all
pairs are possible, because if Duke and Cornell win rounds 1–4, they meet in round 5
and only one advances. Thus, Ω = {(ω1, ω2) ∈ {0, . . . , 6}2 : min{ω1, ω2} ≤ 4}. Securities
are indexed by pairs I = {1, 2} × {0, . . . , 6}, with the first entry indicating the school
and the second the number of wins, yielding the payoff functions φj,x(ω) = 1{ωj = x}. A
natural cost function is the sum of LMSRs, C(θ) =

∑2
j=1 log(

∑6
x=0 e

θj,x), which yields
prices pj,x(θ) = eθj,x/(

∑6
y=0 e

θj,y). Thus, prices vary independently for each school, as if
we ran two separate markets.

2.2. Arbitrage, marginal polytope and Bregman projection
We consider two standard desiderata for cost-based markets. The first is the bounded
loss property: there should be a constant which bounds the ultimate loss of the market
maker once the outcome is determined, regardless of how many shares of each security
are sold. The second is the no arbitrage property: there should be no trade that guar-
antees a positive profit, regardless of the outcome. Following Abernethy et al. [2011],
we next relate bounded loss to properties of the convex conjugate of C, and review
equivalence between optimal arbitrage removal and Bregman projection.

Given a cost function C, let R denote its convex conjugate,

R(µ) := sup
θ′∈RI

[
θ′ · µ− C(θ′)

]
, (1)

which is itself a convex function on RI , allowed to take on the value∞. If the market is
in a state θ = 0 and a trader believes that E[φ] = µ, then her expected profit for the
bundle θ′ is θ′ ·µ−

(
C(θ′)−C(0)

)
, which is maximized by Eq. (1), omitting the constant

term C(0). More generally, the maximum expected profit of a trader with a belief µ in a
market state θ can be shown to equal the mixed Bregman divergence, defined as

D(µ‖θ) := R(µ) + C(θ)− θ · µ .

Convex conjugacy implies that D(µ‖θ) ≥ 0, with equality if and only if µ = p(θ), which
is equivalent to θ ∈ ∂R(µ), where ∂R is the subdifferential of R.

Example 2.3. For the LMSR, R(µ) is equal to negative entropy whenever µ is a
probability distribution and∞ otherwise, i.e., R(µ) = I{µ ∈ ∆}+

∑
i∈I µi lnµi, where ∆

is the set of probability distributions on Ω and I{·} denotes the convex indicator, equal
to 0 if true and∞ if false. Bregman divergence is the Kullback-Leibler (KL) divergence,
D(µ‖θ) = I{µ ∈ ∆}+

∑
i∈I µi ln (µi/pi(θ)), which is an information-theoretic measure

of the difference between two probability distributions.

Let Z := {φ(ω) : ω ∈ Ω} denote the (finite) set of all valid payoff vectors, andM be
its convex hull, called the marginal polytope. The marginal polytope is exactly the set of
vectors µ that can be written as expectations E[φ] under some probability distribution
over Ω, so we refer to elements ofM as coherent beliefs or coherent prices. Abernethy
et al. [2011] show that a cost-based market maker has the bounded loss property if and
only if maxz∈Z R(z) <∞. We assume that this is the case for the conjugate of our cost C.
Note that this assumption is satisfied for LMSR, because negative entropy equals zero
at the vertices of the simplex. It is also satisfied in Example 2.2, where R(µ) is the sum
of negative entropies of the two markets.

Given a state θ, we define the Bregman projection of θ onM as the point
µ? := argmin

µ∈M
D(µ‖θ) .

The Bregman projection is related to an optimal arbitraging trade by the following
standard result (the proof is in Appendix A for completeness):

PROPOSITION 2.4. If the market is in a state θ, the guaranteed profit of any trader
is at most D(µ?‖θ) where µ? is the Bregman projection of θ onM. Furthermore, this
profit is achieved by any trade δ? moving the market to a state θ? with p(θ?) = µ?.

This means that an arbitrage opportunity exists whenever the prices are incoherent,
since p(θ) 6∈ M implies that D(µ?‖θ) > 0. After the trade δ?, we have p(θ?) = µ? ∈M
and thus there is no arbitrage opportunity in the market.

2.3. The outline of Frank-Wolfe market maker (FWMM)
The mechanism proposed in this paper, called Frank-Wolfe market maker, alternates
between processing trades according to the cost C and removing arbitrage. In the
arbitrage removal step, our goal is to find the state θ? from Proposition 2.4. We do
this by solving the Bregman projection problem using the Frank-Wolfe (FW) algorithm,
which reduces the Bregman projection problem to a sequence of linear programs of the
form

min
µ∈M

c · µ ,

for suitably chosen vectors c. Since the optimum of a linear program occurs at a vertex,
reducing the Bregman projection problem to a sequence of linear programs results in
an important simplification. Instead of specifying the marginal polytope M, whose
description can be exponentially large in the number of securities, it suffices to describe
its vertices Z, which we show can be done via a compact set of linear inequalities
together with integer constraints. More precisely, we assume that the set Z is described
by a matrix A and a vector b such that

Z =
{
z ∈ {0, 1}I : A>z ≥ b

}
. (2)

Viewed in this way, the FW algorithm solves the Bregman projection problem by solving
a sequence of integer programs. We refer to the linear constraints describing the set Z
as IP constraints.

Example 2.5. We next derive IP constraints for the market for the number of wins
of Duke and Cornell from Example 2.2. First, there are exclusivity and exhaustivity
constraints of the form

∑6
x=0 zj,x = 1 for j ∈ {1, 2}, corresponding to the fact that in

any outcome ω, for each j, exactly one of the securities φj,x(ω) will equal 1 across
x ∈ {0, . . . , 6}. However, these two constraints do not capture the fact that at most one
of the teams can have exactly 5 or 6 wins. Specifically, in any outcome ω, we have

φ1,5(ω) + φ2,5(ω) + φ1,6(ω) + φ2,6(ω) ≤ 1 .

Thus, we also include the third constraint: z1,5 + z2,5 + z1,6 + z2,6 ≤ 1. Our reasoning so
far shows that any valid payoff vector satisfies the three mentioned constraints. It can
be verified that any vector z satisfying these constraints is valid, i.e., it corresponds to
φ(ω) for some ω ∈ Ω, so these three constraints correctly specify Z.

2.4. Linearly-constrained market maker (LCMM)
The FW algorithm relies on the ability to solve integer programs (IPs), which can take
exponential time in the worst case. Therefore, our mechanism also incorporates fast
(poly-time) partial arbitrage removal similar to Dudı́k et al.’s [2012] linearly-constrained
market maker (LCMM).

In LCMM, arbitrage is partly removed by considering a set of linear constraints that
must be satisfied by coherent prices. Namely, an LCMM takes as an input a relaxation
M̃ ⊇M described by linear constraints called LCMM constraints:

M̃ = {µ ∈ RI : Ã>µ ≥ b̃} .
When any LCMM constraint is violated, there is an arbitrage opportunity in the market,
with an easy-to-compute arbitraging trade. LCMM acts as an arbitrager until none of
the constraints are violated. Since M̃ is a relaxation ofM, the resulting state is not
necessarily arbitrage-free.

