
Integrating the Rewriting and Ranking Phases of View 
Synchronization* 

Andreas Koeller, Elke A. Rundensteiner and Nabil Ha&em 
Department of Computer Science 
Worcester Polytechnic Institute 

Worcester, MA 0160!3-2280 
{koellerlrundenstIhachem}Qcs.wpi.edu 

Abstract 

Material&d views (data warehouses) are becoming in- 
creasingly important in the context of distributed mod- 
em environments such as the World Wide Web. Infor- 
mation sources (I%) in such an environment may change 
their capabilities (schema), causing a data warehouse to 
become undefined. This process to evolve (rewrite) view 
queries after capability changes of ISs is referred to ss 
view synchronization. Current view synchronization al- 
gorithms generate a potentially large number of valid 
solutions for the rewriting of a view query and accord- 
ing to our analysis in this paper have high complex- 
ity (in O(n!)). We propose to reduce this complexity 
by representing the synchronization problem as a graph 
traversal problem. Once this mapping has been applied, 
the problem can be reduced to a single-source shortest- 
path problem in graphs, which can be solved with O(n3) 
complexity using the Bellman-Ford algorithm. 

Keywords: Evolvable view environment, data ware- 
house, cost model, shortest path problem. 

1 Introduction 

WWW-based information services such as data ware- 
housing, digital libraries, data mining typically gather 
data from a large number of interconnected Informa- 
tion Sources (1%). In order to provide eflkient informa- 
tion access to such information services, relevant data 
is often retrieved horn several sources, integrated as 
necessary, and then assembled into a materialized view 
(data warehouse). Besides providing simplified informa- 
tion access to customers without the necessary technical 

‘Thii work was supported in part by several grants from NSF. 
namely, the NSF NYI grant #IBI 94-57609, the NSF CISE In- 
strumentation grant #IBIS 97-29878, and the NSF grant #IIS 
97-32897. Dr. Rundensteiner would like to thank our indus- 
trial rponaors, in particular, IBM for the IBM partnership award 
and for the IBM corporate fellowship for one of her graduate 
students. 

Permission to make digital or hard copies ofall or part ofthis workior 
personal or classroom use is granted without fee provided that copies 
arc not made or distributed for prolit or commercial advanvage and that 
copies bear this notice and the full citation on 111~‘ first page. ‘fo copy 
otherwise. to republish, to post on sewers or to redistribute to lists, 
requires prior specific permission a&or a fee. 

DOLAP ‘98 Washington DC USA 
Copyright ACM 1999 I-581 13-120-8/98/l 1...$5.00 

background, materialized views also offer higher avail- 
ability and query performance. 

In our recent work we study the maintenance of 
data warehouses defined over distributed dynamic in- 
formation sources. A view can survive schema changes 
of its underlying information sources by making use 
of meta-information about those sources and applying 
algorithms for rewriting the view query; a process to 
which we refer to as view synchnmtiation and which is 
accomplished through several view synchronization al- 
gorithms. We have proposed a model of relaxed query 
semantics to allow for the rewritings of view queries that 
preserve different view extents and view interfaces (we 
call this the quality of the view) and result in d&rent 
view maintenance costs [8]. Since we will in general be 
able to generate a number of d&rent such rewritings for 
a given situation, we need to compare rewritings with 
each other and with the original view to determine their 
desirability for a vi? user, which is done through the 
QC-Model’ [5]. 

In this paper, we now examine the complezity of 
thii view synchronization piocess [6, lo]. We identti 
that its most powerful algorithm has a high complexity 
(in O(n!)). We now reduce thjs, cpmplexity by map 
ping the problem of complex ?iew synchronization to 
a polynomial complexity graph traversal problem. One 
key ingredient of our solution is the observation that 
the computation of quality and cost measures, namely 
the ranking of view queries, previously done as a post- 
processing step to each view query identtied by the view 
synchronization algorithm, can be decomposed into a 
stepwise computation by expressing view synchroniza- 
tion as a graph problem. This also allows us to inte- 
grate the query ranking phase with the phase of finding 
of rewritings instead of executing two separate phases of 
view synchronization. We term our solution the Opti- 
mized CVS algorithm and show that the algorithm has 
a complexity in O(n3). 

