
Team-and-Role-Based Organizational Context and Access
Control for Cooperative Hypermedia Environments

Weigang Wang
GMD - German National Research Center for Information Technology

IPSI - Integrated Publication and Information Systems Institute
Dolivostr. 15, D-64293 Darmstadt, Germany

wwang@darmstadt.gmd.de

ABSTRACT

Access control needs to be more flexible and fine-grained
to support cooperative tasks and processes performed by
dynamic teams. This can be done by applying state-of-the-
art role-based access control (RBAC) technology. This
paper examines how to integrate RBAC in a team-based
organization context and how to apply such access control
to hypermedia structures. Based on the analysis of these
issues, a team-and-role-based access control model is
proposed, which describes various aspects of role-based
access control in cooperative hypermedia environments.
The model has been implemented in CHIPS, a cooperative
hypermedia-based process support system. Application
examples demonstrate that its organizational context
management and access permission authorization retain the
simplicity of RBAC. Our extensions provide effective and
flexible access control for managing various kinds of shared
workspaces, especially shared process spaces, where access
control is not only used for managing security, but also for
supporting coordination.

KEYWORDS
Cooperative hypermedia, groupware, coordination,
workflow, role-based access control, process support

INTRODUCTION

Due to the emerging trend towards distributed and virtual
organizations there is a growing demand for better support
of processes executed by distributed, virtual teams.
Groupware is one technology that aims at providing such
support. Within the groupware area cooperative process
support environments specifically address the issues of
flexible coordination and cooperation support for emerging
processes tackled by virtual organizations [8, 163. A
cooperative process support environment provides support
for distributed teams to cooperatively define and modify
emerging processes as well as to cooperatively execute
these processes. Access control can address two central

Pemission to mahe digital or hard copies of all or part of this work for

personal or classrom~ use is granted wthout fee provided that copses

arc not frdc or distrihutsd for prolil or commcr~ial ativnutagc and that

topics bear this notice and the full citation on the tirst page. ‘1’0 copy

otherwise. to republish, to post on screws or to redistribute to lists.

requirei prior specilic permission 3ndior il fee.

Hypertext 99 Darmstadt Germany
Copyright ACM 1999 I-581 13-064-3/99/2...$5.00

issues in such an environment: Firstly, it can be used to
restrict access to information and functionality in the shared
environment to those trusted. Secondly, it can be used to
help coordination by providing only those functions to team
members that are currently needed to fulfil their role. The
latter is especially useful when dealing with emerging or
frequently changing processes. Due to the dynamic nature
of virtual organizations, these environments have to provide
a great deal of flexibility to cope with changing teams,
processes, and cooperation styles. These requirements raise
many challenging issues, such as how to manage access
permissions assigned to members of dynamic teams and
how to provide different access permission overtime upon
emergent process structures.

The requirements on access control derived from this
situation lead to complex access models developed in
groupware and workflow areas [15, 51. However, none of
these models has been fully implemented and enjoyed
large-scale usage as part of a widely used CSCW systems
[171. The complexity of such models makes it far from
trivial to design a user interface that offers the user an
adequate set of access control operations and which is easy
to understand [6, 14, 16, 171.

Role-based access control (RBAC) is an alternative to
traditional discretionary and mandatory access control
policies [111. It can simplify authorization management and
provide flexible access control policies. In RBAC, roles
are created for the various job functions in an organization
and users are assigned roles based on their responsibilities
and qualifications [ll]. The essence of RBAC is that
permissions are assigned to roles rather than to individual
users. Users acquire these permissions by virtue of being
assigned membership in appropriate roles. In this way, the
task of specifying user authorization is divided into two
logically independent parts: one which assigns users to
roles and one which assigns access rights for objects to
roles. This greatly simplifies authorization management,
because authorization can be administrated as a whole for
all users belonging to a role, rather than at the level of
individual users, objects, and permissions [181. Users can
be easily reassigned from one role to another without
modifying the underlying access structure. Roles can be
granted new permissions as new applications or actions are
incorporated, and permissions can be revoked from roles as

37

http://crossmark.crossref.org/dialog/?doi=10.1145%2F294469.294480&domain=pdf&date_stamp=1999-02-01

needed [l 11. RBAC is a policy-rich framework [ll]. It
facilitates the definition of flexible, customized policies
adaptable to an organizational structure and to the means of
conducting business. Also, policies implemented under
RBAC can evolve over time as organizational structure and
security needs change.

