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We study a class of iterative combinatorial auctions which can be viewed as subgradient descent methods

for the problem of pricing bundles to balance supply and demand. We provide concrete convergence rates for

auctions in this class, bounding the number of auction rounds needed to reach clearing prices. Our analysis

allows for a variety of pricing schemes, including item, bundle, and polynomial pricing, and the respective

convergence rates confirm that more expressive pricing schemes come at the cost of slower convergence.

We consider two models of bidder behavior. In the first model, bidders behave stochastically according to a

random utility model, which includes standard best-response bidding as a special case. In the second model,

bidders can behave arbitrarily (even adversarially), and meaningful convergence relies on properly designed

activity rules.

1. INTRODUCTION.

Combinatorial auctions are used to sell multiple distinct items at once in situations
where items may be substitutes or complements. Because of their generality as a re-
source allocation mechanism, combinatorial auctions have been proposed for a variety
of domains including the allocation of wireless spectrum, airport landing slots, and
real estate [Cramton et al. 2006]. In an iterative combinatorial auction, bidders place
bids on bundles of items in response to prices updated by the auctioneer, and this
process repeats until bidding reaches quiescence. Iterative designs are particularly at-
tractive for combinatorial auctions because the sheer size of the bundle space makes it
impractical to report valuation information in a single shot.

At the core of an iterative auction design is the choice of pricing scheme, because
prices drive the information revelation process. The current space of auctions offers
two extremes: linear (item) pricing, where the price of a bundle is the sum of its item
prices, and bundle pricing, where each bundle is explicitly priced. The two schemes
have different advantages. Linear prices provide information about final costs even
for bundles not explicitly bid on, leading to fewer rounds of bidding—in this sense,
they provide effective ‘price discovery’. However, in the presence of complementarities
linear prices cannot effectively balance supply and demand, leading to inefficiencies in
the final allocation. Bundle prices, on the other hand, can always clear the market and
support an efficient allocation, but provide limited price discovery. As a result, bundle-
price auctions typically require far more rounds in practice to reach termination, as
confirmed empirically in both simulation studies and lab experiments [Scheffel et al.
2011; Schneider et al. 2010].

In this paper we consider the design of iterative auctions from an algorithmic per-
spective, leading to a formal study of the relationship between price structure and price
discovery. Prior work has shown that iterative multi-item auctions generally fall under
two design paradigms: they can be viewed as either primal-dual or subgradient algo-
rithms to solve the dual problems of allocation and pricing, once these are formulated
as linear programming problems [Bikhchandani et al. 2002]. In this work we consider
auctions based on the subgradient method. We obtain general linear and quadratic
programming formulations of the pricing problem solved by the auction, which allows
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us to study various price structures under a single framework. We provide a general
specification of subgradient auctions which subsumes several prior auctions using lin-
ear or bundle prices, and also leads to novel auction designs using polynomial prices in
between these two schemes. Polynomial prices extend linear prices by assigning coef-
ficients to combinations of items, and can allow the auctioneer to strike a more careful
balance between market clearing and price discovery.

Our main focus is the convergence rate of iterative auctions, and in particular its de-
pendence on the pricing scheme used. We consider two agent models. In the first model,
agents bid on their most preferred bundles at the current prices, but their value esti-
mates for bundles are subject to stochastic errors at each round. This translates into
stochastic behavior where bids may be placed on lesser-preferred bundles by chance.
Our convergence analysis confirms that subgradient auctions reach clearing prices
even under this kind of imperfect bidding behavior, and bounds the rates for linear,
bundle, and polynomial pricing. In the second model, agents can place bids arbitrarily
or even adversarially in each round upon seeing the current prices. While it is still
possible to prove certain technical convergence statements under such a model, it un-
surprisingly admits behavior that would be unreasonable and disallowed in practice.
We therefore show how the convergence statements become more meaningful when im-
posing revealed-preference activity rules (constraints on bids over rounds) that have
been proposed in practice [Ausubel and Baranov 2014b].1

At the core of our analysis are tools and concepts from statistical learning theory,
online (sequential) learning, and convex analysis. The auction is cast as an iterative
procedure whose goal is to optimize an objective function over prices, in analogy to fit-
ting a learning model to minimize prediction loss. The tension between market clearing
and price discovery mirrors the bias-variance trade-off familiar from statistics. Linear
prices offer ‘low variance’, which makes them informative about final costs even after
a limited number of rounds. Bundle prices offer ‘low bias’, which is needed to flexibly
price bundles to balance demand and supply. (The notions of bias and variance here
are analogies, because there is no randomness in the auction mechanism.) We empha-
size the price discovery aspects throughout the paper. While our analysis does provide
structural insights into the market clearing properties of various pricing schemes, a de-
tailed treatment of this question requires one to consider restricted valuation classes,
which we defer to a separate study.

The remainder of the paper is organized as follows. Section 2 introduces the ele-
ments of our model and describes our approach to price representation. Section 3 for-
mulates the core problems of allocation and pricing, and develops the duality relation-
ship between the two. Section 4 specifies the class of auctions based on the subgradient
method. The main results of the paper appear in Sections 5 and 6, providing conver-
gence rates for the auctions under the stochastic and arbitary bidding models, respec-
tively. Section 7 concludes. Detailed proofs of all results are deferred to the appendices.
Sketches of the proofs are given in the main text.

Related work. There is an extensive literature on the design of multi-item auc-
tions [e.g. Milgrom 2004]. Our paper relates to the narrower literature on the algo-
rithmic properties of iterative auctions. The allocation problem at the basis of com-
binatorial auctions was first formulated in a linear programming (LP) framework

1Under both the stochastic model and the adversarial model with activity rules, agents bid consistently
with some underlying valuation for the bundles, but it need not correspond to their true valuation. Agents
may benefit from strategic bidding. This has no bearing on the auction’s worst-case convergence rate, so
we set aside incentive concerns in this work. As with other iterative auctions used in practice, supplemen-
tary pricing stages such as core-selecting or VCG pricing may be used to achieve reasonable outcomes in
equilibrium [Day and Cramton 2012].



by Bikhchandani and Ostroy [2002], who provide formulations leading to linear and
bundle prices, both anonymous and personalized. The formulation used in this paper
is equivalent to the one used by Lahaie [2011] for his primal-dual auction, and sub-
sumes the LPs of Bikhchandani and Ostroy [2002]. The work of Lahaie [2009, 2011]
introduced the use of polynomial prices for combinatorial auctions.

Drawing on the LP viewpoint, Bikhchandani et al. [2002] and de Vries et al. [2007]
categorized existing auctions as either primal-dual or subgradient algorithms. Subgra-
dient auctions include the uniform price auction for homogeneous goods, and the well-
known auctions of Crawford and Knoer [1981], Kelso and Crawford [1982], Parkes
[1999], and Ausubel and Milgrom [2002] for heterogeneous goods. All of these auctions
are part of the class studied here (for a suitable choice of step-size policy).

An important aspect of our auction class is that we do not enforce price monotonic-
ity: the price of a bundle may ascend and descend during the course of the auction.
While there is precedent for non-monotone price paths [e.g. Ausubel 2006], most auc-
tion designs favor ascending prices to rule out certain gaming behaviors on the part of
bidders that aim to delay termination. We show how activity rules can mitigate such
concerns and restore convergence. Ausubel and Baranov [2014b] discuss the practical
aspects of combinatorial auction design, while Ausubel and Cramton [2011] consider
activity rules. Harsha et al. [2010] provide a detailed treatment of revealed preference
activity rules similar to the rule considered in this paper.

Many of the core ideas used herein draw from convex analysis [Borwein and Lewis
2010; Hiriart-Urruty and Lemaréchal 2001; Rockafellar 1970] and the mathematical
results that explore sequential optimization procedures such as subgradient descent,
or more broadly mirror descent [Beck and Teboulle 2003]. Many of these methods
have recently been employed within the machine learning community, where predic-
tion and decision problems are frequently viewed as an online convex optimization
game [Zinkevich 2003]. In this model, a learner is repeatedly asked to select deci-
sions from a convex set, and on each round the feedback on this decision arrives in
the form of a convex loss function, potentially selected by an adversary. In the context
of iterative auctions, the decision is the price vector at each round, and the result-
ing bids provide feedback on the ‘loss’ incurred. Online convex optimization games
have been thoroughly explored in recent years and one can find a number of compre-
hensive surveys, including the work of Cesa-Bianchi and Lugosi [2006], Hazan [2012],
and Shalev-Shwartz [2011].

2. THE FORMAL MODEL.

We consider a model with n agents (buyers) and a single seller holding m distinct items.
At a high level, the purpose of the auction is to allocate the m items to the n agents
according to how the agents value the items. We use the notation [n] = {1, 2, . . . , n} to
denote an index set; thus [n] indexes the set of agents and [m] indexes the set of items.
To formulate our model, we first treat the items as divisible; we will later explicitly im-
pose indivisibility (i.e, integrality) requirements. Agents have preferences over various
bundles of items, where a bundle is a subset of the items. Let X denote the set of all
bundles the agents would be interested in acquiring, and let ℓ = |X |. In general, this
could be all possible bundles, in which case ℓ = 2m, but in some applications it may be
substantially smaller.2

2For instance, the literature often considers single-minded agents. Such agents only derive positive value if
they acquire a specific, designated bundle, and the marginal value of all other items is zero. Under single-
minded agents we have ℓ ≤ n.



Notation. We use the following convention to index vectors and matrices throughout
the paper. For a vector a ∈ R

ℓ indexed by the finite set of bundles, we use the functional
notation a(x) for the component corresponding to x ∈ X . For a vector a ∈ R

n indexed
by agents, we use the usual subscript notation ai for i ∈ [n]. For a vector a ∈ R

nℓ

indexed by both, we write ai(x) to refer to a component. The convention extends to
matrices. For a matrix A ∈ R

nℓ×d, we write Ai(x) for the d-dimensional row associated
with agent i and bundle x.

The primitives of our model will be cast as elements of vector spaces. A bundle assigned
to an agent i is represented as a vector from the agent’s consumption set

Hi = conv

{

qi ∈ {0, 1}ℓ :
∑

x∈X

qi(x) ≤ 1

}

, (1)

where ‘conv’ denotes the convex hull operator. The consumption set is a polytope whose
extreme points are in one-to-one correspondence with bundles; an extreme point qi is
a binary vector corresponding to the unique x ∈ X for which qi(x) = 1, or the empty
bundle if qi is the origin. Fractional vectors represent bundles with fractional quanti-
ties of items. The agents’ consumption sets are identical, but this is not important for
our results. We use H = H1 × · · · ×Hn to denote the agents’ joint consumption set.