The remainder of this paper is organized as follows. 
Section 2 reviews related work, while Section 3 reviews 
EVE background, the CVS algorithm, and the QC- 
model. Section 4 proposes the new Optimized CVS al- 
gorithm. We conclude this work in Section 5. 

‘QC stands for the Quality- and Cost dimensions of the 
model. 

60 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F294260.294273&domain=pdf&date_stamp=1998-11-01


2 Related Work 

While most prior work on database views in di&but& 
environments has focused on view maintenance (e.g., 
propagating data changes to the view) [9], we have pro- 
posed algorithms for view redefinition caused by capcrbil- 

ity changes of ISs (called view synchronization), which 
is, to the best. of our knowledge, the first solution to t&s 
problem. In [lo, 61, the overall EVE solution framework 
wss introduced, in particular the concept of associating 
evolution preferences with view specifications and algo- 
rithms for view synchronization. The Complex View 
Synchronization (CVS) algorithm [8] generates a large 
number of alternative legal rewritings, which have to 
be evaluated and compared. In [5], this need was ad- 
dressed by establishing a model for systematically rank- 
ing solutions for view synchronization based on the two 
dimensions of quality and maintenance costs. 

Levy et al. [7] consider the problem of replacing an 
original query with a new expression containing materi- 
alized view definitions such that the new query is equiu- 
alent to the old one, while van den Berg et, al. [ll] 
and Agrawal et al. [l] are concerned with optimizing a 
given query for efficient execution. View synchroniza- 
tion encounters a d&rent problem, namely to select a 
good (but not n&y equivcrlent) query among sev- 
eral possible ones. Incremental view maintenance has 
been an active area of research [3] but is limited to data 
level changes. We are concerned with query rewrit- 
ing without equivalence and view maintenance under 
schema changes. 

3 The View Synchronization Process 

3.1 Non-Equivalent View Synchronization 

In this section, we briefly review the concepts of the 
Evolvable View Environment (EVE) (6, 10,8] system as 
needed for the remainder of this paper. EVE evolves 
views in the presence of IS capability changes. 

ESQL or Evolvable-SQL is an extension of SQL that 
allows the view definer ‘to express preferences for view 
evolution (lo] by defining what information is dispens- 
able, replaceable (from other ISs), and whether a chang- 
ing view extent is acceptable. This is the key to ob- 
taining non-equivalent but useful query rewritings ss E 
SQL provides flexibility to evolve views under schema 
changes while pr eserving the user’s intended semantics. 

In order fo enable view synchronisation, our sys- 
tem needs to identify view element replacements from 
other ISs. MISD, our Model for Information Source 
Description, expresses relationships between ISs using 
constraints (e.g., agreeing data types, functional depen- 
dencies between attributes, extent, overlaps between re- 
lations, stored in the Meta Knowledge Base (MKB)). 
Constraints relevant for this paper are join-wnhuint.9 
and containment-wnstmints. A join constraint. between 
two relations & and Rz, denoted as gc&&, states 
that tuples in Rl and RZ can be meaningfully joined 
over the given set of join conditions with possibly an- 
other conjunction of primitive clauses satisfied. A PC- 
constraint (partial/complete wnstraint) between two re- 
lations RI and R2 states that a (horizontal and/or ver- 
tical) fragment of R1 is semantically contained or equiv- 
alent to a (horizontal and/or vertical) fragment of R2 . . . 