Assuming we have a description of Z using IP constraints specified by a matrix A and
a vector b, one simple strategy is to construct M̃ as a linear-program (LP) relaxation
of Z, i.e.,

M̃ = {µ ∈ RI : µi ∈ [0, 1] for all i ∈ I and A>µ ≥ b} . (3)

These constraints are satisfied by all z ∈ Z and hence also by their convex combinations
µ ∈ M. Generally, this relaxation is only a loose superset of M, so various ad hoc
strategies are required to obtain a tighter M̃ [Dudı́k et al. 2012, 2013]. We present one
example of such a strategy in Sec. 3, for the class of comparison securities.

3. MARKET DESIGN
We next show how to instantiate the market design elements of Sec. 2 in real-world
combinatorial markets, including the NCAA 2010 tournament evaluated in Sec. 5.
Namely, we need to define: (i) the payoff functionφ, (ii) the cost functionC, (iii) the initial
market state θ, (iv) the IP constraints describing Z, and (v) the LCMM constraints
describing M̃. We also need to consider how the cost and market state should be
updated as the true outcome is gradually revealed over time. For example, in the NCAA
tournament, 63 games play out over the course of several weeks and we would like to
fix prices of securities whose payoff has already been determined.

3.1. Compositional market design
We use a compositional market design along the lines of Dudı́k et al. [2013], which is a
generalization of the sum of LMSRs structure of Example 2.2. The market construction
begins with a collection of random variables Xj : Ω → Xj , indexed by j ∈ J , whose
marginal distributions we wish to elicit, such as the number of wins of Duke and
Cornell in Example 2.2. Securities are indexed by i = (j, x), with j ∈ J and x ∈ Xj , and
correspond to indicators of the events Xj = x, i.e.,

φj,x(ω) = 1{Xj(ω) = x} .
The cost function is the sum of LMSRs across the random variables Xj :

C(θ) = b
∑
j∈J ln

(∑
x∈Xj e

θj,x/b
)
, (4)

G2,1

G1,1

team 1 team 2

G1,3

team 3 team 4

round 2:

round 1:

G2,1 ∈ {1, 2, 3, 4}

G1,1 ∈ {1, 2} , G1,3 ∈ {3, 4}

Fig. 1. An example of a tournament with four teams. The domains of the game outcome variables Gr,t
are shown on the right. The shown variables are equivalent to additional game variables: G1,1 ≡ G1,2,
G1,3 ≡ G1,4, and G2,1 ≡ G2,2 ≡ G2,3 ≡ G2,4.

where b > 0 is the liquidity parameter controlling how fast the prices change in response
to trading. A smaller value of b (lower liquidity) means prices rise faster as shares are
purchased; a larger value of b (higher liquidity) yields slower changes. As in Example 2.2,
Eq. (4) implies that we effectively run an independent LMSR market for each Xj . Thus,
in the absence of arbitrage removal steps, we say that C implements the independent
markets cost function.

Initially, our market contains no random variables and hence no securities. The
market operator can create new random variables and specify their relationship to any
existing variables. At the time of creation of a new variable Xj , the operator specifies (i)
its domain Xj , (ii) the mapping Xj(ω), (iii) initial prices µj,x across x ∈ Xj (these prices
determine the initial-state coordinates θj,x), (iv) IP constraints to restrict zj,x across
x ∈ Xj , and (v) LCMM constraints to restrict µj,x across x ∈ Xj . Due to the additive
structure of the cost C, new variables Xj can be added at any time during the run of
the market without affecting prices of existing securities.

Below we specify the items (i)–(v) for different types of random variables in our
market. When describing the IP constraints on z and LCMM constraints on µ, we use
the notation z{Xj = x} and µ{Xj = x} for the entries zj,x and µj,x, respectively. We also
allow random variables with names other than Xj , e.g., X or Gr,t, and use the notation
such as z{X = x} and µ{X = x} for the corresponding entries of z and µ.

When adding a new random variable X, the initial prices µ{X = x} can be chosen
based on the prices of the random variables present in the market. New IP constraints
always include the exclusivity and exhaustivity constraint,

∑
x∈X z{X = x} = 1, but

additional constraints may be needed to correctly describe the mapping X(ω). We add
LCMM constraints using the simple strategy mentioned in Sec. 2.4, as an LP relaxation
of IP constraints, with an exception of one variable type (comparison variables).

Our market contains random variables of the following types:

Atomic tournament variables. These random variables model outcomes in a single-
elimination tournament with k rounds and 2k teams. Teams are numbered 1 through 2k.
In the first round, there are 2k−1 games, between teams 2i− 1 and 2i, and the resulting
2k−1 winners advance to the second round, where again teams are matched in the order
of increasing indices and the winners advance to the next round etc. The team t is
associated with the random variable Xt whose outcome is the total number of wins of
team t, i.e., Xt = {0, . . . , k}.

We also have random variables corresponding to the games played, with the outcome
of each variable being the winner of the corresponding game. For a team t and round r,
let Gr,t denote the game that the team t will play in the r-th round if it advances to
that point. We are slightly abusing notation, because Gr,t and Gr,t′ can refer to the
same game (and hence the same random variable) for distinct t and t′ (see Fig. 1). For
instance Gk,t ≡ Gk,t′ for all t, t′, as there is only one game (the finals) in round k. With
this notation in hand, we can introduce the IP constraints relating the entries of z

representing game and team variables:

z{Xt = r} = z{Gr,t = t} − z{Gr+1,t = t} for all t and r < k,
z{Xt = k} = z{Gk,t = t} for all t.

LCMM constraints are just LP relaxations of the above, i.e., they are the same as the IP
constraints, with z{·} replaced with µ{·}. The market operator needs to specify initial
prices µ{Xt = r} and µ{Gk,t = t} explicitly, based for instance on the past performance
of teams.

Sums. Given a set of existing random variables X1, . . . , Xn taking on integer values
with the minimum and maximum values mj := minXj and Mj := maxXj , we define a
new random variable X to represent their sum,

X(ω) := X1(ω) + · · ·+Xn(ω) ,

with the domain X = {m,m + 1, . . . ,M} where m =
∑n
j=1mj and M =

∑n
j=1Mj . The

initial prices are set proportional to a discretized Gaussian distribution with the mean
and variance equal to the sum of means and variances of X1 through Xn, under the
distribution described by the current prices µ{Xj = x}.

We introduce the following IP constraint:∑
x∈X x · z{X = x} =

∑n
j=1

∑
xj∈Xj xj · z{Xj = xj} .

As before, the added LCMM constraint is an LP relaxation of the added IP constraint.

Comparisons. Given two existing random variables X1 and X2 taking on integer
values with the minimum and maximum values mj := minXj and Mj := maxXj , we
define a new random variable X with the domain {lt, eq, gt} to represent the result of
their comparison:

X(ω) :=

lt if X1(ω) < X2(ω),
eq if X1(ω) = X2(ω),
gt if X1(ω) > X2(ω).

The initialization prices are determined by first considering an integer-valued variable
Y = X2 −X1, and initializing its distribution to the discrete Gaussian with the mean
equal to the difference of means and the variance initialized to the sum of variances
of X2 and X1 under current prices. The initial prices of X = lt, X = eq and X = gt are
obtained as probabilities that Y < 0, Y = 0 and Y > 0. The variable Y is discarded and
is not part of the market.