An allocation is represented by a vector q = (q1, . . . , qn) ∈ R
nℓ, where the subvector

qi ∈ R
ℓ encodes the bundle that agent i receives. An allocation is feasible if no more

than one unit of each item is supplied to the agents in total. More formally, the set of
feasible allocations is captured by the seller’s production set

F = conv







q ∈ {0, 1}nℓ :
∑

i∈[n]

∑

x∈X, x∋j

qi(x) ≤ 1 (j ∈ [m]),
∑

x∈X

qi(x) ≤ 1 (i ∈ [n])







. (2)

The production set is a polytope whose extreme points are in one-to-one correspon-
dence with lists of bundles (x1, . . . , xn) such that each item appears in at most one
bundle and each agent receives no more than one bundle. They therefore correspond
to feasible allocations of indivisible items. Note that, by definition, if q ∈ F then qi ∈ Hi

for each agent i, so that F ⊂ H .
Each agent i has a valuation vi ∈ R

ℓ which records the agent’s willingness to pay for
each bundle in a common unit of currency. We assume that each agent’s value for the
empty bundle is 0. A valuation profile is a vector of agent valuations v = (v1, . . . , vn) ∈
R

nℓ. Given a valuation profile v, an allocation q̄ is efficient (in the economic sense) if it
maximizes the total value to the agents among all feasible allocations:

q̄ ∈ argmax
q∈F

v⊤q. (3)

Like valuation profiles, prices are described by a vector p ∈ R
nℓ where pi(x) is the

charge for bundle x to agent i. As defined the prices may be personalized, in the sense
that two different agents may see different prices for identical bundles. We assume
that agents have quasi-linear utility: given prices p, agent i’s utility for bundle x ∈ X
is vi(x) − pi(x). Equivalenty, if qi ∈ Hi is the vector corresponding to bundle x, the
utility is v⊤i qi − p⊤i qi. If the auction charges prices p and allocates according to q ∈ F
then the revenue totals p⊤q. The seller has zero value for the items and only derives
utility from the revenue collected.

Price representation. We have so far introduced prices as vectors from R
nℓ which

explicitly list the price of each bundle to each agent. The purpose of this paper is to



analyze the impact of different pricing schemes (e.g., linear or bundle) on the opera-
tion of the auction, especially its rate of convergence. To impose further structure on
prices and restrict them to a lower-dimensional subspace, we use an indirect approach
that first defines an alternative vector space representation for the bundles. This ap-
proach, explored in depth in [Lahaie 2009, 2011], draws very much from the class of
kernel methods used in machine learning. In the context of prediction and estimation,
the intuition behind kernel methods is that they map the data to a (potentially high
dimensional) space where the function to be learned is linear in the space. The same
idea applies in the context of our auction design, where our goal is to produce a pricing
function that is linear under a particular representation of the bundles.

We introduce a representation matrix G ∈ R
nℓ×d, where m ≤ d ≤ nℓ. The row Gi(x)

provides a d-dimensional encoding of bundle x ∈ X , which can also depend on the agent
i in general. The interpretation of the encodings is that they define the “features” of
the bundles that are priced in the auction. We take prices to be linear functions of
bundle encodings, so that prices can be represented in R

d. That is, the price vector
p ∈ R

nℓ can be written as p = Gw for some price parameter vector w ∈ R
d; we will

sometimes drop p and refer to the prices as Gw. As a convention, the empty bundle is
always encoded as the origin in R

d, which means that its price is normalized to 0. To
make these ideas more concrete, let us consider several examples of representations,
each leading to different pricing schemes.

Linear. There is a feature for each item (d = m). A bundle is encoded using its
standard 0-1 indicator vector representation. For example, with items a, b, c, the
representations of bundles {a, b} and {a, b, c} are respectively

a b c
{a, b} 7→ [ 1 1 0 ],
{a, b, c} 7→ [ 1 1 1 ].

This leads to simple item pricing: the price of a bundle is the sum of the prices
associated with each of its items. In the sequel, the notation Gp(1) will refer to linear
pricing matrices (polynomials of degree 1).

Bundle. At the other extreme, we can have a feature for each relevant non-empty
bundle (d = ℓ). A non-empty bundle is encoded by the unit vector which has a 1
in the component corresponding to the bundle. For example, with items a, b, c, and
assuming X consists of all bundles, the representations of bundles {a, b} and {a, b, c}
are respectively

a b c ab ac bc abc
{a, b} 7→ [ 0 0 0 1 0 0 0 ],
{a, b, c} 7→ [ 0 0 0 0 0 0 1 ].

Here each bundle is explicitly priced and there may be no relationship whatsoever
between the prices of different bundles. In the sequel, Gid will refer to bundle pricing
matrices.

Polynomial. As a generalization of the linear representation, we can have a feature
for subsets of items up to size r, for 1 ≤ r ≤ m. A component is 1 if the bundle
contains all the items in the associated subset, and 0 otherwise. For example, with
items a, b, c, the representations of bundles {a, b} and {a, b, c} using r = 2 are respec-
tively

a b c ab ac bc
{a, b} 7→ [ 1 1 0 1 0 0 ],
{a, b, c} 7→ [ 1 1 1 1 1 1 ].



Prices therefore take the form of multi-variate polynomials3 of degree r. Note that
price components can be positive or negative, so polynomial prices of degree r ≥ 2
may be super- or sub-additive on various bundles. In the sequel, Gp(r) will denote
polynomial pricing matrices of degree r.

Note that while the bundle representation is fully expressive, it is conceptually dis-
tinct from the linear and polynomial representations and should not be construed as a
generalization of either. We are not aware of any iterative auctions in the literature us-
ing price structures other than the ones listed above. However, the formalism can also
accommodate intricate pricing schemes such as attribute pricing (e.g., square footage
for real estate, or population density for wireless spectrum). The encodings cannot be
entirely arbitrary: they must retain enough information about the items contained in
the bundles to allow one to verify, given a vector of n bundle encodings, whether it
forms a feasible allocation. The above encodings all have this property—see [Lahaie
2011] for a more detailed discussion.

The representations given above (linear, bundle, and polynomial) are all anonymous,
in the sense that Gi(x) = Gj(x) for all i, j ∈ [n], leading to anonymous prices. To
personalize prices, we can include features that depend on the identity of the agent. For
instance, one can introduce an agent intercept to any of the encodings above, leading
to a feature space of dimension d+n. To obtain entirely separate prices for each agent,
one can take n copies of the original feature space and map a bundle into the agent’s
copy; the resulting dimension is nd. Our results can be adapted to such schemes by
extending the dimension of the feature space accordingly.

3. ALLOCATION AND PRICING.

It has been understood since the literature on stability of equilibria that
price adjustment processes minimize a convex potential involving indirect utili-
ties [Arrow and Hahn 1971; Varian 1981]. In the context of combinatorial auctions,
this potential arises as the dual of the efficient allocation problem [Bikhchandani et al.
2002; Bikhchandani and Ostroy 2002]. We give a full development of this duality for
our setup. This will serve to clarify why iterative auctions can be analyzed as sub-
gradient methods, and also provides bounds on price magnitudes, important for later
analysis.

Consider the agents’ aggregate indirect utility function and demand correspondence,
defined respectively as

u(p; v) = max
q∈H

v⊤q − p⊤q, (4)

U(p; v) = argmax
q∈H

v⊤q − p⊤q, (5)

for personalized bundle prices p ∈ R
nℓ. We will often suppress parameter v when

clear from context. As H is a product set, an optimal q in (4–5) decomposes into q =
(q1, . . . , qn) where qi maximizes agent i’s utility v⊤i qi − p⊤i qi individually over Hi. The
indirect utility u therefore aggregates the agents’ maximal utilities over bundles, given
prices p. Similarly, correspondence U maps to vectors of utility-maximizing bundles,
listing one bundle for each agent, which may overlap in general. We also have the

3To see this, note that the price function in this example can be written as the quadratic polynomial
waxa + wbxb + wcxc + wabxaxb + wacxaxc + wbcxbxc, where xa, xb, xc are binary indicator variables for
the items contained in the bundle, and w is the price parameter vector.



seller’s indirect utility function and supply correspondence, defined respectively as

s(p) = max
q∈F

p⊤q, (6)

S(p) = argmax
q∈F

p⊤q. (7)

We say that prices p̄ are market clearing if U(p̄) ∩ S(p̄) 6= ∅, and for any allocation
q̄ ∈ U(p̄)∩S(p̄) we say that prices p̄ support q̄. More explicitly, this means that: 1) q̄ ∈ F ,
so it represents a feasible allocation; 2) the assigned bundles according to q̄ maximize
the agents’ utilities at prices p̄; 3) allocation q̄ maximizes the seller’s revenue at prices
p̄. Since the agents and seller would each willingly select allocation q̄ when faced with
prices p̄, the prices are market clearing in this sense. If there exists prices p̄ supporting
an allocation q̄, then the allocation is efficient, because for any q ∈ F we have

v⊤q̄ = (v⊤q̄ − p̄⊤q̄) + p̄⊤q̄ ≥ (v⊤q − p̄⊤q) + p̄⊤q = v⊤q, (8)

where the inequality holds because q̄ ∈ U(p̄) and q̄ ∈ S(p̄). An iterative auction pro-
ceeds by updating a provisional allocation and prices given agent bids in each round,
until the prices support the allocation. According to derivation (8), this provides a cer-
tificate that an efficient allocation has been reached.

The convex dual to the problem of computing an efficient allocation is the prob-
lem of finding market clearing prices. As the minimization problem is on the price
parameter, we will refer to the price optimization as the primal objective and the al-
location optimization as the dual objective.4 In what follows, ‘ker’ refers to the kernel
(i.e., nullspace) of a matrix. Also, given any two subsets of Euclidean space A,B, the
sum A+B is defined in the natural way: A+B = {x+ y : x ∈ A, y ∈ B}.

THEOREM 3.1. Consider the optimization problems

inf
{

u(Gw) + s(Gw) : w ∈ R
d
}

, (9)

sup
{

v⊤q : q ∈ H ∩ (ker(G⊤) + F )
}

. (10)

Then the primal value in (9) equals the dual value in (10), and both primal and dual
optima are attained. Moreover, allocation w̄ and price parameter q̄ are optimal primal
and dual solutions if

q̄ ∈ U(Gw̄) ∩
(

ker(G⊤) + S(Gw̄)
)

. (11)

To understand the dual formulation (10), which captures the allocation problem, note
first that the objective is the efficiency v⊤q of allocation q. The first part of the con-
straint is simply q ∈ H , meaning agents are allocated bundles from their consumption
sets. This is combined with the constraint q ∈ ker(G⊤)+F . If the latter set were simply
F , then the feasible set would reduce to H ∩ F = F , which is simply the convex hull of
set of feasible allocations. Recall that the role of G is to constrain the possibilities for
the pricing space. Dually, restricting the dimension of the rows in G expands ker(G⊤),
and ker(G⊤)+F becomes a relaxation of F . This discussion leads to the following result.