3.2 The CVS Algorithm for Rewriting Queries 

We bri&y review the view synchronization process used 
by the EVEsystem [8,5]: Once a view is defined, EVE 
tracks schema changes in all ISs participating in this 
view and attempts to find replacements for missing view 
elements using MISD and ESQL. The EVE system em- 
ploys several algorithms for generating view rewritings, 
i.e., for achieving view synchronization [lo, 81. In this 
current paper, we focus on the most comprehensive alge 
rithm thus far, which is the Complez View Synchrvnisa- 
tion (CVS) algorithm [8] 2. CVS handles ail common 
relational capability-changes (e.g., add, delete, rename). 
FVsnow give an example for a rewriting generated by 

After a delete-relation capability change on a rela- 
tion R is detected, the CVS algorithm traverses the in- 
formation space in order to 6nd possible replacements 
for those attributes of R that were used by the view 
V. CVS will find all possible replacements for a missing 
relation in a given information space3 using chains of 
joins to “reach” a candidate replacement relation. This 
procedure is executed in two steps: Finding candidate 
replacement relations, and building legal view queries 
by joining those relations with existing ones. 

Example 1 We define an information space (Meta 
Knowledge Base) according to Figures 1 and 2. We wn- 

IS 1: Flight Information , 

Customer(Name,Addra,PhoaeNo,Age) 
FlightRes(PN-,Airliae,Fli.ghtNo,Source,Dest,Date~ 
IS 2: Insumnce Information 

1 Tour(TburI~,To~Name,T$pe,NoD&) _ I 

Figure 1: IS Content, De+riptions for Ewmple 1 

.7C 1 Join Constreint I 

Figure 2: Join Constraints for Example 1 

sider the view Cwtomer-PcMsengers-Asicr in Equa- 
tion 1 and show how to apply the CVS algorithm and 
find replacements under the udelete relation Cwtomer” 
change. 

aESQL evolution preferences are used to determine whether 
the adapted view query is considered acceptable to the user. 
Such a rewritten query is called a view rewriting, and if it fulfills 
certain criteria of correctness [lo], it is called a legal nuniting. 

‘For the current paper, we essume that we can replace all 
missing view elements from the same relation. Extending the 
optimiaation for multi-relation replacements is part of our cur- 
rent research. 



CREATE VIEW 
SELECT 

FROM 

WHERE 

Customar-Passengers-Asia AS 
C.Name, C.Age, 
P.Name, P.TourID 
Customer C , Flight&s F, 
Participant P 
(C.Name = F.PNama) 

(1) 

AND (F.Dest = ‘Asia’) 
AND (P.StutDate = F.Date) 
AND (P.Location = ‘Asia’) 

The CVS algorithm traverses the information space 
and uses MISD join constraints that co~ect the new re- 
lation to the remaining relations in the existing query. 
Here, we can replace the attribute Customer.Age by 
the similar attribute Insurance.Age in relation Insur- 
ance and join the new table with FlightRes using join 
constraint JC5 from Figure 2. Then all view elements 
(i.e., attributes and WHERE-clauses) that depend on 
the old relation are replaced by view elements using the 
new relation. A possible rewriting of query (1) using 
thii substitution is given by query (2). 

CREATE VIEW 
SELECT 

FROM ’ 

WHERE 

Customer-Passengers-Asia1 AS 
I.Holdcr, AI.Age, 
P.Nama, P.TourID 
Insurance I, Flight&as F, 
Participant P 
(I.Holder = F.PName) 

(2) 

AND (F.Dart = ‘Asia’) 
AND (P.StartDate = F.Date) 
AND (P.Location = ‘Asia’) 

3.3 Ranking Query Rewritings 

Once the CVS algorithm enumerates all possible query 
rewritings, we need to select one of them, using the QC 
Model [5] as a metric (taking both the gu&ty and cost 
into account,). Each legal query rewriting will in general 
preserve a different amount (extent.) and di&rent types 
(interface) of information, which we refer to as the quel- 
ity of the view. Also, each new view query will cause 
different view maintenance costs, since in general data 
will have to be collected from a different set of ISs’. 
With these two dimensions, the QC-Model can compore 
different view queries with each other, even if they are 
not equivalent. This comparison is accomplished by as- 
sessing five difkent factors as explained below [5]. 