The IP constraints for the new entries of z are based on the following four identities:

X1 −X2 ≥ (m1 −M2)1{X1 < X2} , X1 −X2 − 1 ≥ (m1 −M2 − 1)1{X1 ≤ X2} ,
X1 −X2 ≤ (M1 −m2)1{X1 > X2} , X1 −X2 + 1 ≤ (M1 −m2 + 1)1{X1 ≥ X2} .

To obtain IP constraints, we replace each Xj with
∑
x∈Xj x · z{Xj = x} on the left-hand

side, and replace the comparison indicators on the right-hand side by z{X = lt} for
1{X1 < X2}, and z{X= lt}+ z{X= eq} for 1{X1 ≤ X2}, and similarly for X1 > X2 and
X1 ≥ X2.

LCMM constraints in this case are not simply an LP relaxation of IP constraints, but
instead they yield a tighter set M̃. They are based on the following identities, which
can be derived from the transitivity of the comparison and the union bound:

P{X1 ≤ x} ≤ P{X1 < X2}+ P{X2 ≤ x} for all x ≥ m1 and x ≤M2,
P{X1 ≤ x} ≤ P{X1 ≤ X2}+ P{X2 < x} for all x ≥ m1 and x ≤M2.

For instance, the first inequality follows because X1 ≤ x implies that either X1 < X2 or
X2 ≤ x. Otherwise we would have a contradiction: X1 ≥ X2 > x. The resulting LCMM
constraints are

µ{X1 ≤ x} ≤ µ{X = lt}+ µ{X2 ≤ x} for all m1 ≤ x ≤M2,
µ{X1 ≤ x} ≤ µ

{
X ∈ {lt, eq}

}
+ µ{X2 < x} for all m1 ≤ x ≤M2,

with analogous constraints with X1 and X2 swapped (and gt swapped for lt). We use
the shorthand µ{X ∈ E} for

∑
x∈E µ{X = x}.

3.2. Partial outcomes
In a typical combinatorial market, outcomes are gradually revealed over time. For
example, in the NCAA tournament, 63 games play out over the course of several weeks.
Thus, the market evolves through a sequence of partial outcomes defined as follows:

Definition 3.1. A subset σ ⊆ I × {0, 1} is called a partial outcome if there exists a
valid payoff vector z ∈ Z such that zi = b for all (i, b) ∈ σ.

We write Iσ := {i : (i, b) ∈ σ for some b} for the set of securities whose payoffs have
been determined, or settled, by σ. As securities get settled, we would like to fix their
prices to 0 or 1. This is not possible by simply updating the state, but instead we need
to switch to a different cost function while maintaining the information state of the
market. We adapt the construction of Dudı́k et al. [2014] to our setting.

First, we say that a vector u ∈ RI is compatible with σ if ui = b for all (i, b) ∈ σ. We
write Vσ for the set of vectors compatible with σ—note that Vσ is an axis-aligned affine
space of dimension |I\Iσ|. Given a partial outcome σ, we define the set of associated
valid payoffs Zσ := Z ∩ Vσ, and the associated marginal polytopeMσ := conv(Zσ). We
assume that given a partial outcome σ, the market maker uses the cost function

Cσ(θ) = supµ∈Vσ [θ · µ−R(µ)] , (5)

whose conjugate is, by definition, Rσ(µ) = R(µ) + I{µ ∈ Vσ}, which coincides with R
onMσ. The corresponding price map and Bregman divergence are denoted pσ and Dσ.
The transformation of C to Cσ maintains the loss bound of the original market maker
(see Appendix B) and also maintains the information state of the market analogously to
conditioning, as our next example shows.

Example 3.2. Partially settled LMSR. Recall that in a complete market, I = Ω and
payoff vectors φ(ω) have exactly one entry equal to 1: the entry corresponding to the
realized outcome. Therefore, the partial outcome σ can have at most one security settled
to 1. If there is such a security i? then the market is fully settled and, by Eq. (5), we
obtain Cσ(θ) = θi? , pσ,i(θ) = 1{i = i?}. If σ only contains securities settled to zero,
i.e., the corresponding outcomes have been excluded, the cost function obtained by
Eq. (5) is an LMSR over the remaining outcomes, Cσ(θ) = log(

∑
i 6∈Iσ e

θi). The prices
are pσ,i(θ) = 0 for i ∈ Iσ and pσ,i(θ) = eθi/(

∑
j 6∈Iσ e

θj) for i 6∈ Iσ, so the probability
distribution over Ω described by pσ(θ) corresponds to p(θ) conditioned on the event
ω 6∈ Iσ.

4. FRANK-WOLFE MARKET MAKER
In this section we fully describe and analyze the Frank-Wolfe market maker (FWMM)
outlined in Sec. 2.3.

At a high level, FWMM interleaves rapid pricing according to C with arbitrage
removal, while also updating the partial outcome—see Mechanism 1. There are two
kinds of arbitrage removal: fast but only partial arbitrage removal via an LCMM

MECHANISM 1: Frank-Wolfe Market Maker (FWMM)
Input: cost function C, initial state θ0, initial partial outcome σ0,

LCMM constraints specified by Ã, b̃,
IP constraints specified by A, b,
FW algorithm parameters α ∈ (0, 1), ε0 ∈ (0, 1), εD > 0

Initialize the market state and partial outcome: θ ← θ0, σ ← σ0

For t = 1, . . . , T (where T is an a priori unknown number of trades):
receive a request for a bundle δt
sell the bundle δt for the cost Cσ(θ + δt)− Cσ(θ)
θ ← θ + δt
σ ← σ ∪ {newly settled securities if any}
perform an LCMM step:

choose η ≥ 0 such that Cσ(θ + Ãη)− Cσ(θ) ≤ b̃ · η
θ ← θ + Ãη

perform a projection step:
(σ,θ)← ProjectFW(θ; C, σ,A,b, α, ε0, εD)

Observe ω, consistent with σ
Pay traders δ1 · φ(ω), δ2 · φ(ω), . . . , δT · φ(ω)

step, and a complete removal of the remaining arbitrage via Bregman projection. For
LCMM steps we use the fast algorithm of Dudı́k et al. [2012]. Bregman projection is
implemented via a variant of the Frank-Wolfe (FW) algorithm, which we refer to as
ProjectFW and describe later in this section. ProjectFW does not only return a new state
θ such that pσ(θ) is the Bregman projection of the previous state onMσ. It also extends
the partial outcome to securities that can be logically settled based on all other settled
securities. This permanently removes the specific arbitrage opportunities associated
with such securities since their prices become fixed to 0 or 1.

Both arbitrage-removal steps correspond to trades that yield a non-negative profit
regardless of the outcome, which means that the loss bound of the original cost C is only
improved by the value of this profit. The non-negative profit of LCMM steps follows
from Dudı́k et al. [2012]. For ProjectFW, which is an iterative algorithm, we guarantee
non-negative profit by designing a suitable stopping condition.

As we mention earlier, while we hope that the IPs created during the run of the FW
algorithm are easy to solve, they are NP-hard in general, and so the IP solver can get
stuck in a brute-force search. Therefore, we need the ability to interrupt the projection
step, for instance, when a new trade arrives. When our implementation, ProjectFW, is
interrupted in early stages, it yields no update. In later stages, it returns an arbitrage-
free market state corresponding to a trade with a non-negative but possibly suboptimal
profit. Thus, the loss bound is always maintained, even when ProjectFW is interrupted.