COROLLARY 3.2. If G has full row rank, then there is an integer optimal solution q̄
to the dual objective (10), and for any primal optimal solution w̄, prices p̄ = Gw̄ support
allocation q̄.

4This is consistent with the usual convention in convex analysis, but unfortunately conflicts with the con-
vention in the auctions literature, where the primal is typically the allocation problem and the dual is the
pricing problem. We adopt the former convention because it becomes much simpler to directly apply convex
analysis results in the proofs.



For instance, G has full row rank if it encodes personalized bundle prices, or person-
alized polynomial prices of degree m, which shows that such prices can support ef-
ficient integer allocations (i.e., allocations of indivisible items). The former case was
first proved by Bikhchandani and Ostroy [2002]. If the set of relevant bundles X is re-
stricted, lower-dimensional prices may suffice. The condition given in Corollary 3.2 is
sufficient but not necessary, so in practice lower-dimensional prices may still be able to
clear the market even when X is large. In order to interpret the results in the sequel,
one can assume that G is sufficiently expressive to ensure that (10) has an integer op-
timal solution; if this is not the case, our results still meaningfully bound convergence
rates under divisible items.

Let us now consider the primal more closely. We write D : Rd → R to represent
the primal objective function over price parameters w, parametrized by the valuation
vector v:

D(w; v) = u(Gw; v) + s(Gw).

Recall that the prices are p = Gw. The first term is aggregate indirect utility, namely
the maximum surplus that agents can achieve by each selecting their preferred bun-
dle at prices p (again, the bundles may overlap). Prices should be set high to minimize
this term. The second term is the seller’s indirect utility, namely the maximum rev-
enue possible over all feasible allocations, under prices p. Prices should be set low to
minimize this term. Thus the two terms lead prices to strike a balance between de-
mand and supply. Looking ahead to the iterative auction of Section 4, the auction can
be construed as a subgradient method to optimize the primal objective (9), obtaining
subgradient information from the agents’ bids, which lie in the dual space associated
with objective (10).

A difficulty with formulations (9) and (10) is that the optimal prices in the primal
may not be unique, as both primal and dual are linear programs. As a result it is
not possible analyze convergence of the actual prices, only convergence in objective
value. To obtain a strictly convex objective and unique solution, we can introduce a
regularization term ‖w‖22/2 with weight λ > 0 into the primal objective. The duality
result generalizes as follows.

THEOREM 3.3. Given weight λ > 0, consider the optimization problems

inf

{

u(Gw) + s(Gw) +
λ

2
‖w‖22 : w ∈ R

d

}

, (12)

sup

{

v⊤q − 1

2λ
‖G⊤(q − q′)‖22 : q ∈ H, q′ ∈ F

}

. (13)

Then the primal value in (12) equals the dual value in (13), and both the primal and
dual optima are attained. Furthermore, the primal optimum w̄ is unique. Price param-
eter w̄ and allocations (q̄, q̄′) are optimal primal and dual solutions if

q̄ ∈ U(Gw̄), q̄′ ∈ S(Gw̄), G⊤(q̄ − q̄′) = λw̄. (14)

The original duality relation derived in Theorem 3.1 can be viewed as the limiting case
of Theorem 3.3 when we set λ = 0. To make this more transparent, first observe that
the constraint in the dual objective (10) can be re-written as

G⊤q = G⊤q′ (q ∈ H, q′ ∈ F ). (15)

To relax the constraint in this form, we can replace it with a penalty term in the
objective that quantifies the discrepancy between demand and supply according to the



squared norm, weighed according to λ > 0:

1

2λ
‖G⊤(q − q′)‖22.

This leads to the relaxed dual formulation in (13). We will write Dλ to refer to the
objective (12) with regularization term weighed by λ > 0. As λ tends to 0, the original
constraint is satisfied exactly (supply matches demand), so by convention D0 ≡ D .
In the regularized primal formulation (12), λ > 0 shrinks the price parameter vector
towards 0. The proof of Theorems 3.1 and 3.3 appears in Appendix A. The case of λ = 0
follows from linear programming duality. When λ > 0, general convex duality (Fenchel
duality) is invoked. The duality proof admits other choices for the convex regularizer
besides the squared norm, which could lead to improved bounds on convergence rates.

The following result bounds the magnitude of the optimal price parameter, which is
an essential element of our convergence rate analyses.

PROPOSITION 3.4. Consider the optimization problems in (9) and (12), and set V =
‖v‖∞.

— If G = Gid, then every optimal w̄ satisfies ‖w̄‖∞ ≤ (n+ 1)V and ‖w̄‖2 ≤ (n+ 1)V
√
ℓ.

— If G = Gp(r) for some integer r ≥ 1, then every optimal w̄ satisfies ‖w̄‖∞ ≤ (n+ 1)V 2r

and ‖w̄‖2 ≤ (n+ 1)V 2rmr/2.

The V bound here amounts to a choice of units. It could be normalized to V = 1, but we
choose to keep it explicit to clarify how it affects the choice of step-size in the auction.
The proposition establishes that the optimal price parameter (even when non-unique)
lies in a bounded set. Importantly, the size of this set depends on the number of degrees
of freedom in w ∈ R

d, meaning the dimension d. This implies that the price parameters
w can be constrained during the auction to lie in a ball of sufficiently bounded radius
without affecting the optimum. We will see that the radius of this ball affects the
convergence rate of the auction; simply put, increasing the representation power of G
increases the radius of the ball.

As a sketch, the proof first proceeds by bounding ‖p‖∞, where recall that p = Gw
lists the explicit bundle prices. The reasoning is that as the components of p become
large, the second term of D grows, and as the components of p become small, the first
term grows. Taken together, it follows that the optimum must be bounded. We then
obtain bounds on ‖w‖∞ given the bound on ‖p‖∞. For G = Gid this is trivial because
the latter is a stack of identity matrices. The case of G = Gp(r) requires a combinatorial

argument. Finally, a bound on ‖w‖∞ immediately yields a bound on ‖w‖2.

4. ITERATIVE AUCTION.

We now introduce the iterative auction that will be the subject of our analysis. The
auction is described in Figure 1 and follows a high-level outline common to many prac-
tical auction designs: 1) prices are quoted; 2) agents place bids on bundles, meaning
offers to purchase bundles at the quoted prices; 3) the seller computes a provisional
allocation based on bids and prices; 4) prices are updated when there is discrepancy
between the bids and allocation. Note that the agents do not make price offers, so this
is a clock auction.

The auction is fully specified given the matrix G, the regularization parameter λ ≥ 0,
the step sizes ηt, and the projection radius R. Since different choices for the matrix G
correspond to different pricing schemes, Figure 1 may more generally be viewed as a
class of auctions. The price update in step 4 has a natural economic interpretation. Bid
bt represents demand, while allocation qt represents supply, so qt − bt corresponds to
excess supply in bundle space. By applying G⊤, this maps to excess supply in feature



Set initial price parameters w1 = 0.
For round t = 1, 2, . . . , do:

(1) Prices pt = Gwt ∈ R
nℓ are quoted.

(2) Bidders collectively communicate bundles bt ∈ H ∩ {0, 1}nℓ as a bid.
(3) The seller computes a provisional allocation qt ∈ F ∩ {0, 1}nℓ satisfying

qt ∈ S(pt).

(4) Prices are updated by setting

gt = G⊤(qt − bt) + λwt,

wt+1 = ΠR(w
t − ηtgt),

where ηt is a step size and ΠR denotes orthogonal projection onto the ℓ2 ball of
radius R in R

d.

Fig. 1. Subgradient auction.

space, where the price parameter vector lies. The result is then subtracted away from
the current price parameter wt, which is therefore updated in the direction of excess
demand. With regularization (λ > 0), the update is pulled back towards the current
iterate wt, leading to more conservative price parameter updates.

The projection in step 4 is essentially a rescaling to ensure that price coordinates are
well-behaved, and we confirm below that the radius can be chosen large enough (rel-
ative to the number of agents and items) to leave the final clearing prices unaffected.
Projection may seem undesirable, since small choices of R can rule out the (uncon-
strained) optima guaranteed to exist for the pricing problem in Theorems 3.1 and 3.3.
However, as detailed in Proposition 3.4, it is possible to choose R purely from knowl-
edge of the matrix G and units V so that the ball of radius R includes unconstrained
optima. This point will rearise in Sections 5 and 6, where the iterative auction is shown
to converge to these unconstrained optima under an appropriately chosen R.

Note that in step 2 of the auction, agents are required to provide an integer bid vec-
tor, representing a bundle with whole items. This is where item indivisibility comes
into play. Under our model, requiring integer bid vectors is unrestrictive, because an
agent’s best-response problem is to optimize a linear function (valuation minus price)
over the consumption set (1), whose extreme points are integer. Therefore, there is al-
ways an integer best-response—in plainer terms, an agent can always maximize its
utility by bidding on a bundle with whole items. Similarly, the seller is required to
compute an integer allocation in step 3. As prices are a linear function and the produc-
tion set (2) has integer extreme points, this does not prevent the seller from computing
a revenue-maximizing allocation.

It is worth noting that in our auction neither the price parameters (wt)t≥1 nor the
bundle prices (pt)t≥1, where pt = Gwt, are constrained to move monotonically (ascend-
ing or descending pointwise). While most iterative auctions in the literature are mono-
tone, there is precedent for non-monotonic price paths, for instance Ausubel’s auction
for multiple distinct items [Ausubel 2006]. On one hand, non-monotone price paths
allow for highly adversarial bidding behavior that can even prevent the auction from
converging; we return to this issue in Section 6 and show how it is addressed by activ-
ity rules. On the other hand, non-monotone auctions also have substantial advantages



when it comes to convergence rates, which makes them more natural to study in the
context of this paper.5

We next confirm that there is a direct relationship between the optimization prob-
lems of Section 3 and the iterative auction in Figure 1. First, observe that the auction
makes no mention of agent valuations—valuations affect agent bidding behavior, but
cannot be part of the auction specification. We say that a bid vector b ∈ H and valuation
vector v ∈ R

nℓ are consistent with each other at prices p if b ∈ U(p; v). In words, this
means that the bid vector is a best-response to prices assuming the given valuations
(i.e., the bid maximizes the agents’ aggregate utility).

PROPOSITION 4.1. Let representation matrix G and regularization parameter λ ≥ 0
be given. If bid vector bt ∈ H is consistent with valuation vt at prices pt = Gwt, and
allocation qt ∈ F maximizes the seller’s revenue at prices pt, then

gt = G⊤(qt − bt) + λwt (16)

is a subgradient of Dλ( · ; vt) at wt.