Quality Factors: Quality refers to the aimilor- 
ity (vs. divergence) between an original view and 
its rewriting. The Depee of Divergence in Terms of 
the View Inteqface (2X&,) determines numerically 
how different the view interfaces of the two queries 
are.The Degree of Divergence in Terms of the View 
Eztent (m.,t) is determined by the relative num- 
bers of missing and additional tuples in the extent of 
a view rewriting (as compared to the extent, of the 
original view). 

Cost Factors: Cost factors measure the (long-term) 
cost associated with future incremental view mainte- 
nance after the view has been rewritten and the ex- 
tent has been updated. The factors are Number of 
Messages(CFM) between data warehouse and infor- 
mation sources, Number of Bytes ?hmSferred(cFT) 
through the network, and Number of I/Os(CFl,o) at 
the ISs. 

Normalizing and then combining these factors yields 
the QC- Vdue: 

QCW) = 1 - [equa&y. 
(em - Tdtr + eezt . md) + 
ecost. (costna . CFM + 
Costs * CFT + c&I/o . CFl,o)] 

with Vi the view rewriting with the index i; Z)Vaer, 
‘DD&r CFM, CFT, CFl,o as defined above; the trade- 
off factors Q&r*@& 1 0; eat& + e& = 1; @.pOrity, 
ecost 1 0; e,dity + ecost = 1; -d the =t cm 
co&w, CO&T, co&x/o > 0. The unit costs can be empir- 
ically computed for a given data warehouse by a method 
proposed in 151, whereas the trade-off factors have to be 
set by the user. The QC-value evaulates a rewriting and 
is a real number between 0 (bad) and 1 (good). Note 
that in the view synchronization process discussed so 
far, all query rewritings have to be generated ii& in 
order to be compared by their QGValues. 

3.4 Complexity of the View Synchronization Process 

The basic principle underlying .cVS is that a missing 
view element, (relation or attribute) can be replaced 
by a new element that is connected to the rest of the 
view query by a chain (or path) of joins. Finding a 
replacement for an attribute involves iterating through 
the complete information space and finding all possible 
replacements (i.e., finding a relation containing a re- 
placement. and then all possible paths of join constraints 
between the original and the replacing relations). For 
each of these paths of joins through the information 
space, a number of conditions outlined below have also 
fo be met. We will now give a graph-oriented descrip 
tion of this CVS process m?re formally described in [8]: 

l All relations that are in a certain sense “connected” 
to the original view query (by join constraints, as de- 
fined in [5]) have to be considered for a replacement. 
Thus, CVS iterates through those relations in the in- 
formation space. 

l For each relation that is considered for replacement, 
all possible paths of joins that lead from the deleted 
relation to this relation in the information space have 
to be found (R-replacement). Since an exhaustive 
search through the graph is LLecessary here, this is of 
complexity O(nk!) with nk being the number of re- 
lations considered (i.e., nk < n). The algorithm gen- 
erates an exponential number of possibly inefficient 
queries. 

l For each path found, it has to be decided if the re- 
placement conplies with ESQL preferences. This is 
determined by fmding appropriate PC-constrain& [8] 
which is of linear complexity in the number of con- 
straints per relation. We also have to check if new 
WHERE-clauses introduced by the replacement not 
contradict WHERE-clauses already in the query which 
is of low polynomial complexity in the number of 
WHERE-clauses. 

‘long term cost of incremental view maintenance 

62 



. After all (i.e., exponentially many in the number of 
relations) possible view rewritings have been gener- 
ated, the C&Z-Value for each has to be computed [5]. 
The computation of the cost and quality factors is 
polynomial in the number of relations in the rewrit- 
ing, but has to be executed for a exponential number 
of queries. Finally, the rewritings found have to be 
sorted by their QEValue in order to present them to 
the view user. 

Our analysis reveals that the most expensive opera- Figure 3: An Example of the Information Space Graph. 
tion in the algorithm above involves finding aZ2 patha of 
joins. Also, it is idi&rIt to generate view rewritings 
first and then compute QC-Values for each rewriting 
(i.e., two separate phases). 