4.1. Fully-corrective Frank-Wolfe algorithm
Recall that the FW algorithm reduces the problem of Bregman projection, i.e., a convex
minimization over the setM, into a sequence of linear optimization problems over the
set Z. Our version, presented as Algorithm 2, is based on the fully-corrective variant of
the Frank-Wolfe algorithm [Jaggi 2013], also known as the simplicial decomposition
method [Bertsekas 2015], which we overview next.

The FW algorithm solves problems of the form

min
µ∈M

F (µ) , (6)

whereM is a compact convex set (in our case a polytope) and F is a convex function.
Over the course of iterations t = 1, 2, . . . , the algorithm maintains an active set Zt of
the vertices of the polytopeM that have been discovered so far, and repeatedly:

(1) solves the minimization over the convex hull of Zt−1 to obtain a new iterate

µt := argmin
µ∈conv(Zt−1)

F (µ) ,

(2) finds a new descent vertex zt in the direction of the (negative) gradient of F ,

zt := argmin
z∈Z

[
∇F (µt) · z

]
,

(3) and adds zt to the set of active vertices, so Zt = Zt−1 ∪ {zt}.
Note that while the set Z of valid payoffs can be exponentially large, the set of active

vertices Zt grows by only one vertex per iteration (and is initialized with only a small
number of vertices). Therefore, Step (1), which is a convex optimization problem of
dimension |Zt|, can be solved efficiently by standard algorithms. We use accelerated
projected gradient [Nesterov 2007].

Step (2), the linear optimization over the set Z, is the computationally expensive step.
As discussed in Sec. 2.3, in our case it can be implemented by a call to an IP solver.
In all of our experiments, the running time of Step (2) substantially dominated the
running time of Step (1).

The convergence of the FW algorithm is analyzed via the FW gap, defined as

g(µ) := max
z∈Z

[
∇F (µ) · (µ− z)

]
,

which bounds the suboptimality of µ. Specifically, g(µ) ≥ F (µ)− F (µ?), where µ? is a
solution to Eq. (6). Thus, we can just monitor the gap g(µt) = ∇F (µt) · (µt − zt), and
return the iterate µt when the gap becomes sufficiently small. The gap converges to
zero at the rate of O(Ldiam(M)/t) where L is the Lipschitz constant of ∇F under an
arbitrary norm and diam(M) is the diameter ofM under the same norm [Jaggi 2013].

To apply the FW algorithm to the problem of Bregman projection, we set its objective
to the Bregman divergence: F (µ) = D(µ‖θ) = R(µ) +C(θ)− θ · µ. One formal problem
arises due to the fact that the function R is not necessarily differentiable only subdif-
ferentiable. To overcome this, we assume existence of a differentiable extension R̄. For
LMSR, this is R̄(µ) = I{µ ≥ 0} +

∑
i∈I µi lnµi, and similarly for the sum of LMSRs.

The key point is that R̄ coincides with R overM, so we can optimize the (differentiable)
function F (µ) = R̄(µ) + C(θ)− θ · µ. (More details in Appendix C.)

Apart from differentiability, there are two additional challenges in applying the FW
algorithm within Mechanism 1. First, we need to choose a stopping condition for the FW
algorithm that would yield a state update with a guaranteed profit, since such updates
maintain the worst-case loss bound of the market maker. Second, even though we have
achieved the differentiability of F for our case of interest (the sum of LMSRs), the
resulting derivative is unbounded, so the standard convergence analysis of FW does not
apply. Fortunately, the growth of the derivative at the boundary is sufficiently controlled
to obtain convergence of a modified version of FW, which is what we use in Algorithm 2.
(The precise statement of the controlled growth condition is in Appendix C.)

The modified version of FW, due to Krishnan et al. [2015], performs FW iterations
over a contracted version of the polytope M, or, more precisely, over a contracted
version of Mσ̂, which reflects already settled securities. The contracted polytope is
defined as M′ := (1 − ε)Mσ̂ + εu, where u ∈ Mσ̂ is a coherent price vector whose
coordinates are neither 0 nor 1, except for those already settled by σ̂. In other words,
M′ is a version of Mσ̂ shrunk towards the point u, which we call an interior point.

ALGORITHM 2: ProjectFW. Bregman Projection via Adaptive Fully-Corrective Frank-Wolfe.
Input: cost function C, state θ, partial outcome σ,

IP constraints specified by A, b,
approx. ratio α ∈ (0, 1), initial contraction ε0 ∈ (0, 1), convergence threshold εD > 0

Output: extended partial outcome σ̂ ⊇ σ
state θ̂, whose price vector is an approx. Bregman projection of θ onMσ̂ in the sense
that one of the following holds:

1. pσ̂(θ̂) ∈Mσ̂ and moving from θ to θ̂ guarantees the profit of αDσ̂(µ?‖θ)

2. θ̂ = θ and Dσ̂(µ?‖θ) ≤ εD
3. algorithm was interrupted; moving from θ to θ̂ guarantees a non-negative profit

where µ? = argminµ∈Mσ̂
Dσ̂(µ‖θ)

Initialize the interior point, active vertex set, and extend the partial outcome:
(u,Z0, σ̂)← InitFW(σ,A,b)

Define the objective function:
F (µ) := R̄σ̂(µ)− θ · µ+ Cσ̂(θ)

For t = 1, 2, . . .

perform a FW iteration on the contracted polytope:
let Z ′ = (1− εt−1)Zt−1 + εt−1u denote the contracted active set
µt ← argminµ∈conv(Z′) F (µ)
θt ← ∇R̄σ̂(µt)
call IP solver to find the descent vertex (note that ∇F (µt) = θt − θ):
zt ← argminz∈Zσ̂ (θt − θ) · z
Zt = Zt−1 ∪ {zt}

compute the FW gap g(µt) = (θt − θ) · (µt − zt)
update the best-iterate-so-far t? ← argmaxτ≤t

[
F (µτ)− g(µτ)

]
check stopping conditions:

if g(µt) ≤ (1− α)F (µt), or F (µt) ≤ εD, or termination requested

return σ̂ and θ̂ =

{
θt∗ if g(µt∗) ≤ F (µt∗)

θ otherwise
adapt contraction if necessary:

let gu = (θt − θ) · (µt − u)
if gu < 0 and g(µt)/(−4gu) < εt−1

εt ← min
{
g(µt)/(−4gu), εt−1/2

}
else
εt ← εt−1

Since coordinates of u are bounded away from 0 and 1, the vertices of the contracted
polytopeM′ have their coordinates also bounded away from 0 and 1 (except for Iσ̂). The
controlled growth property then gives a bound on the Lipschitz constant of the gradient
and guarantees convergence for any fixed ε, for the problem of projecting ontoM′. To
obtain the convergence to the projection ontoMσ̂, we adaptively decrease ε according
to the rule of Krishnan et al. [2015]. Their analysis shows that this adaptive version
of FW drives the duality gap g(µt) to zero and thus indeed solves the non-contracted
problem. Two missing pieces that we describe in the remainder of this section are the
stopping condition and the construction of the interior point u.