The full proof is given in the appendix. This proposition connects the optimization
problem and the iterative auction; specifically, since the subgradient expression in (16)
matches the update step in the auction, namely step 4 in Figure 1, the auction is
performing subgradient descent on Dλ. Under this viewpoint we can analyze auction
convergence using well-developed techniques.

Implementation. Athough our focus is on the theoretical convergence properties of
the subgradient auction in Figure 1, let us say a few words about how it might be
implemented in practice. This is a salient question given that the auction, as speci-
fied, manipulates high-dimensional vectors and computes allocations over a complex
polytope.

Note first that although bids bt and allocations qt have dimension nℓ, and ℓ may be
exponential in m, the restriction that they should be integer in steps 2 and 3 means
that they have at most n non-zero entries and are succinct to communicate. The spar-
sity of bids and allocations also means that the price update in step 4 can be com-
puted efficiently. As mentioned previously, the projection in the price update is simply
a rescaling of the price parameters.

As the representation matrix G is commonly known, communicating prices is a mat-
ter of communicating wt ∈ R

d, which can be done directly for linear prices or polyno-
mials of low degree. For larger d, the following result gives a dual representation of wt

with storage on the order of nt coefficients. In the statistical learning literature, such
results are known as representer theorems [Steinwart and Christmann 2008].

PROPOSITION 4.2. Let matrix G and regularization parameter λ ≥ 0 be given. For
all t, wt ∈ span(G⊤). Indeed, setting γ1 = 1 and γt+1 = R/max{R, ‖wt − ηtgt‖2}, wt has
the form

wt = G⊤
t−1
∑

s=1

γtηs(bs − qs)

t−1
∏

j=s+1

γj+1(1− ληj),

meaning wt may be reconstructed from (ηs, bs, qs, γs)t−1
s=1.

5To illustrate, consider the task of guessing a secret number: One player chooses a number y within the
interval [0, 1], and another player must guess this number to within accuracy ǫ > 0. The game protocol is
that the guesser specifies an x ∈ [0, 1], and the chooser responds with 1[x ≥ r]. With monotonic guesses,
it is necessary to make Ω(1/ǫ) queries; on the other hand, non-monotonic questions allow binary search,
meaning O(ln(1/ǫ)) queries.



The proof of this statement can be found in the appendix. The claim follows by an in-
ductive argument, since by the price update rule wt is a linear combination of elements
from span(G⊤).

The remaining item is to compute a revenue-maximizing allocation in step 3. The
efficient allocation problem in (3) is known to be NP-hard by reduction from weighted
set packing [Nisan 2000], and comparing (6) and (3), we see that the allocation step
is equivalently intractable. In practice, this step is implemented using integer pro-
gramming solvers, and there is a large body of work on solvers for combinatorial auc-
tions [e.g. Cramton et al. 2006, Part III]. Using an efficient allocation oracle in the
specification allows us to focus on the number of auction rounds, which is the relevant
metric for iterative combinatorial auctions.

There are several parameters to tune to run the auction: the regularization weight
λ, the projection radius R, and the step size schedule {ηt}. Our convergence rate
analyses—see Theorems 5.1 and 6.1—will provide guidance on how to set each of these
parameters. Essentially, all of them can be set in terms of V , the maximum possible
agent value for a bundle.

The convergence results we present in the next sections concern price convergence
(in the primal), not allocation convergence (in the dual), and even for prices conver-
gence holds only in the limit rather than in a finite number of steps. For auctions based
on the subgradient method, it is not possible to establish finite-time convergence with-
out further structural assumptions [de Vries et al. 2007]. To increase the chances of
matching supply with demand at each round, practical auction designs break ties in
step 3 to satisfy as many agents as possible, and also allow agents to take an ǫ-discount
on bundles in the provisional allocation [e.g. Parkes 1999]. For relatively small ǫ, this
does not impact our bounds on convergence rate.

5. STOCHASTIC BIDDING.

In this section and the next, we provide the central results of the paper which bound
the convergence rate of prices in the subgradient combinatorial auction of Figure 1. We
first consider stochastic bidding, meaning that agents behave according to a random
utility model. In the next section we turn our attention to adversarial bidding in which
agents can place arbitrary bids, constrained across rounds only by activity rules.

Our stochastic model aims to capture the fact that bids can incorporate an element
of randomness at each round due to fluctuating valuations, bounded rationality, be-
havioral noise, etc. However, rather than directly assume that bids are stochastic, we
instead assume that valuations are stochastic at each round and that bids are chosen
as best-responses to prices according to the realized valuations. This is the bidding
behavior that arises from a random utility model, familiar from discrete choice mod-
eling [McFadden et al. 1973]. Formally, at each round the agents draw their valuation
profile vt from a fixed distribution, denoted ν. That is, one should view each vt, for
t = 1, 2, . . . , as an i.i.d. draw from ν. Once vt is drawn and the prices pt = Gwt are
quoted by the auction, the agents place a collective bid vector bt consistent with vt,
where ties are broken arbitrarily in case the best-response is not unique. In discrete
choice models, the random valuation is usually decomposed as vt = ṽ + ǫt, where ṽ
is the mean valuation and ǫt is an error term capturing deviations from the mean at
round t. The most common error models for ǫt are the Gumbel distribution (known as
the logit model) and the Gaussian distribution (known as the probit model).

Under stochastic bidding, bid vector bt is consistent with random valuation vt under
prices pt at each round, which means that the auction is performing subgradient de-
scent as per Proposition 4.1. Note that the associated distribution ν may be arbitrary,
and in particular ν does not need to be a product distribution across the n bidders.
Our convergence results are robust to arbitrary correlations between the bidders valu-



ations. However, one limitation of the model is that the i.i.d. nature of the distribution
cannot incorporate learning from past bids and prices (e.g., as one would expect if there
were a common value component to the agents’ valuations).

THEOREM 5.1. Let ν be a distribution over value vectors v ∈ R
nℓ with V =

Eν [‖v‖∞] < ∞; by these conditions, there exists an optimum w̄ to the problem
min{Eν[Dλ(w; v)] : w ∈ R

d}. Moreover, with probability at least 1 − δ over an i.i.d.
draw of valuations (vt)Tt=1, running an iterative auction over T rounds with step size

ηt = V/
√
t, regularization λ ≤ 1/V , and any projection radius R ≥ ‖w̄‖2 gives the bound

Eν [Dλ(ŵ
T ; v)]−Eν [Dλ(w̄; v)] ≤

T
∑

t=1

η̂t
(

Eν [Dλ(w
t; v)]−Eν [Dλ(w̄; v)]

)

≤ O
(

κ2 lnT
√

ln(1/δ)V√
T

)

where η̂t = ηt/
∑T

s=1 η
s and ŵT =

∑T
t=1 η̂

twt is the averaged iterate. The quantity κ
depends on representation matrix G and projection radius R, and may be bounded as
follows.

— When G = Gid, it suffices to choose R = (n+ 1)V
√
ℓ, whereby

κ ≤ √
n+

√
m+ 2(n+ 1)

√
ℓ.

— When G = Gp(r), it suffices to choose R = (n+ 1)Vmr/22r, whereby

κ ≤ (1 +
√
n)mr + 2(n+ 1)mr/22r.

There are several terms in the bound of Theorem 5.1, but the leading term κ2 roughly
reflects the number of degrees of freedom (i.e., the dimension d of the price parameter
w), and we see that increasing polynomial degree or using bundle pricing weakens
guarantees on convergence time. The quantity V essentially captures the scale of the
bidder valuations. In the simplest case where ν has compact support, V corresponds to
the largest possible value for a bundle. Lemma B.7 in the appendix provides bounds on
V for the logit and probit models, as well as any error distribution with subgaussian
tails; all bounds have the form ‖v̄‖∞ + O(σmax ln(nℓ)), where v̄ is the mean valuation
and σmax is the maximum over the valuation’s coordinate-wise standard deviations.

It is worth stressing how the bound in Theorem 5.1 (as well as the upcoming bound
in Theorem 6.1) departs from standard statistical treatments. In statistical learning
theory, it is standard to choose either the radius R, or the regularization weight λ > 0,
so as to provide faster or slower convergence. The same applies to the non-sequential
(batch) setting, where a typical bound for kernel classifiers depends purely on λ > 0
[Boucheron et al. 2005, Corollary 4.3]. Such an approach is not possible here because
R must be chosen so as to leave the set of optimal solutions intact—otherwise, the op-
timal solution would lose its meaning as clearing prices. The main challenge in prov-
ing Theorem 5.1 is to show how this can be achieved with bounded choices of R.

Theorem 5.1 only controls convergence of the objective function Dλ, not the prices
themselves. If we want to claim that the individual bundle prices during the auction
are ‘informative’ to the bidders, then the coordinates of pt = Gwt should also be stable.
To this end, we provide the following result.

COROLLARY 5.2. Consider the setting of Theorem 5.1 but with λ ∈ (0, 1/V ], and let
w ∈ R

d be any vector satisfying Eν [Dλ(w; v)] ≤ Eν [Dλ(w̄; v)] + ǫ for some ǫ ≥ 0. Then
‖w − w̄‖22 ≤ 2ǫ/λ. In particular, after T rounds, with probability at least 1 − δ prices



p̂T = GŵT and p̄ = Gw̄ satisfy

‖p̂T − p̄‖∞ ≤ O





κ‖G‖2,∞
λ

√

ln(T )
√

ln(1/δ)√
T



 ,

where κ may be bounded as in Theorem 5.1, and ‖G‖2,∞ = max{‖Gw′‖∞ : ‖w′‖2 ≤ 1}
can be bounded as ‖Gid‖2,∞ ≤ 1 and ‖Gp(r)‖2,∞ ≤ mr/2.

In words, this statement converts the convergence in objective value from Theorem 5.1
to convergence in prices themselves, assuming λ > 0. However, Corollary 5.2 has a few
weaknesses: (1) λ > 0 must be chosen small to ensure there is not too much discrep-
ancy between demand and supply, thus the bound converges slowly; (2) the economic
meaning of regularizing w̄ is still unclear—it appears to favor a bidder-optimal choice
of prices, but we have no formal statements to this effect. Note that the choice λ = 1/V
causes the right hand side to scale linearly with V , matching Theorem 5.1 and also the
interpretation of V as units or scale.

Bias-Variance. The results of this section can be interpreted in terms of a bias-
variance trade-off. The infimal value of Eν [Dλ( · ; v)] depends on the representation
matrix G, and in this way represents the ‘bias’ of the auction. Using a more expres-
sive class of prices reduces this bias, and the lowest bias is attained when the prices
can support an integer optimal solution. On the other hand, the actual value of the
bounds, which gives the rate of convergence of the auction, is the ‘variance’ term. In-
creasing price expressiveness weakens the bound, and therefore simpler pricing ma-
trices (e.g., polynomial matrices of low degree) should exhibit faster convergence. One
way to moderate the trade-off is to use the simplest class of prices available (in terms
of dimensionality) that clears the market, although this can be hard to know a priori.