4 The Optimized View Synchronization Process 

The current view synchronization process generates all 
possible query rewritings vi for an original query V by 
considering aU paths leading through the information 
space between the to-be-replaced relation R and the re- 
placement relation &. It then applies the QCModel to 
each rewriting Vi and recomputes the QC-Value for this 
rewriting. We will refer to this computation as QCtotal: 

QC,,,,(vi) = QC(K) = f(V, IG,, MKE). (3) 

with the old (V) and new view query (vi) and the MKB. 
The key to reducing the complexity of this process 

is,to avoid the expensive operation of finding all paths 
of joins from the view to a replacing relation by finding 
only the minimul path, reducing the number of gener- 
ated inefficient rewritings. To achieve this, we propose 
to integrate the two separate stages of query generation 
and query evaluation into one tightly integrated algo- 
rithm, e%ctively performing a cost-based search space 
pruning optimization. Since we will now find (optimal) 
paths from R to all & in the information space, we will 
obtain one rewriting only (aud thus one QGValue) for 
each relation Ri: 

QCincr(Ri) = f(K 4 Ris MKB). (4) 

We term our new approach the Optimized CVS algo- 
rithm, having two key advantages: Only a small number 
(at most nn, the number of relations considered for re- 
placements) of queries are ever generated, and the QG 
Values of the queries do not have to be computed aj%er 
generating the queries, but they are already determined 
during the rewriting construction process. 

4.1 View Synchronization as a Graph Problem 

Figure 3 shows an example of mapping our view syn- 
chronization problem to a graph representation G(N, E) 
that we call the Information Space Graph (IS-Gmph). 
We map the relations from the MKB into vertices in 
N and the join constraints into edges in E, i.e., N = 
{Ril& EMKB} adE =(C~CR~,R~[.ZR~,R~ EMKB}. 
Given that mapping, a path through the IS-Graph (from 
the view query to an end vertex Ri) represents exactly 
one possible query rewriting K that uses the relation 
R.i for a replacement for missing view elements. Hence, 
all paths between the vertices representing the original 
query and each other (reachable) vertex have to be con- 
sidered as possible replacements. 

Figure 3 depicts the IS-Graph for the example infor- 
mation space from Section 3. Deleting Customer and re- 
placing it by PmfermdCust yields two paths (two query 
rewritings) from the remaining view query (PZightRw w 
Participant) to Accident-Ins, namely: 

FlightRes WJC,, Pmfem?dCust 
and FlightRes w JCs A&dent-Ins wJC2 PmfewedCust 

In order to select one of these paths (rewritings), we 
now apply the QGModel to compute a numerical mea- 
sure of “desirability” (its QGValue) for each rewriting. 

In order to express our problem in terms of a graph, 
we integrate the QGcomputation into the path finding 
process. We define the length of a join path expressing 
quality and cost and assure that the shortest path be- 
tween two relations in this weighted graph will give us 
the expected result (i.e., the best query rewriting for the 
given replacement). We define meaningful semantics for 
the weight of an edge in the IS-Graph (i.e., express the 
QGValue by edge weights) and show that computing 
the QGValue for a query incrementally along a path 
using these weights (i.e., computing QCincr) yields the 
same results as computing the QGValue at once (i.e., 
c=puting QCt,t& 

, 

4.1.1 Augmenting the ISkraph with Edge Weights 

We label the edges in our graph with parameters that 
are used to determine the values ‘of the quality and 
cost factors. A value that is a property of a relation 
NR (a vertex in the graph)’ instead of a pair of re- 
lations (i.e., an edge) will be attached to edges adja 
cent to NR. The label for an edge Ei is a four-tuple 
qcEi = (m&(i), CFna(i), CFT(i), CFl,o(i))‘. With 
these edge weights, we can now incrementally compute 
a four-tuple &Pi) of numerical values defined on a path 
pi=(Eto,Et,,..- Eli) with Eli E E, which we call the 
mw incremental QG-Value, denoted by: 