The Problems

To support the emerging virtual organization forms and
their work styles, it seems a natural idea to maintain an
organizational context for both the team-based virtual
organization structures and the role-based access control
mechanism in a cooperative hypermedia environment.
However, there are still many open issues on how this can
be done. Problems of applying RBAC to cooperative
hypermedia include:

. How to integrate RBAC in a team-based virtual
organizational context? I.e. how to deal with changing
teams, shifting responsibilities and emerging processes
represented in hypermedia? Whether to define roles
within each team or across teams in an organization?

. How to apply such access control to hypermedia
structures? I.e. how to effectively specify permissions
for different object types and specific instances? How
to deal with composites and navigation between
composites?

. How to balance between the complexity of fine-grained
access control (in terms of many different operations
explicitly controlled) and the need for simple-to-use
solutions (requiring few, easy-to-understand categories
of operations)? How to make access control for
cooperative hypermedia understandable by end users?

. How to support context-dependent access control (i.e.
when the access permissions vary with the state of
cooperation or the state of the hypermedia workspace)?

Our Approach

Our approach to these problems can be outlined as follows:

. An organizational context characterized by teams and
roles is integrated in a cooperative hypermedia
environment for supporting access control and other
groupware features. Teams and roles are used in
conjunction to deal with access control in a dynamic
organizational context. Roles are defined across teams
in an (extended) organization;

. Access permissions can be assigned based on the types
or the instances of hypermedia objects. The node
nesting structures of composite nodes are used as
folders or wrappers representing workspaces. The
access permissions defined by roles upon object types
are independent of teams and individuals;

. To ease understanding, operations upon hypermedia
objects are classified into four categories: Query,
Update, Execute, and Assign. They correspond to the
well-known “read”, “write”, “execute”, and “own”
modes in the UNIX operating system; and

. To support context dependent access control to process
structures, teams and states of tasks or processes are
represented in a “Protection State” and used in the
access review procedure. Individuals and their
permissions for specific objects are brought together by
teams that are assigned to composite nodes.

The remainder of this paper is organized as follows: Section
2 discusses related work. Section 3 analyses the problems
raised in the introduction sections. In Section 4, a scenario
is given to provide an overview on the kind of access
control we want to support. Section 5 then introduces our
proposed access control model. Section 6 presents an
implementation of the model in the CHIPS system. Section
7 presents an application example. Finally section 8
compares our approach to related work, and discusses
future work.

RELATED WORK
In the last few years, many RBAC models have been
developed and efforts have been made towards a general
reference model for role-based access control [12].
However, there are only a few RBAC models developed
specifically for cooperative environments. Shen and
Dewan developed such an access control model [15]. They
identified a set of collaborative rights and developed a set
of inheritance rules on the subject, object, and access rights
dimensions. The model is quite general and complex. It is
not clear how its user interfaces is designed and how its
access rights are specified by end-users. Edwards proposed
a model with dynamic roles (such as ‘people who are in my
lab right now’) for users to define the behavior of a system
in reaction to the state of the world [5]. These two models
present novel access control concepts, but they also add
quite an amount of complexity. Sikkel developed a group-
based access control model for the BSCW system that
supports asynchronous sharing of documents [17]. Access
permissions on documents and workspaces are granted to
user groups for specific operations. User groups can be
used to model roles by, for instance, assigning a job
function name to a group and defining many subgroups for
various tasks. However, such modeling has some
limitations, because their groups are collections of people
without the attributes and operations for various types of
roles. In addition, groups are not typed, so that they can not
be used in different ways in the access review procedure.

The RBAC approach has also been applied to the workflow
systems area. Thomas proposed some ideas on a team-
based access control model as a primitive for applying role-
based access controls in collaborative environments [171.
However, as the model has not yet been fully developed, it
is not clear how to incorporate the team concept into a
general RBAC framework. Atluri and Huang developed a
workflow authorization model, in which an authorization is
a primitive concept representing the fact that a subject has a
privilege on an object for a certain time interval [2]. Bertino
et al. proposed a model on specification and enforcement of
role-based authorization constraints for workflow systems

38

[4]. Each of them addressed an important area of access
control in workflow systems while they have not placed a
focus on dealing with the needs for process support systems
that are built on shared information spaces.