4.2. Stopping condition for the FW algorithm

The stopping condition needs to ensure that moving the market from a state θ to θ̂
constitutes a trade with a non-negative profit. We start with a lower bound on the

ALGORITHM 3: InitFW. Initialization for ProjectFW.
Input: partial outcome σ, IP constraints specified by A, b
Output: extended partial outcome σ̂ ⊇ σ

point u ∈Mσ̂ such that ui ∈ (0, 1) for i 6∈ Iσ̂
non-empty set Z0 of vertices ofMσ̂

Initialize Z0 ← ∅, σ̂ ← σ, C ← ∅
For each i ∈ I\Iσ and each b ∈ {0, 1}

if (i, b) 6∈ C
call IP solver to find ẑ = argmaxz∈Zσ (2b− 1)zi
if ẑi = b
Z0 ← Z0 ∪ {ẑ}
C ← C ∪ {(j, ẑj) : j ∈ I}

else
σ̂ ← σ̂ ∪ {(i, 1− b)}

If Z0 = ∅
Z0 ← {the unique point compatible with σ̂}

Return σ̂, Z0, and u = 1
|Z0|

∑
z∈Z0

z

guaranteed profit of any iterate of the FW algorithm, and then use it to derive the
stopping condition. We omit the conditioning on σ̂ from the exposition here.

PROPOSITION 4.1. Consider a purchase that moves the market from a state θ to a
new state θ̂ = ∇R̄(µ̂). The resulting profit is guaranteed to be at least D(µ̂‖θ)− g(µ̂).

Thus, it is “safe” to move the market to θ̂ whenever D(µ̂‖θ) ≥ g(µ̂) (for proof see
Appendix D). To maximize the profit guarantee, we should return the iterate that
maximizes the difference D(µ̂‖θ)− g(µ̂), which is what we do in Algorithm 2.

Apart from a forced interruption (e.g., because of the arrival of a new trade or
exceeding of the time limit), the stopping conditions of Algorithm 2 concern two separate
cases. First, recall that the algorithm is minimizing F (µ) = D(µ‖θ) via a sequence of
iterates µt ∈M that satisfy D(µt‖θ)→ D(µ?‖θ) and g(µt)→ 0 as t→∞. Therefore, if
prices p(θ) are incoherent, i.e., D(µ?‖θ) > 0, eventually we will have g(µt) < D(µt‖θ).
In fact, we can guarantee something stronger. Namely, given a fixed α ∈ (0, 1), we will
reach an iteration when

g(µt) ≤ (1− α)D(µt‖θ) .

At this point, our profit guarantee is at least

D(µt‖θ)− g(µt) ≥ αD(µt‖θ) ≥ αD(µ?‖θ)

thanks to the optimality of µ?. This means that we are extracting at least an α-fraction
of the available arbitrager profits; this covers the first stopping condition and the first
output case of Algorithm 2. On the other hand, if the prices p(θ) are coherent or close-
to-coherent, then D(µt‖θ) will eventually drop below our convergence threshold εD,
which we can set arbitrarily small. Since D(µ?‖θ) ≤ D(µt‖θ), this covers the second
stopping condition and the second output case of Algorithm 2. The final case follows
directly from Proposition 4.1.

4.3. Finding the interior point
The goal here is to find a point u ∈ M where coordinates corresponding to unsettled
securities are strictly between 0 and 1. In the process, we also obtain the initial set of
active vertices and an extended partial outcome σ̂. To construct u, Algorithm 3 iterates

through coordinates i that have not been settled in the provided partial outcome σ, and
calls the IP solver to find a valid vector ẑ that is consistent with σ, but also has the i-th
coordinate equal to b = 0 or b = 1. If the IP solver fails to find such ẑ for either value b,
it means that the i-th coordinate can be settled to 1− b. Otherwise the found ẑ is added
to the set of active vertices. This guarantees that each coordinate i is either present
in σ̂, or the active set contains some valid vertices with both the value 0 and 1 at the
i-th coordinate. Therefore, the average of the active vertices satisfies the requirement
for u. If the active set is empty, it means that all of the securities have been settled and
the unique valid vector consistent with σ̂ satisfies the requirement.

5. EXPERIMENTS
5.1. Data description
Our data consists of bets made in Predictalot, a combinatorial prediction market run
by Yahoo! in 2010 for the NCAA Men’s Division I Basketball Tournament, commonly
known as March Madness.1 The tournament lasted from March 18th to April 5th, 2010.
It consisted of 64 teams playing a single-elimination tournament over 6 rounds. In
each round, half of the remaining teams were eliminated. Traders were allowed to buy
securities at any point in time throughout the tournament; the first bets were placed
four days prior to the tournament start and the last bets were placed towards the end
of the final match. Many bets referred to groupings of teams, known as conferences,
brackets or seeds (e.g., there are sixteen seed levels and four teams to each seed).

There were 93 036 bets placed altogether on many different securities in Predictalot.
Our experiments focus on a large subset of these, which we briefly describe here.
The largest group of bets (56%) can be expressed as bundles over atomic tournament
variables (winners of individual games, and the number of wins of individual teams).
These include bets such as “Duke wins exactly 3 games”, “Cornell exits in round 2 or
later”, “a team from the Big Ten conference wins the championship”. In addition to
these bets, we also supported combinatorial bets for comparisons of the number of wins
of single teams, e.g., “Duke wins more games than Cornell”, and comparisons of the
number of wins by teams from different conferences, e.g., “teams from Big Ten win more
games than teams from Big East”. These were implemented as comparison variables
derived from pairs of atoms, and pairs of sums, respectively. The two comparison types
encompass 12% of original bets.

Our resulting dataset contains 63 689 bets, constituting 68% of all bets in the original
market. Combinatorial bets (comparisons) make up 17% of our final dataset. The
three largest groups of bets we did not include were: “team t1 wins more games than
t2, and t3 wins more games than t4” (6%); “the number of upsets in round r will be
less than/equal to/greater than c” (3%); and “the sum of seeds in round r will be less
than/equal to/greater than c” (3%).

Price initialization. Our dataset contains realized trades, but we have no other price
data from the run of the market. In particular, the initial Predictalot prices were not
available, so we used the following scheme to initialize atomic tournament variables Xt

(the number of wins of team t) and Gr,t (the outcome of a game). We considered bets
within the 6 hour time window starting at 27 hours and ending at 21 hours before the

1 Securities in the Predictalot market were priced using the Monte Carlo method with importance sampling
against a dynamic proposal distribution. One of the larger issues, which we do not expect with the optimization
methods presented in this work, was substantial price volatility as the tournament progressed, due to an
increasing mismatch between the market belief and the proposal distribution. In order to avoid trivial
arbitrage, independent samples were drawn to form the prices quoted to the traders, and the actual prices
imposed on trade executions. As a result, some trades transacted at prices significantly different than quoted.
[D. Pennock, personal communication, Feb. 22, 2016]

first match of the tournament. Let µ′ denote the price at which securities were sold in
this window (we use last such price if multiple exist). To initialize the game variables
Gr,t, we use the prices of bets on the champion of the tournament (i.e., Xt = k):

µ{Gr,t = t} =
µ′{Xt = k}∑

t′∈T µ
′{Xt′ = k}

,

where T is the set of all teams that can reach the game Gr,t; if the denominator equals
zero, we initialize prices µ{Gr,t = t′} across t′ ∈ T to a uniform distribution. To initialize
securities Xt = x, we proceeded as follows. If µ′{Xt = x} is present, we use that
as the initialization price, otherwise we use the difference between µ′{Gx,t = t} and
µ′{Gx+1,t = t}, where we replace one or both of these terms by our already calculated
prices according to µ whenever the µ′ prices are not present. The resulting prices are
then normalized to sum to one for each Xt. The team and game prices are then projected
on the polytope described by LCMM constraints to obtain market initialization.