W(B) = QCDDemt (pi), @%Far (fib 
WCFr (pi), QcCF,,o (pi))* 

Thii value qc(E) is computed as follows: 

(5) 

q@o) = WEl, 
&A) = (qCDD..t (A-1) * zn>&(lk), 

@2Fns (pk-1) + ch4(~k), 
QCCFr(pk-1) + cFT(zk), 
Q’%F,,o (pk-1) + cFuo(2k)) (6) 

SA typical example would be a relation size. 
eThe factor ‘DV,ttr does not have to be taken into consider- 

ation, as explained later in this section 

63 



for k 2 1 with El, being the k-th edge traversed in the 
path pi and I = (lo, 11,. . . lk) the sequence of the in- 
dices of the edges Eli that have been traversed for this 
computation. We motivate these computations (mul- 
tiplication for gcDD..r(fi) and addition for the other 
factors) in our technical report on the @Z-Model [5]. 

At any vertex Nk in the path, we compute the in- 
termediate QC-Value QC~,,crp (a) for original view V 

and deleted relation R for sub-bath Pk traversed for the 
replacement relation Ri (see also Equation 3)7: 

Q%Wp, (Ri) = 1 - [epudity. (eottr. DDatir 

+e&. qcD%r (pk)) f ewst ’ b~hf . W2FM (pk) 

+ CatT * qccFT (pk) + c&X/O * qcCF,,o (pk))] (7) 

We can now define QCi,&Ri) = QCincrp (Ri) with P 
being the path to the replacement relation. 

4.1.2 Semantics of Incremental Computation 

We now need to show that the computation of the QG 
Value for a complete query is equivalent to the incre- 
mentally computed QC-Value as outlined above. That 
is, we need to show that 

for the “best” vi according to our QGModel that uses 
Rk as a replacement. Previously, the QGValue was 
computed by the quality and cost formulas given in [5] 
(Section 3.3). Since we can apply Equation 7 at any 
point in the incremental computation, we have to show 
that the incremental computation of the five factors that 
contribute to the QGValue yields the same 6nal result 
as the total computation. So we must express the com- 
putation of each factor in au incremental way, i.e., our 
approach is to find a way to compute qcf (k) as 

qq(k) = f(lo) of f(h) Of . . . Of f(lk) (9) 

with f E {DDezt, CFM, CFT, CF,/o} and operations 
of on these values (cf. Equation 6). Since this com- 
putes the QGValue from left to right for each factor f, 
of has to be shown to be left-associative, i.e., 

for our path Pi = (E~o,E~,,...,E~i). If we ~811 com- 
pute all factors incrementally and all four operations 
of are left-associative, then the incremental computa- 
tion of QCf,c,(i) will deliver the same result as the to- 
tal computation, i.e., QC+r,(Rk) = QCtot,,(K) for 
a path with n + 1 edges’ that leads to & and a view 
rewriting Vi that uses & as replacement relation for 
R. In order to show these required characteristics for 
each factor, we now describe the construction of the la- 
bels qcEi = @D&(i), cF~(i), CFT(~), CF,,o(i)) for 
the edges Ei in the IS-Graph. 

‘Note that VV ottr depends solely on the two relations that 
mark the end points of the path and therefore is independent of 
Ph. This explains why we can work with a four- instead of a 
five-tuple. 

‘We start counting QCincrk with 0. 

View interface-DD,tt,. This quality factor is a func- 
tion of the original and rewritten view definition only, 
i.e., it is independent of the putk of joins that is used to 
rewrite a query. Therefore this factor does not need to 
be included in this discussion. 