6. ARBITRARY BIDDING.

In this section we turn to a model where agent bids can be essentially arbitrary, and
even adversarial across rounds. While the model is behaviorally unreasonable without
further constraints, it is still possible to provide a certain convergence guarantee on
the objective value. On the other hand, it is not possible to obtain price convergence:
the optimal price vectors may drift and oscillate, in contrast with the conclusions we
were able to draw in Corollary 5.2. The model therefore motivates the use of activity
rules to constrain agent bids across rounds, and this section shows how a well-designed
activity rule can result in meaningful convergence guarantees for both the objective
and prices.

The arbitrary bidding model is as follows. In round t, upon seeing prices pt = Gwt,
bidders collectively release an integer bid vector bt ∈ H ∩ {0, 1}nℓ as specified in step 2
of the auction. In contrast with the stochastic model of the previous section, where bt

must be a best-response with respect to the random valuation vector vt according to (5),
bt need only be consistent with some valuation vector vt. Now, without any constraints
on the space of valuations, one can always find a valuation vector with which a given
bid vector is consistent, whatever the prices. The first result of this section merely
requires there to exist choices of (vt)t≥1 which satisfy ‖vt‖∞ ≤ V for some scalar V .
This is a mild constraint which effectively means that bti(x) must be zero whenever
pti(x) exceeds V .

Our initial result under arbitrary bidding is the following. Superficially, the state-
ment appears similar to the convergence statement for the stochastic model given
in Theorem 5.1. The essential difference is that the left-hand side is no longer
competing with a fixed target infw Eν [Dλ(w; v)]. Instead, the comparison is against



infw
∑

t∈[T ] Dλ(w; v
t), and each term in the summation can change drastically at each

round t. This objective does have an economic interpretation if one views our procedure
as a sequential posted price mechanism rather than an iterative auction. A new set of
n bidders arrives at each round, and a new set of m items is available for sale. The
seller’s problem is to try to post prices that clear the market at each round t, before
bidder valuations vt are revealed, where clearing quality is captured by the objective
Dλ( · ; vt). The result bounds the regret of the procedure against the best fixed prices in
hindsight, which is a standard objective for online algorithms [Hazan 2012].

THEOREM 6.1. Consider an iterative auction where bid vectors (bt)Tt=1, with some
consistent sequence of value vectors (vt)Tt=1, are announced in alternation with price
parameters (wt)Tt=1 provided by the auction mechanism invoked with step size ηt =
V/

√
t for some V ≥ 0, regularization λ ≤ 1/V , and some projection radius R ≥ 0. Then

there exists a minimizer w̄T to f(w) =
∑T

t=1 η
tDλ(w; v

t), and if V ≥ supt∈[T ] ‖vt‖∞ and

R ≥ ‖w̄T ‖2, then

T
∑

t=1

η̂t
(

Dλ(w
t; vt)− Dλ(w̄

T ; vt)
)

≤ O
(

κ2V lnT√
T

)

,

where η̂t = ηt/
∑T

s=1 η
s. The κ quantity depends on representation matrix G and projec-

tion radius R, and may be bounded as in Theorem 5.1.

The proof is very similar to that of Theorem 5.1. Comparing this bound to Theorem 5.1,
nearly everything is the same, including the general growth of the leading term κ2

in response to choosing Gid or Gp(r). However, as mentioned above, what differs is
the left-hand term: progress is measured against a time-varying target rather than a
time-independent target as in the stochastic model. As the optimal pricing vector w̄t is
a function of time, it need not converge in any way, and we cannot hope for convergence
in prices either. To illustrate this concretely, we have the following result.

PROPOSITION 6.2. Suppose the setting of Theorem 6.1 with n = 2 bidders and
m = 1 item, but with step sizes (ηt)t≥1 being any positive reals satisfying

∑

t≥1 η
t =

∞. Under bundle or polynomial prices (of any degree), there exists a bidding sequence
(bt)t≥1 consistent with a valuation sequence (vt)t≥1 such that every sequence of optimal
price parameters (w̄t)t≥1 fails to converge.

The proof of this fact, given in Appendix A, constructs a concrete bidding sequence
whereby the corresponding optima (w̄t)t≥1 oscillate between two cluster points.

To link the behavior of bidders across rounds and recover price convergence, the
auction can make use of activity rules. In fact, activity rules are used in practice
specifically to disallow certain kinds of adversarial bidding behaviors that are as-
sumed away by simple models of best-response agents (e.g., bid parking and snip-
ing) [Ausubel and Baranov 2014a]. The rule that is most firmly grounded in theory is
the revealed preference activity rule, also called GARP (after the generalized axiom of
revealed preference) [Ausubel and Baranov 2014b]. We consider here the strictest form
of the rule which requires exact adherence to the GARP axiom. A sequence of bid vec-
tors (bt)t≥1, placed in response to prices (pt)t≥1 over rounds, satisfies the GARP activity
rule if for every sequence of distinct rounds t1, t2, . . . , tk′ (not necessarily consecutive
or ordered),

k′

∑

k=1

(btk+1 − btk)⊤ptk ≥ 0, (17)



with the convention tk′+1 = t1. Our analysis can also accommodate more relaxed forms
where bidders are allowed to violate GARP in earlier rounds. The GARP activity rule
can be enforced efficiently in practice using network flow algorithms [Vohra 2004].

A sequence of bid vectors satisfies the GARP activity rule if and only if there is a
fixed valuation vector v consistent with the entire sequence of bids and prices (even
though the bidders may not be explicitly considering such a valuation); for complete-
ness, a proof of this fact is provided as Lemma B.6 in the appendix. Under these cir-
cumstances, Theorem 6.1 can be strengthened to obtain a more meaningful bound.

THEOREM 6.3. Consider the setting of Theorem 6.1, and assume the bid sequence
(bt)t≥1 satisfies the GARP activity rule with respect to prices (pt)t≥1. Then there exists
a single value vector v that is consistent with bt under prices pt, for all rounds t, and
moreover

Dλ(ŵ
T ; v)− Dλ(w̄; v) ≤ O

(

κ2V lnT√
T

)

,

where ŵT =
∑T

t=1 η
twt/

∑T
s=1 η

s is the averaged iterate, w̄ is a minimum for Dλ(· ; v),
and κ may be bounded as in Theorem 6.1. Moreover, if λ ∈ (0, 1/V ], then

‖p̂T − p̄‖∞ ≤ O
(

κ‖G‖2,∞
λ

√

lnT√
T

)

.

where p̂T = GŵT and p̄ = Gw̄, and ‖G‖2,∞ may be bounded as in Corollary 5.2.

In simpler terms, the GARP activity rule ensures that bidding across rounds is con-
sistent with at least one fixed valuation profile, and for any such profile the auction
converges in objective value. With regularization (λ > 0), we also obtain price conver-
gence, in contrast to Proposition 6.2.

7. CONCLUSION.

This paper obtained concrete bounds on the rate of convergence of iterative auctions
that correspond to subgradient methods for the underlying optimization problem over
prices. Our setup can accommodate many different pricing schemes and allows one to
analyze and compare them under a single framework. It also admits bidder behav-
iors beyond straightforward best-response bidding. We considered two generalizations
of straightforward bidding: stochastic bidders and arbitrary bidders, with the latter
constrained by activity rules.

The convergence rates obtained under both models are very similar. In both cases,
using a more expressive pricing scheme weakens convergence guarantees. Bounds are
proportional to the degrees of freedom in the prices, so item price bounds are exponen-
tially better than bundle price bounds. Our analysis quantifies one side of the trade-off
between convergence rate and ability to clear the market, which mirrors the bias-
variance trade-off familiar from statistics. Our results suggest that an iterative com-
binatorial auction should use the simplest class of prices possible that can clear the
market. In this respect, polynomial prices may prove useful in practice.

The stochastic model of bidders allows for errors in their estimates of the values
for various bundles in each round. This translates into stochastic and imperfect best-
response behavior, following standard random utility models. Our convergence results
show that subgradient auctions perform effective price discovery even under bidding
errors, and the results are robust to correlations between the bidders’ valuations. With
regularization, we also obtain convergence in individual bundle prices. Under the ar-
bitrary bidding model, prices can oscillate and fail to converge. This motivates the use



of revealed preference activity rules (GARP), which restore consistency with a fixed
valuation vector. Our analysis draws a connection between the constraints imposed by
the activity rule and convergence of the auction.

There are many ways to extend and build on our analysis. An important avenue for
future work is to derive lower bounds on convergence rates and thereby achieve a sep-
aration between pricing schemes. There are standard tools for producing lower bounds
on subgradient methods [e.g. Agarwal et al. 2009], but they might involve pathologi-
cal constructions lacking economic meaning. Another avenue is to study other pricing
schemes besides polynomial or bundle pricing, which could be relevant in specific do-
mains and worthy of study. Given their prominence in practice, it would also be worth-
while to analyze monotone price auctions (ascending or descending) within the present
framework. Monotone price auctions can be obtained by modifying the projection oper-
ation in the subgradient method.
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Sébastien Bubeck. 2014. Theory of Convex Optimization for Machine Learning. (2014).
arXiv:1405.4980 [math.OC].
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APPENDIX

A. DEFERRED PROOFS.

This appendix provides complete proofs for all results in the paper. Several results
make use of stand-alone auxiliary lemmas given in the next section.

PROOF OF THEOREMS 3.1 AND 3.3. The general existence of an optimum w̄ (for
any λ ≥ 0) follows from Lemma B.3, taking ν as a dirac measure supported on v
and nowhere else. When λ > 0, the uniqueness of w̄ holds because the objective is
strictly convex. Note that F is a polyhedral convex set. The second duality then follows
by applying Lemma B.2 with r(x) = λ‖x‖22/2, which gives r∗(y) = ‖y‖22/(2λ) by direct
computation. The first duality also follows from Lemma B.2, but now with r(x) = 0,
meaning r∗(y) = ι{0}(y) and r∗(G⊤q′) = ιker(G⊤)(q

′), which gives the dual problem as

max
{

v⊤q′ : q′ ∈ H, q ∈ F, q′ − q ∈ ker(G⊤)
}

,

the result following by collapsing q into the constraint on q′. The invocation of
Lemma B.2 also grants the desired optimality conditions; in the case of Theorem 3.3,
this directly gives the result after translating r and r∗ as above, whereas with Theo-
rem 3.1, the provided optimality conditions now give

q̄′ − q̄ ∈ ker(G⊤), q̄′ ∈ U(Gw̄; v), q̄ ∈ S(Gw̄),

where the first can be written q̄′ ∈ {q̄} + ker(G⊤), thus once again q̄ and the condition
q̄ ∈ S(Gw̄) can be collapsed in by writing q̄′ ∈ S(Gw̄) + ker(G⊤) as desired.