Settling outcomes. Similar to initialization prices, the times when the individual
games were settled were not available, so we handcrafted a dataset consisting of all
game start times2 (to the best of our knowledge, end times are not listed anywhere)
and settled each game 100 minutes after the game start. The choice of 100 minutes is
conservative, based on the anecdotal observation that the shortest NCAA games last
about 120 minutes, including the time for commercials and timeouts.

5.2. Evaluation
We compare three market treatments: independent markets (IND), the linearly con-
trained market maker (LCMM), and a market maker with both linear constraints and
Bregman projections for arbitrage removal (FWMM). Each market maker builds upon
and extends the previous one. Recall that in IND, we use LMSR to price the securities
associated with each random variable, but prices for separate variables vary indepen-
dently, even if the underlying events are related. LCMM enforces price relationships
across random variables using linear constraints, and FWMM adds projection steps
onto the marginal polytope. The market makers were implemented in Java, using
Gurobi Optimizer 5.53 to solve the integer programs in the FW algorithm. We refer to
our implementation as the (market) engine.

We evaluate the three market makers by a counterfactual replay of the trades placed
in Predictalot. All the market makers depend on the liquidity parameter b (see Eq. 4).
Rather than optimizing b, we used a fixed liquidity of 150 and varied each trader’s
budget. (The effect is equivalent, as increasing the budget increases price responsiveness
to the trade orders.) Each trade order is viewed as a new agent, so the budget is constant
for each trade. We used budget levels 0.1, 1, 10, 100, and 1000.

For each trade, the Predictalot dataset contains the number of shares purchased and
the total cost paid. By taking the average price per share p̄, we obtain a lower bound
on the trader’s probability estimate when the trade was placed. From this we create a
limit order for our market engine by drawing a limit price uniformly from [p̄, 1], and
providing the constant budget level mentioned previously. A limit order states that the
trader wishes to purchase shares until either the market price reaches the limit price,
or the budget is exhausted, whichever occurs first. Any sell orders with average price p̄
were transformed into buy orders of the complementary bundle, at price 1− p̄, and then
converted into limit orders. By using three different seeds for the randomization, we
generated three input files for the market engine. All market makers were run on all

2Source: espn.com, e.g., http://scores.espn.go.com/ncb/boxscore?gameId=300950150
3www.gurobi.com

http://scores.espn.go.com/ncb/boxscore?gameId=300950150
www.gurobi.com

three input files. As the results were highly consistent across the randomization seeds,
we found three replicates to be sufficient.

To summarize, we ran the three different market makers (IND, LCMM, FWMM) at
five budget levels (0.1, 1, 10, 100, 1000) over the three randomly generated input files.
During a market run, the engine records summaries of security prices and prices of
all purchased bundles. These summaries are generated at regular intervals, including
every hour and every 100 trades. We use the log likelihood to assess the accuracy of the
security prices, viewed as probability forecasts, at a given point in time. Let µ be the
price vector. We consider log likelihoods associated with two different kinds of events.
First is the log likelihood assigned to the final realized value x? of a variable X, which
equals logµ{X = x?}. Second is the log likelihood corresponding to the bundle of the
form X ∈ E , viewed as a binary variable (the event occurs or not), which is defined as

1{x? ∈ E} logµ{X ∈ E}+ 1{x? 6∈ E} logµ{X 6∈ E} .
A larger log likelihood indicates a better forecast. We report the average log likelihood
over all variables, and the average log likelihood over all purchased bundles. The former
can be viewed as an average accuracy of the market, the latter is weighted towards the
part of the market that sees more trading.

Effect of liquidity. We first examine the effect of varying the budget level (equivalently,
liquidity) on the overall performance of the three market makers. Fig. 2 provides the
average prediction accuracy of the three market makers over variables and bundles,
where the average is taken over all hourly summaries. The plots show the expected
trends: when budget is too low, traders cannot incorporate their information into the
market, while when budget is too high, prices are too sensitive to individual trades.
The optimal budget setting is 10 for IND and LCMM, and 100 for FWMM. However,
both LCMM and FWMM are far less sensitive to the budget level than IND, because
information propagation (via constraints) can correct wrong bets.

The improvement of FWMM over LCMM for variables ranges from 2.1% to 5.6%, with
a median of 3.3% over all budget levels and random seeds. For bundles, the improvement
ranges from 0.9% to 3.2%, with a median of 2.2%. For the time period covering the first
16 games, LCMM and FWMM are very similar (see the next section), bringing their
average performance closer together; excluding these games, the median improvement
increases from 3.3% to 12.4% for securities, and from 2.2% to 5.6% for bundles. Because
accuracy here is averaged over all hourly summaries, it is implictly weighed by duration,
which is hard to interpret. To obtain a more fine-grained view, we next consider the
evolution of market accuracy over time.

Accuracy over time. Fig. 3 plots the prediction accuracy of the three markets as time
progresses. We set a time limit of 30 minutes for Bregman projection. The first time
it successfully completes is only at time stamp ‘2010-03-21 13:58:50’, after 45 games
are already settled. We therefore begin the plot at time stamp ‘2010-03-19 00:00:00’,
corresponding to 16 settled games, as there is very little difference between LCMM and
FWMM before that point. The reason FWMM still exceeds LCMM on occasion before
the first projection is due to the extension of the partial outcome afforded by the IP, as
explained in Sec. 4.

Each point of the time series represents an average over all variables or bundles
defined at that time, including those whose outcomes have been settled. This explains
the upwards trends of the plots, culminating at accuracy 0 (a perfect score). The trend
is not entirely monotonic, as we see from the bundle log likelihood in the stretch after
March 22. The dotted vertical lines indicate the beginning of days on which games are
played. On such days, we see that accuracy is initially stable, then sharply increases as
the games take course and their outcomes are settled.

budget

lo
g

lik
el

ih
oo

d

−0.7

−0.6

−0.5

−0.4

10−1 100 101 102 103

●●●

●●●

●●● ●●●

●
●●

FWMM LCMM IND●

budget

lo
g

lik
el

ih
oo

d

−0.35

−0.30

−0.25

−0.20

10−1 100 101 102 103

●●●

●●●

●●●
●●●

●●
●

FWMM LCMM IND●

Fig. 2. Market maker accuracy, varying the budget level. Left: average over variables. Right: average over
bundles. Average taken over all hourly logs and all random seeds.

time

lo
g

lik
el

ih
oo

d

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Mar 22 Mar 29 Apr 05

FWMM LCMM IND

time

lo
g

lik
el

ih
oo

d

−0.3

−0.2

−0.1

0.0

Mar 22 Mar 29 Apr 05

FWMM LCMM IND

Fig. 3. Market maker accuracy over time, at budget level 10. Left: average over variables. Right: average
over bundles. Average taken over all variables or bundles defined at that time, over all random seeds. The
dotted vertical lines are at 00:00 on days when games are played. The solid vertical line indicates the start of
projections in FWMM.

In Fig. 3, we see that once Bregman projections successfully complete, the improve-
ment of FWMM over LCMM becomes sustained. The accuracy improvements from this
point onwards range from 0% to 80% for variables, with a median of 38% over all hourly
summaries. The improvements range from 0% to 44% for bundles, with a median of 9%.