View extent-VVb. Due to limited space, the deriva- 
tion of the total computation for md cannot be re- 
peated here. In [5] , we compute the size of view extents 
] Vi 1 and overlaps ] K fl Vj 1 by multiplying sizes of rela- 
tions l&l used in the view M and selectivities jsRi.Rj 
of the joins between them. The Degree of Divergence 
is then computed as DD,,t(V, vi) = f(lVl, lvil, IV n 
Vii) for a view V and a rewriting Vie This compu- 
tation can be executed incrementally as qcD&.*(k) = 
f(Vm.t@ - l>,jCRIk_l,R~L,IE(lyI). we ~hte l&l 
and jC& ,Rj, respectively, with the edge & between ver- 
tices & and Rj, together representing the m,=:(k) 
component of qcEi . Note that 2YDd is computed 
in a multiplicative way and that the weights are not . 
necessarily larger than 1 lo. This computation, a multi- 
plication of rational numbers, is le%ssociative and can 
thus be incrementally computed. 

Number of messages-CFM. To compute the number 
of messages CFM exchanged between the data ware- 
house and the underlying information sources incremen- 
tally, we assign 1 to an edge if the two relations that it 
connects are in different information sources and a 0 
otherwise (cF~(k) = (0, l), cf. Figure 4). With these 

0 
- 
0 

Figure 4: Assigning Weights for CFM. 

weights, an incremental computation as q=&(k) = 
qccFM (k - 1) + cF&f(fk) is possible. The operation is 
additive, i.e., we can compute an intermediate value for 
CFM incrementally and this cost factor is associative. 

Number of bytes-CFT. The number of bytes trans- 
ferred CFT is computed by a sum of factors as CFT(k) = 
2.(u,s,, *. . . ‘oIs,k )(Jxs,, ** - * .JIs,, )sAR,,,~,~~~~ withkaa 

index denoting the sequence number of the relation in 
the path for which CFT is currently computed, uxsi the 
selectivity of the selection conditions for I&, Jxs, the 
estimated size of a joined relation (computed from join 
selectivities and relation sizes), and SAR.,,~,~~,, the size 
(sum of the lengths of attributes in bytes) of a sub-query 
to an IS [5]. The operation is addition (which is sssosia- 
tive), with the summands dependent on the previous 

PThe size of the original view IV1 is known beforehand and 
does not have to be computed during the incremental QC- 
computation. 

‘OFor our solution to this problem, please refer to our TR [4]. 

64 



..- 

path through the graph. In order to compute C&(k), 
we need d cF~(i) for i = 0.. . k - 1 for the path 
b%, El, t . . . , El,-,) that led kom the starting node to 
the current edge. If we compute path lengths from the 
starting node (rather that computing sub-paths at ran- 
dom and adding the results), we can perform this com- 
putation incrementally ss qwF= (k) = qcCF= (k - 1) + 
OFT&). 

Number of I/Os-CF~/o. Similarly to the previous 
case, we compute CF,,, as a sum of several factors 
depending on the current information source and the 
relations included in the join [5] (since the I/O-cost de- 
pends on the number of tuples that have to be retrieved 
from the current relation for an incremental update). 
So we have q=F,,,, (k) = qcCF,,o (k - 1) + c&/&k). 

Due to addition, associativity is given. 

4.1.3 Equivalence of Incremental and Total Compu- 
tation 

Since we have shown all parameters to be computable 
in an incremental way and left-associative, this assures 
that it is possible to compute the QC-Value incremen- 
tally, i.e., 

Qc,,,,(K) = QC&&k) (10) 
for the “be&’ view rewriting X (“best.” according to the 
QCModel) that uses & as the replacement relation. 

4.2 Finding the Best View Rewriting: The Shortest 
Path Approach 

We can now apply a shortest-path-algorithm in order 
to find the optimal view rewriting vi for a given replac- 
ing relation Rk. The Bellman-Ford-algorithm (87) [2] 
matches the requirements identihd (stability over “neg- 
ative” edge-lengths and knowledge of the path “his- 
tory”). BF finds the but path between a source vertex 
and all other vertices. It returns au ordered set of vex- 
tices for a given “destination” vertex Ri, which, in our 
mapping, represents the “chain” of joins to a relation 
Ri used to rewrite the given query V after a capability 
change. The complexity of 87 is O(lVl . IEj). For a 
fully connected graph, this is O(n3) with n being the 
number of relations considered. So in at most O(n’) 
operations we can compute the beat “join. chains” for 
all possible replacing relations. 