PROOF OF COROLLARY 3.2. If G is full rank, then ker(G⊤) = {0}, and thus the
constraint in the dual objective (10) collapses to

q ∈ H ∩ (ker(G⊤) + F ) = H ∩ F = F.

Recalling (2), F is a polytope with integer extreme points corresponding to allocations
of whole items. Thus the dual linear program has an integer optimal solution. The
optimality conditions (11) collapse to q̄ ∈ U(p̄)∩ S(p̄) where p̄ = Gw̄, which shows that
the dual optimal solution leads to supporting prices.

PROOF OF PROPOSITION 3.4. Let v be given as specified, and let ν be a dirac mea-
sure supported on v and nowhere else. The general existence of an optimum w̄ (for any
λ ≥ 0) follows from Lemma B.3. When λ > 0, uniqueness of w̄ is a consequence of strict
convexity of the objective. The bounds on w̄ under various choices of G are provided by
Lemma B.4, choosing ν as before.

PROOF OF PROPOSITION 4.1. The first statement is a consequence of standard
subgradient rules [Hiriart-Urruty and Lemaréchal 2001, Theorem D.2.2.1, Theorem
D.4.1.1, Theorem D.4.2.2], and the definition of subgradient descent is also standard
[Bubeck 2014]. The second statement is from Lemma B.4.



PROOF OF PROPOSITION 4.2. The expression for wt holds in the case w1 = 0, and
by induction and the definition of wt+1 in the mechanism,

wt+1 = γt+1
(

wt − ηtgt
)

= γt+1(1− ληt)



G⊤
t−1
∑

s=1

rtηs(bs − qs)
t−1
∏

j=s+1

γj+1(1− ληj)



+ γt+1ηtG⊤(bt − qt)

= G⊤
t
∑

s=1

γt+1ηs(bs − qs)

t
∏

j=s+1

γj+1(1 − ληj)

as desired.

PROOF OF THEOREM 5.1. First note that an optimal w̄ exists by Lemma B.3. Let
gt be defined as in (16), and let δf t be any subgradient of Dλ(·; vt) at wt. Define the
quantities

L = max
t∈[T ]

{

max{‖gt‖2, ‖δf t‖2}
}

and B = max

{

‖w̄‖2,max
t∈[T ]

‖wt‖2
}

.

For convenience, define f(w) = Eν [Dλ(w, v)]. For every t ∈ [T ], by Cauchy-Schwarz and
the triangle inequality,

(δf t − gt)⊤(wt − w̄) ≤ ‖δf t − gt‖2‖wt − w̄‖2 ≤ 4LB.

Consequently, since Eν [δf
t−gt] = 0, Azuma-Hoeffding grants, with probability at least

1− δ,

T
∑

t=1

η̂t(δf t − gt)⊤(wt − w̄) ≤ 4LB

√

√

√

√2 ln(1/δ)

T
∑

t=1

(η̂t)2 ≤ 4LBV
√

2(1 + ln(t)) ln(1/δ).

Plugging this into Lemma B.5 and simplifying the left hand side via convexity gives
the result.

For the bounds on B and L, first note that w̄ exists by Lemma B.3. Now consider the
case G = Gid. By Proposition 4.1,

‖gt‖2 ≤ ‖G⊤(bt − qt)‖2 + λ‖wt‖2 ≤ ‖bt‖2 + ‖qt‖2 + λB ≤ √
n+

√
m+ λB.

Similarly, taking b ∈ U(pt; v) and q ∈ S(pt), where pt = Gwt, to denote subgradient
terms for v drawn from ν [Hiriart-Urruty and Lemaréchal 2001; Rockafellar 1970],

‖δf t‖2 ≤
∥

∥G⊤
Eν(b− q)

∥

∥

2
+ λ‖wt‖2 ≤ √

n+
√
m+ λB.

Lastly, the form of B and bound ‖w̄‖2 ≤ B are provided by Lemma B.4.
Now consider the case G = Gp(r). By Proposition 4.1,

‖gt‖2 ≤ ‖G⊤(bt − qt)‖2 + λ‖wt‖2 ≤ ‖G⊤bt‖2 + ‖G⊤qt‖2 + λB ≤ mr√n+mr + λB.

The derivation of the remaining properties is as for Gid, and the result follows.

PROOF OF COROLLARY 5.2. For convenience, define f(w) = Eν [Dλ(w, v)], and let δf
be a subgradient of f at w. By first order optimality conditions and strong convexity,

ǫ ≥ f(w) − f(w̄) ≥ (w − w̄)⊤δf +
λ

2
‖w − w̄‖22 ≥ λ

2
‖w − w̄‖22,



which gives the first result after rearrangement. Next, the definition of ‖G‖2,∞ gives

‖p̂T − p̄‖∞ = ‖GŵT −Gw̄‖∞ ≤ ‖G‖2,∞‖ŵT − w̄‖2,
which gives the second bound after combining with the preceding bound and invoking
Theorem 5.1 to provide the value of ǫ, and using the condition λ ≤ 1/V , whereby
V ≤ 1/λ. Lastly, to bound ‖G‖2,∞ for Gid and Gp(r), first note that the Cauchy-Schwarz
inequality implies

‖G‖2,∞ = max{‖Gi(x)‖2 : i ∈ [n], x ∈ X};
consequently, in either case, we only need to count the number of 1s in rows of G. For
Gid, this immediately gives ‖G‖2,∞ ≤ 1. For Gp(r), the bundle x̃ which contains all m
items will correspond to a row of 1s; since all rows have 0s and 1s, this bundle attains
the maximum norm (and does not vary with bidder, so we may consider the first bidder,
thus row G1(x̃)), which gives

‖Gp(r)‖2,∞ = ‖G1(x̃)‖2 =

√

√

√

√

r
∑

k=1

(

m

k

)

≤
√
mr.

PROOF OF THEOREM 6.1. An optimal w̄ exists by Lemma B.3, with measure ν cho-
sen to be the discrete measure over (vt)

T
t=1. The rate follows from Lemma B.5 with

f t = Dλ(·, vt) (whereby δf t − gt = 0). The estimates on L and B are as in the proof
of Theorem 5.1.

PROOF OF PROPOSITION 6.2. First note that for m = 1, the price parameter vector
is one-dimensional (recalling our convention that the empty bundle has price of 0) and
coincides for bundle and polynomial prices of all degrees. Thus we write p = w for the
price of the single item.

This proof will construct a sequence of bids, organized into epochs ending at times
t1, t2, . . ., such that for any k ≥ 1 we have ‖w̄tk − w̄tk+1‖2 = |w̄tk − w̄tk+1 | ≥ 1; since
this happens for arbitrarily large choices of k, the sequence of optima is not a Cauchy
sequence (and thus does not converge). The bidding behavior will be defined in terms
of valuations vt at time t, and the bids bt (which will not require more discussion in this
construction) are merely any choice which maintains the consistency of the valuations.

The construction is as follows. In every round, both bidders have the same values,
and moreover assign value 0 to the empty bundle. In even epochs, both assign value 1
to the item, whereas in odd epochs they assign it value 0.

The epoch lengths (tk)k≥0 will be constructed so that the objective functions places
more emphasis one selecting the single item in even epochs, whereas odd epochs will
emphasize selecting no item. To this end, collect all the step sizes ηs from even and odd
epochs into ηse and ηso , meaning

ηse =

s
∑

i=1

ηi1[i in even epoch], ηso =

s
∑

i=1

ηi1[i in odd epoch].

Now define (tk)k≥0 inductively as t0 = 0, and thereafter, given (tj)
k
j=1, define tk+1 to

be an integer sufficiently large so that η
tk+1

e > η
tk+1

o when k + 1 is even and other-

wise η
tk+1

o < η
tk+1

o , where the existence of tk+1 is guaranteed from positivity of ηs and
∑

s≥1 η
s = ∞.



Now fix some epoch k, and set ηe = ηtke and ηo = ηtko for convenience. The objective
function evaluates to

tk
∑

s=1

ηsDλ(w; v
s) = 2ηe max{1− p, 0}+ 2ηo max{−p, 0}+ (ηe + ηo)max{p, 0}

=







2ηe − 2(ηe + ηo)p if p ≤ 0,

(ηe + ηo)p if p ≥ 1,

2ηe + (ηo − ηe)p if p ∈ [0, 1].

As ηe + ηo > 0, we see that in the range p ≤ 0 the minimum is uniquely reached at 0,
and in the range p ≥ 1 the minimum is uniquely reached at 1. Thus we restrict our
attention to the range p ∈ [0, 1]. There, we see that if ηo > ηe, the unique minimum is 0,
while if ηo < ηe, the unique minimum is 1. Thus, at the end of epoch k, we have w̄tk = 0
if k is odd and w̄tk = 1 if k is even. This completes the proof.

PROOF OF THEOREM 6.3. The existence of v is granted by Lemma B.6. Plugging
in the consistent sequence (vt)t≥1 with vt = v into Theorem 6.1 gives the first in-
equality after collapsing the left hand side via Jensen’s inequality as in the proof of
Theorem 5.1. The second inequality is proved analogously to Corollary 5.2.

B. TECHNICAL LEMMAS.

This appendix provides results relating to the optimization problem of pricing studied
throughout. The first result is a helper lemma bounding indirect utilities. The next is
a generic duality result. We prove duality using a general convex regularizer, which
covers the squared norm regularizer used in the paper. The two subsequent results
study the minimizers of the pricing problem. We also provide a standard convergence
bound for online subgradient descent, a proof that the GARP activity rule implies that
bidding is consistent with a fixed valuation vector, and lastly bounds on the quantity
Eν(‖v‖∞) of relevance to the analysis of stochastic bidding.

LEMMA B.1. Both u and s are convex, closed, polyhedral, and nonnegative. More-
over, for any prices p ∈ R

nℓ and any valuations v ∈ R
nℓ,

u(p; v) ≥ −‖v‖∞ − min
i∈[n]
x∈X

pi(x) and s(p) ≥ max
i∈[n]
x∈X

pi(x).

PROOF. Both u and s are convex, closed, and polyhedral by definition [Rockafellar
1970, Chapter 19]. They are nonnegative by their definition, noting that 0 ∈ F and
0 ∈ H . The remaining inequalities follow similarly by definition: letting q1 ∈ H and
q2 ∈ F denote standard basis vectors so that

p⊤q1 = min
i∈[n]
x∈X

pi(x) and p⊤q2 = max
i∈[n]
x∈X

pi(x),

then

u(p; v) = max
q∈H

(v − p)⊤q ≥ v⊤q1 − p⊤q1 ≥ −‖v‖∞ − p⊤q1 and s(p) = max
q∈F

p⊤q ≥ p⊤q2.