6. DISCUSSION AND CONCLUSION
In our experiments, FWMM outperformed LCMM once the outcome space was suf-
ficiently reduced, via settled securities, to allow computing of Bregman projections
within 30 minutes on a standard workstation. This time limit yielded a manageable

experimental turnaround, with about 5 hours to execute the trades that originally
spanned 22 days. In practice, a market designer can allow longer computation and use
more powerful hardware, and expect improvements for larger problem sizes.

Several approaches could further speed up our framework. For instance, FW can be
used to construct separating hyperplanes to tighten the outer LCMM approximation,
and thereby contribute to arbitrage removal even when there is no time to compute the
projection. Also, instead of solving IPs to optimality in each iteration, it may be possible
to interleave IP with local search to obtain additional descent vertices. Since IP is by
far the most time-consuming part of FW, this could yield substantial speedups.

REFERENCES

Jacob Abernethy, Yiling Chen, and Jennifer Wortman Vaughan. 2011. An optimization-based
framework for automated market-making. In EC-11.

David Belanger, Dan Sheldon, and Andrew McCallum. 2013. Marginal Inference in MRFs using
Frank-Wolfe. In NIPS 2013 workshop on Greedy Optimization, Frank-Wolfe and Friends.

Joyce Berg, Robert Forsythe, Forrest Nelson, and Thomas Rietz. 2008. Results from a Dozen
Years of Election Futures Markets Research. In Handbook of Exp. Econ. Results.

Dimitri P. Bertsekas. 2015. Convex Optimization Algorithms.
Robert Charette. 2007. An Internal Futures Market. Information Management (March 2007).
Yiling Chen, Lance Fortnow, Nicolas Lambert, David M. Pennock, and Jennifer Wortman. 2008.

Complexity of Combinatorial Market Makers. In EC-08.
Yiling Chen, Lance Fortnow, Evdokia Nikolova, and David M. Pennock. 2007. Betting on

Permutations. In EC-07.
Yiling Chen, Sharad Goel, and David M. Pennock. 2008. Pricing Combinatorial Markets for

Tournaments. In STOC-08.
Yiling Chen and David M. Pennock. 2007. A Utility Framework for Bounded-Loss Market Makers.

In UAI-07.
Miroslav Dudı́k, Rafael Frongillo, and Jennifer Wortman Vaughan. 2014. Market Making with

Decreasing Utility for Information. In UAI-14.
Miroslav Dudı́k, Sébastien Lahaie, and David M. Pennock. 2012. A Tractable Combinatorial

Market Maker Using Constraint Generation. In EC-12.
Miroslav Dudı́k, Sébastien Lahaie, David M. Pennock, and David Rothschild. 2013. A Combinato-

rial Prediction Market for the U.S. Elections. In EC-13.
Marguerite Frank and Philip Wolfe. 1956. An algorithm for quadratic programming. Naval

research logistics quarterly 3, 1-2 (1956).
Robin D. Hanson. 2003. Combinatorial information market design. Information Systems Frontiers

5, 1 (2003).
Robin D. Hanson. 2007. Logarithmic market scoring rules for modular combinatorial information

aggregation. Journal of Prediction Markets 1, 1 (2007).
Martin Jaggi. 2013. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In

ICML-13.
Rahul G. Krishnan, Simon Lacoste-Julien, and David Sontag. 2015. Barrier Frank-Wolfe for

marginal inference. In NIPS-15.
Yurii Nesterov. 2007. Gradient methods for minimizing composite objective function. Technical

Report. UCL.
David M. Pennock, Steve Lawrence, C. Lee Giles, and Finn A. Nielsen. 2002. The real power of

artificial markets. Science 291 (2002).
Martin Spann and Bernd Skiera. 2003. Internet-Based Virtual Stock Markets for Business

Forecasting. Management Science 49, 10 (2003).
Lirong Xia and David M. Pennock. 2011. An Efficient Monte-Carlo Algorithm for Pricing Combi-

natorial Prediction Markets for Tournaments. In IJCAI-11.

APPENDIX
A. PROOF OF PROPOSITION 2.4
We first calculate the largest possible guaranteed profit:

sup
δ∈RI

min
z∈Z

[
δ · z − C(θ + δ) + C(θ)

]
= sup
θ′∈RI

min
µ∈M

[
(θ′ − θ) · µ− C(θ′) + C(θ)

]
= min
µ∈M

sup
θ′∈RI

[
(θ′ − θ) · µ− C(θ′) + C(θ)

]
(7)

= min
µ∈M

[
R(µ)− θ · µ+ C(θ)

]
(8)

= min
µ∈M

D(µ‖θ) = D(µ?‖θ) , (9)

where Eq. (7) follows by Sion’s minimax theorem and Eqs. (8) and (9) from definitions
of the convex conjugate and Bregman divergence, respectively. This shows that from
the state θ the guaranteed profit is at most D(µ?‖θ).

Recall that δ? is any trade that moves the market to a state θ? such that p(θ?) = µ?.
We next show that δ? is an optimal trade, i.e., that this trade gives a profit that is
at least D(µ?‖θ). Let F (µ) := D(µ‖θ). Since µ? optimizes F onM, by the first order
optimality, we have for any u ∈ ∂F (µ?) and z ∈ Z that u·(z−µ?) ≥ 0. Since p(θ?) = µ?,
the conjugacy implies that θ? ∈ ∂R(µ?) and thus (θ? − θ) ∈ ∂F (µ?), so the first order
optimality yields

0 ≤ (θ? − θ) · (z − µ?) ,

which rearranges to

(θ? − θ) · z ≥ (θ? − θ) · µ? . (10)

The profit from the trade δ? given any outcome ω is therefore at least

(θ? − θ) · φ(ω)− C(θ?) + C(θ) ≥ (θ? − θ) · µ? − C(θ?) + C(θ)

= R(µ?)− θ · µ? + C(θ)

= D(µ?‖θ) ,

where the first line follows by substituting φ(ω) for z in Eq. (10), the second line follows
from the conjugacy of R and C, and the third line from the definition of D, completing
the proof.

B. BOUNDED LOSS PROPERTY UNDER GRADUAL REVELATION OF OUTCOME
We show that the bound on the worst-case loss of the cost C is maintained if we update
the cost function using a sequence of partial outcomes, gradually revealing the final
outcome ω. We begin with the worst-case bound on the loss under cost C:

PROPOSITION B.1. If the initial market state is θ0 then the worst-case loss of a
market-maker using C is maxω∈ΩD(φ(ω)‖θ0).

PROOF. Let θ denote the final state before the outcome ω is revealed. Then the
market maker has collected C(θ)− C(θ0) as the revenue for the sold shares, and needs

to pay out (θ − θ0) · φ(ω) as a payoff to the traders. The worst-case loss is therefore

max
ω∈Ω

sup
θ

[
(θ − θ0) · φ(ω)−

(
C(θ)− C(θ0)

)]
= max

ω∈Ω
sup
θ

[(
θ · φ(ω)− C(θ)

)
− θ0 · φ(ω) + C(θ0)

]
= max

ω∈Ω

[
R
(
φ(ω)

)
− θ0 · φ(ω) + C(θ0)

]
= max

ω∈Ω
D(φ(ω)‖θ0) .