5 Conclusion 

View synchronization addresses an important ne.w prob- 
lem in dynamic distributed information systems [lo, 6, 
8, 51. In this present paper, we show the complexity of 
the view synchronization process based on two separate 
phases (view rewriting (81 and QC-computation [5]) to 
be O(n!) in the number of relations in the information 
space. This is too inefkient to be practically viable 
for very large information spaces. In this paper, we de- 
veloped a solution based on integrating the two phases 
into one process that is capable of discarding inferior 
solutions without first having to enumerate them. This 
reduces the complexity to polynomial (O(n3)), making 
view synchronization now efficient even for large infor- 
mation systems. 

. 
A prototype of the EVE-system was implemented 

and is fully functional. It has been successfuliy demon- 
strated at the IBM technology showcase during CAS 
CON’97 [S], and will be available on our EVE project 
web page soon ll. 

Acknowledgments. The authors would like to thank stu- 
denta at the Database Syst.ems Research Group at WPI for 
their interactions, contributions, and feedback on this re- 
search. In particular, we are grateful to Aniqoara Nica, Amy 
Lee, Xin Zhang, Yong Li and Amber Van Wyk. 

References 

[I] D. Agrawal, A. E. Abbadi, and A. Singh. Efficient 
View Maintenance at Data Warehouses. In Proc. 

PI 
of SIGMOD, pages 417-427, 1997. 

T. H. Cormen, C. E. Le&rson, and R L. Rive& 
htrvduction to Algorithms. Cambridge, The MIT 
Press, 1990. 

[31 A. Gupta, I. Mumick, and V. Subrahmanian. Main- 
taining Views Incrementally. In Prvc. of SIGMOD, 
pages 157-166, 1993. 

[41 A. Koeller, E. A. Rundensteiner, and N. Ha&em. 
Integrating the Rewriting and Ranking Phases of 
View Synchronization. Technical Report WPI-CS- 
TR-98-23, Worcester Polytechnic Institute, Dept. 
of Computer Science, 1998. 

[51 A. J. Lee, A. Koeller, A. Nica, and E. A. Runden- 
Steiner. Data Warehouse Evolution: l’kade-o%h be- 
tween Quality and Cost of Query Rewritings. Tecb- 
nical Report WPI-CS-TR-98-2, WPI, Dept. Of CS, 
1998. 

PI A. J. Lee, A. Nica, and E. A. Rundensteiner. Keep 
lng Virtual Information Resources Up and Run- 
ning. In Proc. of IBh# CASCON97, pages 1-14, 
November 1997. 

[71 A. Levy, A. Mendelson, and .Y. Sagiv. Answer- 
ing Queries Using Views. In PT., of ACM PODS, 
pages 95-104, May 1995. 

[S] A. Nica, A. J. Lee, and E. A. Rundensteiner. The 
CVS Algorithm for View Synchronization in Evolv- 
able LargeScale Information Systems. In Pnx. 
of EDBT, pages 3X+373, Valencia, Spain, March 
1998. 

[9] D. Quass and J. Widom. On-Line Warehouse View 
Maintenance. In Proc. of SIGMOD, pages 393-400, 
1997. 

[lo] E. A. Rundensteiner, A. J. Lee, aud A. Nica. On 
Preserving Views in Evolving Environments. In 
Proc. of KRDB, pages 13.1-13.11, Athens, Greece, 
August 1997. 

[ll] C. A. van den Berg and M. Kersten. An Analysis of 
a Dynamic Query Optimization Schema for Differ- 
ent Data Distributions. In J. C. Fkeytag, D. Maier, 
and G. Vossen, editors, Query Prvcesshg for Ad- 
.vanced Database Systems, pages 449-473. Morgan 
Kaufmann Pub., 1994. 

65 