LEMMA B.2. Let closed convex bounded below r : Rd → R, matrix G ∈ R
nℓ×d and

vector v ∈ R
nℓ be given. Then

inf
{

u(Gw; v) + s(Gw) + r(w) : z ∈ R
d
}

= max
{

v⊤q′ − r∗(G⊤(q′ − q)) : q′ ∈ H, q ∈ F
}

,



where r∗(y) = supw(y
⊤w − r(w)) is the convex (Fenchel) conjugate of r [Rockafellar

1970, Chapter 12]. Feasible points w̄ and (q̄, q̄′) are optimal for the primal and dual
problems, respectively, if they satisfy the conditions G⊤(q̄′ − q̄) ∈ ∂r(w̄), q̄′ ∈ U(Gw̄; v),
and q̄ ∈ S(Gw̄).

PROOF. For convenience, let ιS denote the indicator function for convex set S, de-
fined as ιS(q) = 0 for q ∈ S and +∞ otherwise. Additionally, we write u(Gw) = u(Gw; v)
since v ∈ R

nℓ is fixed throughout. By Lemma B.1, both u and s are convex, closed, poly-
hedral, and bounded below by 0. Since u(p) = supq∈H(v − p)⊤q, applying standard

conjugacy rules [Rockafellar 1970, Theorem 12.3],

u∗(q) = ιH(−q) + v⊤q.

Similarly, as s(p) = supq∈F p⊤q, we have

s∗(q) = ιF (q).

Combining these pieces, both u∗ and s∗ are polyhedral [Rockafellar 1970, Theorem
19.2, Corollary 19.2.1, Theorem 19.4], and thus

(u+ s)∗(q) = min
{

u∗(q′) + s∗(q − q′) : q′ ∈ R
nℓ
}

(18)

where attainment on the right-hand side holds because the conjugate is proper, which
in turn holds because u and s are bounded below and F is nonempty [Rockafellar 1970,
Theorem 16.4, Corollary 19.3.4].

Since u, r and s are bounded below and finite everywhere, it follows by Fenchel
duality [Borwein and Lewis 2010, Theorem 3.3.5, Exercise 3.3.9.f] that

inf
{

u(Gw) + s(Gw) + r(w) : w ∈ R
d
}

= max
{

−(u+ s)∗(−q)− r∗(G⊤q) : q ∈ R
nℓ
}

,

and moreover that a pair (w̄, q̄) is optimal for the primal and dual problems, respec-
tively, iff G⊤q̄ ∈ ∂r(w̄) and −q̄ ∈ ∂(u+ s)(Gw̄).

To simplify the dual expression, note by (18) and other conjugacy relations above
that

max
{

−(u+ s)∗(−q)− r∗(G⊤q) : q ∈ R
nℓ
}

= max
{

−min
{

u∗(q′) + s∗(−q − q′) : q′ ∈ R
nℓ
}

− r∗(G⊤q) : q ∈ R
nℓ
}

= max
{

−ιH(−q′)− v⊤q′ + ιF (−q − q′)− r∗(G⊤q) : q, q′ ∈ R
nℓ
}

= max
{

−v⊤q′ − r∗(G⊤q) : q ∈ R
nℓ, q′ ∈ −H, q + q′ ∈ −F

}

.

Combining this with the cosmetic changes of variable q′ 7→ −q′ and subsequently q 7→
q′ − q leads to

max
{

v⊤q′ − r∗(G⊤(q′ − q)) : q′ ∈ H, q ∈ F
}

as desired.
It remains to prove the sufficient conditions for optimality. Consequently, suppose

(w̄, (q̄, q̄′)) are given as in the statement, meaning G⊤(q̄′ − q̄) ∈ ∂r(w̄), q̄′ ∈ U(Gw̄),
and q̄ ∈ S(Gw̄). In order to show these are optimal, they will be shown to satisfy
both the optimality conditions above, which provide optimality of (w̄, q̄), and also an
optimality condition on the infimal convolution, which in turn grants optimality of q̄′.
To proceed with this analysis, it is necessary to first reverse the change of variable on
these assumed conditions, meaning first performing q̄′−q̄ 7→ q̄ and then −q̄′ 7→ q̄′, which
means the transformed variables satisfy the conditions G⊤q̄ ∈ ∂r(w̄), q̄′ ∈ −U(Gw̄), and
q̄ + q̄′ ∈ −S(Gw̄).



According to the duality statements above, in order for (w̄, q̄) to be optimal, it suffices
(as above) to show G⊤q̄ ∈ ∂r(w̄) and −q̄ ∈ ∂(u + s)(Gw̄); the first of these holds by
assumption, and to decode the second, note by the convexity of H and F as well as the
fact that u and s are maximizations over linear functions that

∂u(p) = conv
(

{−q ∈ H : (v − p)⊤q = u(p)}
)

= −{q ∈ H : (v − p)⊤q = u(p)} = −U(p),

∂s(p) = conv
(

{q ∈ F : p⊤q = s(p)}
)

= {q ∈ F : p⊤q = s(p)} = S(p),

whereby the rule ∂(u + s) = ∂u + ∂s for finite convex functions and the assumptions
q̄′ ∈ −U(Gw̄) and q̄ + q̄′ ∈ −S(Gw̄) grant

−q̄ ∈ S(Gw̄) + {q̄′} ∈ S(Gw̄)− U(Gw̄) = ∂(u+ s)(Gw̄),

which establishes the second optimality condition.
It remains to be shown that q̄′ is also optimal. For this, applying first order sufficient

conditions to q′ 7→ u∗(q′) + s∗(−q̄ − q′), it suffices to show that

0 ∈ ∂u∗(q̄′) + ∂(q′ 7→ s∗(−q̄ − q′))(q̄′) = ∂u∗(q̄′)− ∂s∗(−q̄ − q̄′),

where the second equality used composition rules for subdifferentials
[Hiriart-Urruty and Lemaréchal 2001, Theorem D.4.2.1]. This in turn completes the
proof, since standard conjugacy rules [Hiriart-Urruty and Lemaréchal 2001, Proposi-
tion E.1.4.3] grant Gw̄ ∈ ∂u∗(q̄′) via q̄′ ∈ ∂u(Gw̄) = −U(Gw̄) and Gw̄ ∈ ∂s∗(−q̄ − q̄′) via
q̄ + q̄ ∈ −∂s(Gw̄) = −S(Gw̄), whereby 0 = Gw̄ −Gw̄ ∈ ∂u∗(q̄′)− ∂s∗(−q̄ − q̄′).

LEMMA B.3. Let closed convex bounded below r : Rd → R, matrix G ∈ R
nℓ×d and

vector v ∈ R
nℓ be given. Suppose further that r is either constant or has compact level

sets. Then given any probabilty measure ν over v ∈ R
nℓ with Eν [‖v‖∞] < ∞, the function

h(w) = Eν [u(Gw; v) + s(Gw) + r(w)] (19)

attains a minimum.

PROOF. If r has compact level sets, then the result follows since the rest of h is
bounded below, and thus h itself has compact level sets and attains a minimum. Other-
wise, suppose r is equal to some constant c ∈ R everywhere; in this case, h is invariant
over ker(G) (due to w only appearing as Gw now that r is constant), so it is convenient
to explictly rule out changes along ker(G) and consider the auxiliary function

f(w) = h(w) + ιker(G)⊥(w).

We will show that f is 0-coercive, and thus has compact level sets and attains a min-
imum [Hiriart-Urruty and Lemaréchal 2001, Proposition B.3.2.4]. This in turn com-
pletes the proof, since a minimum for f is also a minimum of h as follows. For any
w ∈ R

d consider the decomposition w = w⊥ +wk where w⊥ ∈ ker(G)⊥ is the orthogonal
projection of w onto ker(G)⊥ and wk ∈ ker(G) is the orthogonal projection of w onto
ker(G). Since h is invariant to ker(G), then h(w) = h(w⊥). But as h and f agree over
ker(G)⊥, we in fact have h(w) = h(w⊥) = f(w⊥), and moreover

inf
{

h(w) : w ∈ R
d
}

= inf
{

h(w) : w ∈ ker(G)⊥
}

= inf
{

f(w) : w ∈ ker(G)⊥
}

.

Since f is infinite off of ker(G)⊥, its minimum occurs along ker(G)⊥, and the above
equalities grant that this minimum is also a minimum for h.

To prove 0-coercivity of f , let w ∈ R
d be an arbitrary nonzero direction, and note

that it suffices to consider w ∈ ker(G)⊥ (since f is +∞ in other directions). Let p = Gw.
There are now two cases to consider on the sign of pmin = min{pi(x) : i ∈ [n], x ∈ X}:



either pmin < 0, or not. If pmin < 0, then Lemma B.1 grants

lim
t→∞

f(tw)− f(0)

t
= lim

t→∞

Eν [u(tp; v)] + s(tp) + c− c

t
≥ lim

t→∞

Eν [−‖v‖∞ − tpmin]

t
= −pmin > 0,

which means f is 0-coercive [Hiriart-Urruty and Lemaréchal 2001, Proposition
B.3.2.4]. For the other case, w 6= 0 combined with w ∈ ker(G)⊥ implies that p = Gw 6= 0.
Thus pmin ≥ 0 means that pmax = max{pi(x) : i ∈ [n], x ∈ X} > 0. Once again invoking
Lemma B.1,

lim
t→∞

f(tw)− f(0)

t
= lim

t→∞

Eν [u(tp; v)] + s(tp) + c− c

t
≥ lim

t→∞

tpmax

t
= pmax > 0,

proving 0-coercivity [Hiriart-Urruty and Lemaréchal 2001, Proposition B.3.2.4].

LEMMA B.4. Consider the setting of Lemma B.3, providing objects G and ν, but
suppose r(w) = λ‖w‖22/2 for some λ ≥ 0. Let h denote the function in (19), let w̄ denote
any minimizer of h (as provided by Lemma B.3), and set W0 = {w ∈ R

d : h(w) ≤ h(0)}.

— If G = Gid, then every w ∈ W0 (including w̄) satisfies ‖w‖∞ ≤ (n + 1)V and ‖w‖2 ≤
(n+ 1)V

√
ℓ.

— If G = Gp(r) for some integer r ≥ 1, then every w ∈ W0 (including w̄) satisfies ‖w‖∞ ≤
(n+ 1)V 2r and ‖w‖2 ≤ (n+ 1)V mr/22r.