Now, we will analyze the case with partial outcomes. We assume that the initial
partial outcome σ0 = ∅, and that the market goes through a sequence of partial outcomes
σ0 ⊆ σ1 ⊆ · · · ⊆ σT until finally an outcome ω is revealed, consistent with σT . After the
revelation of each σt, the market-maker switches to the cost function Cσt . The initial
market state is denoted θ0 and the market state in which the market switches to Cσt is
denoted θt.

PROPOSITION B.2. If the initial market state is θ0 then, regardless of the sequence of
partial outcomes σ1, . . . , σT , the worst-case loss of the market-maker using the sequence
of costs Cσt is maxω∈ΩD(φ(ω)‖θ0), i.e., the same as that of the market-maker using C
without incorporating partial outcomes.

PROOF. Recall that the market state at the time of switch from Cσt−1 to Cσt is θt.
We first show that the value of the cost at the time of switch decreases:

Cσt(θt) = sup
µ∈Vσt

[θ · µ−R(µ)] ≤ sup
µ∈Vσt−1

[θ · µ−R(µ)] = Cσt−1(θt) (11)

where the middle inequality follows because Vσt ⊆ Vσt−1
. We are now ready to prove the

bound on the worst-case loss. Let Ω(σT) denote the set of outcomes compatible with σT ,
and recall that σ0 = ∅, so Cσ0

≡ C. Recall that θt for t = 1, . . . , T are the states of the
market when the cost becomes Cσt . Finally, let θT+1 denote the final state. Then the
worst-case loss of the market maker can be bounded as follows

max
σ1⊆σ2⊆...⊆σT

max
ω∈Ω(σT)

sup
θ1,...,θT+1

[
(θT+1 − θ0) · φ(ω)−

T∑
t=0

(
Cσt(θt+1)− Cσt(θt)

)]

= max
σ1⊆σ2⊆...⊆σT

max
ω∈Ω(σT)

sup
θ1,...,θT+1

[
(θT+1 − θ0) · φ(ω)−

(
CσT (θT+1)− Cσ0

(θ0)
)

−
T∑
t=1

(
Cσt−1

(θt)− Cσt(θt)
)]

(12)

≤ max
σT

max
ω∈Ω(σT)

sup
θT+1

[
(θT+1 − θ0) · φ(ω)− CσT (θT+1) + Cσ0

(θ0)
]

(13)

= max
σT

max
ω∈Ω(σT)

[
R
(
φ(ω)

)
− θ0 · φ(ω) + C(θ0)

]
(14)

= max
ω∈Ω

D(φ(ω)‖θ0) . (15)

Eq. (12) follows by rearranging the terms. Eq. (13) follows by Eq. (11). Eq. (14) follows
because the convex conjugate of CσT is RσT (µ) = I{µ ∈ VσT }+R(µ), and RσT

(
φ(ω)

)
=

R
(
φ(ω)

)
thanks to the compatibility of ω with σT . Finally, Eq. (15) follows from the

definition of Bregman divergence, completing the proof.

C. DIFFERENTIABILITY AND CONTROLLED GROWTH OF R
The algorithm used by our market maker requires a differentiable objective whose
gradient does not grow too fast as it approaches the boundary ofM. Note that for LMSR,
the Bregman divergence is formally not even differentiable in its first argument (it is
subdifferentiable). So, in addition to requiring the controlled growth of the gradient, we
also need to assume that R can be extended into a differentiable function. Specifically,
we say that R̄ : RI → (−∞,∞] is a convex extension of R if R̄ is convex and coincides
with R wherever R < ∞. We require existence of an extension with the controlled
growth property in the following sense:

Definition C.1. Let S ⊆ [0, 1]n be a compact convex set. We say that a convex function
F exhibits controlled growth on S if it is differentiable on S ∩ (0, 1)n and if there exists a
fixed p ≥ 0 and L ≥ 0 such that for any ε > 0, the gradient ∇F has a bounded Lipschitz
constant Lε ≤ Lε−p over S ∩ [ε, 1− ε]n.

Assumption C.2. R has a convex extension R̄ such that for all partial outcomes σ,
when R̄ is viewed as a function on Vσ, it exhibits controlled growth onMσ.

We write R̄σ for the restriction of R̄ to Vσ. Note that this restriction is formally a function
defined on a space of dimension |I\Iσ| and thus, formally, ∇R̄σ has the dimension
|I\Iσ|. We extend ∇R̄σ into a vector in RI by inserting zeros at coordinates i ∈ Iσ. A
key consequence of this construction is that for any partial outcome σ and all µ ∈Mσ

such that µi ∈ (0, 1) for i 6∈ Iσ, the gradient ∇R̄σ(µ) is defined, and ∇R̄σ(µ) ∈ ∂Rσ(µ).
As a result, we have that θ = ∇R̄σ(µ) implies that ∇Cσ(θ) = µ (but not vice versa).
Assumption C.2 can be verified for instance by upper-bounding the operator norm of
the Hessian, which directly upper-bounds the Lipschitz constant of the gradient.

Example C.3. Controlled growth for LMSR. We define the extension of negative
entropy over the non-negative orthant, R̄(µ) = I{µ ≥ 0}+

∑
i∈I µi logµi, which yields

R̄σ(µ) = I{µi ≥ 0 for all i 6∈ Iσ}+
∑
i 6∈Iσ µi logµi. The Hessian is a diagonal matrix with

entries 1/µi, so its operator norm is maxi6∈Iσ 1/µi, and thus Lε = O(1/ε), which satisfies
the controlled growth condition with p = 1.

D. PROOF OF PROPOSITION 4.1
The guaranteed profit when moving from θ to θ̂ is

min
ω∈Ω

[
(θ̂ − θ) · φ(ω)− C(θ̂) + C(θ)

]
= min
µ∈M

[
(θ̂ − θ) · µ− C(θ̂) + C(θ)

]
(16)

= min
µ∈M

[
(θ̂ − θ) · (µ− µ̂) + θ̂ · µ̂− C(θ̂)− θ · µ̂+ C(θ)

]
= min
µ∈M

[
(θ̂ − θ) · (µ− µ̂) +R(µ̂)− θ · µ̂+ C(θ)

]
(17)

= D(µ̂‖θ)− g(µ̂) . (18)

Eq. (16) follows because the minimized objective is linear in φ(ω). Eq. (17) follows from
the definition of R. Finally, Eq. (18) follows because ∇F (µ̂) = ∇R̄(µ̂)− θ = θ̂ − θ, and
hence

g(µ̂) = max
µ∈M

[
(θ̂ − θ) · (µ̂− µ)

]
.

	1 Introduction
	2 Preliminaries
	2.1 Cost-based market making
	2.2 Arbitrage, marginal polytope and Bregman projection
	2.3 The outline of Frank-Wolfe market maker (FWMM)
	2.4 Linearly-constrained market maker (LCMM)

	3 Market Design
	3.1 Compositional market design
	3.2 Partial outcomes

	4 Frank-Wolfe Market Maker
	4.1 Fully-corrective Frank-Wolfe algorithm
	4.2 Stopping condition for the FW algorithm
	4.3 Finding the interior point

	5 Experiments
	5.1 Data description
	5.2 Evaluation

	6 Discussion and Conclusion
	A Proof of Proposition 2.4
	B Bounded loss property under gradual revelation of outcome
	C Differentiability and controlled growth of R
	D Proof of Proposition 4.1