PROOF. Before specializing the choice of G, there are a few general properties to
note. First we have

h(0) = Eν [u(0; v)] + 0 + 0 = Eν

[

max
q∈H

v⊤q

]

≤ Eν [n‖v‖∞] = nV,

where the bound follows from Hölder’s inequality. In particular w ∈ W0 implies h(w̄) ≤
h(w) ≤ h(0) ≤ nV . Consequently, for any w ∈ W0, letting p = Gw, we have from
Lemma B.1 that

nV ≥ h(w) ≥ Eν [u(p; v)] + 0 + 0 ≥ −Eν [‖v‖∞]− min
i∈[n],x∈X

pi(x)

and

nV ≥ h(w) ≥ 0 + s(p) + 0 ≥ max
i∈[n],x∈X

pi(x),

which together imply

‖p‖∞ = ‖Gw‖∞ ≤ (n+ 1)V. (20)

Now consider the case G = Gid. In this case, (20) directly provides ‖w‖∞ ≤ (n+1)V for

w ∈ W0, and thus ‖w‖2 ≤ (n+ 1)V
√
ℓ.

The remainder of the proof will handle the case G = Gp(r) for some integer r ≥ 1,
with an arbitrary w ∈ W0 as before. The feature space now has one component for each
bundle of size at most r; thus we write w(x) for the component of w corresponding to
x ∈ X where |x| ≤ r. Let x ∈ X be of size at most r. We have

p(x) =
∑

x′⊆x

w(x′).

By Möbius inversion [Bender and Goldman 1975, Theorem 1, Example 2],

w(x) =
∑

x′⊆x

(−1)|x\x
′|p(x′),



and therefore

|w(x)| ≤ 2r(n+ 1)V.

Thus ‖w‖∞ ≤ (n + 1)V 2r and ‖w‖2 ≤ (n + 1)V 2r
√
d, where d is the dimension of the

feature space under Gp(r). Applying the simple bound d ≤ mr yields the result.

The following convergence result is standard; for other versions, see [Bubeck 2014].

LEMMA B.5. Let the following objects be given as specified.

— A closed convex (but not necessarily bounded) constraint set W ⊆ R
d.

— Iterates (wt)t≥1 and supporting objects (gt, ηt)t≥1 with w1 ∈ W arbitrary, ηt = c/
√
t

for some scalar c > 0, and wt+1 = ΠW(wt − ηtgt) where gt ∈ R
d is arbitrary.

— A sequence of finite convex functions (f t)t≥1, where δf t will denote an arbitrary sub-

gradient of f t at wt ∈ R
d.

Then for any time horizon T ≥ 1, any comparator u ∈ W , and any L ≥ supt∈[T ] ‖gt‖2,

1
∑T

t=1 η
t

T
∑

t=1

ηt
(

f t(wt)− f t(u)
)

≤ 1

c
√
T

(

‖w1 − u‖22 + 2

T
∑

t=1

ηt(wt − u)⊤(δf t − gt) + L2c2 ln(eT )

)

.

PROOF. For any t ≥ 1, by properties of orthogonal projection onto closed convex sets
[Hiriart-Urruty and Lemaréchal 2001, Proposition 3.1.3],

‖wt+1 − u‖22 =
∥

∥ΠW(wt − ηtgt)−ΠW (u)
∥

∥

2

2

≤
∥

∥wt − ηtgt − u
∥

∥

2

2

= ‖wt − u‖22 − 2ηt(wt − u)⊤gt + (ηt)2‖gt‖22
≤ ‖wt − u‖22 − 2ηt(wt − u)⊤δf t + 2ηt(wt − u)⊤(δf t − gt) + (ηt)2L2,

which by rearrangement and the definition of δf t gives

2ηt
(

f t(wt)− f t(u)
)

≤ −2ηt(u− wt)⊤δf t

≤ ‖wt − u‖22 − ‖wt+1 − u‖22 + 2ηt(wt − u)⊤(δf t − gt) + (ηt)2L2.

Summing across t ∈ [T ],

1
∑T

t=1 η
t

T
∑

t=1

ηt
(

f t(wt)− f t(u)
)

≤ 1

2
∑T

t=1 η
t

(

‖w1 − u‖22 − ‖wT+1 − u‖22 + 2
T
∑

t=1

ηt(wt − u)⊤(δf t − gt) + L2
T
∑

t=1

(ηt)2

)

,

and the result follows from the estimates

T
∑

t=1

ηt ≥ c

∫ T+1

1

dx√
x
≥ 2c(

√
T + 1− 1) and

T
∑

t=1

(ηt)2 ≤ c2(1 + ln(T )),

as well as the elementary inequality 4(
√
T + 1− 1) ≥

√
T .



The following result is closely related to Afriat’s theorem, for which several proofs are
available [Fostel et al. 2004].

LEMMA B.6. Let (bt)t≥1 be the sequence of bids and (pt)t≥1 be the sequence of prices.
There exists a single value vector v that is consistent with bt under prices pt, for all
t ∈ [T ], if and only if the sequence of bids satisfies the GARP activity rule (17) with
respect to the sequence of prices.

PROOF. Given the sequences of bids and prices, form the following system of linear
inequalities in the variables ζti for each i ∈ [n] and t ∈ [T ]:

ζti − pt⊤i bti ≥ ζsi − pt⊤i bsi (i ∈ [n], s, t ∈ [T ]). (21)

Feasibility of these inequalities is a necessary condition for there to exist a valuation v
consistent with each bid, because they must hold for ζti = v⊤i b

t
i. To establish sufficiency,

define

vi(x) = min
t∈[T ]

{

ζti − pt⊤i bti + pti(x)
}

(22)

for i ∈ [n] and x ∈ X . If xt is the bundle associated with bti (recall that bid vectors in

the auction are integer), then v⊤i b
t
i = vi(x

t) = ζti because, by (21),

ζti − pt⊤i bti + pi(x
t) = ζti ≤ min

s∈[T ]

{

ζsi − ps⊤i bsi + psi (x
t)
}

.

Now let ej for j = 1, . . . , ℓ be the unit vectors in R
ℓ and let e0 be the origin. Consider any

bi ∈ Hi, which can be written as a convex combination bi =
∑ℓ

j=0 αjej for non-negative

weight αj that sum to 1. We have

(vi − pti)
⊤(bti − bi) =

ℓ
∑

j=0

αj

[

(vi − pti)
⊤(bti − ej)

]

=

ℓ
∑

j=0

αj

[

ζti − pt⊤i bti + pt⊤i ej − v⊤i ej
]

≥ 0,

where the last inequality follows from (22). Therefore the v defined in (22) is consistent
with all bids in the sequence at the given prices, and there exists a single value vector
v consistent with all bids if and only if (21) is feasible.

By the Farkas lemma, inequalities (21) are feasible if and only if the optimal value
of the following linear program is 0. The LP has a non-negative variable λst for each
s, t ∈ [T ].

min
λ≥0

∑

s,t∈[T ]

(bt − bs)⊤ps λst

s.t.
∑

s∈[T ]

λst +
∑

s∈[T ]

λts = 0 (t ∈ [T ]).

This is exactly the LP corresponding to a minimum cost circulation problem over a
complete directed graph with a node for each t ∈ [T ], where the cost of edge (s, t) is
(bt − bs)⊤ps. See [Bertsekas 1998, Chapter 4] for the equivalence of min-cost flow and
circulation problems to their LP formulations. If (17) does not hold, then there is a
negative cost cycle, and the value of the LP is negative (in fact, unbounded below).
Conversely, assume (17) holds. By the conformal realization theorem [Bertsekas 1998,
Proposition 1.1], any circulation can be decomposed into a sum of simple cycle flows.
As (17) implies that the cost of each simple cycle is non-negative, the cost of the circula-
tion itself is non-negative, by linearity of cost. The optimal value of the LP is therefore
0, which is achieved by setting each λst to 0. Thus (21) is feasible if and only if the bids
satisfy the GARP activity rule.



The following result bounds the maximum value, across all agents and bundles, under
the standard logit (Gumbel) and probit (Gaussian) random utility models. The result
also covers the more general case of any subgaussian error term, and we stress that
error components may be correlated in this case.

LEMMA B.7. Consider the following choices of distribution ν over v ∈ R
nℓ, which

takes the form v = ṽ + ǫ. In each case ṽ ∈ R
nℓ and σ ∈ R

nℓ are deterministic quantities,
with σmax = maxi σi for convenience, and ǫ ∈ R

nℓ has zero mean.

— If ǫi is drawn from a Gumbel distribution with scale parameter σi, then

Eν [‖v‖∞] ≤ ‖ṽ‖∞ + 2σmax ln(2nℓ
√
π).

— If ǫi is drawn from a Gaussian with mean ṽ and variance σ2
i , then

Eν [‖v‖∞] ≤ ‖ṽ‖∞ + σmax

√

2 ln(2nℓ).

— If ǫi is subgaussian with parameters (0, σ2
i ), then

Eν [‖v‖∞] ≤ ‖ṽ‖∞ + σmax

√

2 ln(2nℓ).

PROOF. First recall the following standard derivation linking maxima of random
variables and their moment generating functions [e.g., Boucheron et al. 2013, Section
2.5]. For any (possibly dependent) random variables (X1, . . . , XM ), note by convexity
for any t ≥ 0 that

exp
(

tEν [max
i

|Xi|]
)

≤ Eν

[

exp(tmax
i

|Xi|)
]

= Eν

[

max
i

exp(t|Xi|)
]

≤ Eν

[

∑

i

exp(t|Xi|)
]

≤
∑

i

(Eν [exp(tXi)] +Eν [exp(−tXi)]) . (23)

For the Gumbel distributions with scale parameter σi, first note for every s ∈ R that
Eν [exp(sǫi)] = Γ(1− sσi). Combining this with (23), we have

Eν [max
i

|ǫi|] ≤
1

t
ln

(

∑

i

(Γ(1− tσi) + Γ(1 + tσi))

)

,

whereby the choice t = 1/(2σmax) combined with properties of Γ grants

Eν [max
i

|ǫi|] ≤ 2σmax ln

(

∑

i

(Γ(1− σi/(2σmax)) + Γ(1 + σi/(2σmax)))

)

≤ 2σ ln
(

2nℓ
√
π)
)

,

and the desired bound follows since Eν [‖v‖∞] ≤ ‖ṽ‖∞ +Eν [‖ǫ‖∞].
Next consider the bound on arbitrary subgaussian random variables, which will im-

mediately grant the Gaussian bound. As each ǫi satisfies Eν [exp(tǫi)] ≤ exp(t2σ2
i /2) by



definition, (23) gives

exp
(

tEν [max
i

|ǫi|]
)

≤
∑

i

(Eν [exp(tǫi)] +Eν [exp(−tǫi)])

≤ 2
∑

i

exp(t2σ2
i /2)

≤ 2nℓ exp(t2σ2
max/2).

We therefore obtain

Eν [max
i

|ǫi|] ≤
ln(2nℓ)

t
+

tσ2
max

2
.

Since this expression holds for all t > 0, using the optimal choice t =
√

2 ln(2nℓ)/σ2
max

gives the result since Eν [‖v‖∞] ≤ ‖ṽ‖∞ +Eν [‖ǫ‖∞].
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