Hypermedia systems can be used to provide shared
information spaces for networked chunks of information.
With the advent of the WWW, hypermedia has become an
everyday tool that can also be used to support collaboration.
Usually, hypermedia systems used standard user-based or
group-based access protection based on file systems or
databases [14]. A good example is KMS [I], which
provides a user-based access model for individual nodes
and guarantees workspace consistency using a versioning
approach. A more prominent example is BSCW, which has
already been discussed (see above). To our knowledge,
there is no published work dedicated to a role-based access
control model for cooperative hypermedia environments.

Historically, RBAC has been developed for supporting
access security in non-collaborative application domains.
Although it has been successfully used in many commercial
applications, such as the latest versions of Sybase, Informix,
and Oracle databases [9], its focus has not yet been placed
on supporting collaboration and coordination. A RBAC
model for cooperative hypermedia environments in general
and for cooperative process support environments in
particular is still missing.

PROBLEM ANALYSIS
In addition to role-based access control, a team-and-role-
based organizational context can be also used to support
many other groupware features, such as group awareness,
notification, and job balancing. However, how can we
integrate RBAC in such an organizational context and how
can we apply such an integrated RBAC to hypermedia
structures? More specifically, should we define roles for
each team or across teams in an organization? How to apply
such access control on hypermedia components and
composites? How to deal with access control for
cooperative process definition and execution? Next, an
analysis on these problems is given and some answers to
these questions are suggested. They provide a basis for our
team-and-role-based access control model.

Roles, Teams, and Individuals
The concept of role stems from organizational theory that
has a much longer history then role-based access control
models. However, the scope of the meaning of roles used in
current role-based access control models is much narrower
than their original meaning in an organizational context
[lo]. A “role” in an organizational context is a job function
defined as a named collection of responsibilities, which
reflect organizational regulations and business procedures.
When used for access control purpose, a role is defined as a
named collection of access permissions, or a named
collection of users and access permissions [lo]. When
talking about a role for access control purpose, what comes
to people’s mind is the purpose of the role as indicated by
its name. This purpose may have a meaningful match to the

permissions, if the permitted actions or their corresponding
tasks are defined in a higher-level, application-specific way
reflecting the responsibilities of the role. The association of
a role to a collection of users taking the role is implicit.

The typical roles for access control purpose are
“Organizational roles”, which include professional roles
(such as software engineer), domain expert roles (such as
Smalltalk expert), and administrative roles (such as
manager). These roles provide a meaningful classification
of people; independent of the teams the people work in. A
process role in workflow area is defined as a mechanism to
associated participants to a collection of workflow
activities. Compared with widely understood organizational
roles, process roles are more task-specific and temporary.
Nevertheless, in the trend towards dynamic virtual teams,
such roles may be used increasingly often and become a
kind of organizational role. Therefore, we consider them as
organizational roles.

“Group” is a very general term referring to a collection of
people. By definition, it should have at least two persons,
but this restriction is not always important in practice. For
access control purpose, a group (or user group) serves as a
shorthand notion of a collection of users who share a set of
whatsoever access permissions that may not be inferred
from the arbitrary name of the group.

For access control purpose, both group and role serve as
shorthand notions that bring a collection of users and a
collection of access permissions together. From this point
of view, it is possible to use groups to model roles or use
roles to model groups. However, from the organizational
point of views, such mixed use of concepts may be
counterintuitive. It might be better to make a clear
classification and use different terms for different categories
of roles or groups.

“Team” is another organizational concept. A team is a
group of people working together for a common task. In
virtual organizations, teams also serve as work units for
their projects. Cooperative tasks are often carried out by
multi-disciplinary teams, in which multiple roles are taken
by their members.

To bring people together in a team, based on the needed
roles, for a timely challenging business opportunity is one
of the characteristics of virtual organizations. People

working in such a team may also work in other teams and
they may live in different cities or countries. Therefore, it
makes sense to maintain roles across teams in an (extended)
organization (that includes real plus virtual organizations),
rather than within each team in such an organization. On the
other hand, teams can be set up on a per project basis. A
team (or teams) can be assigned to a workspace (or a
process) as a whole to allow team members to access and
perform the tasks of the process. In addition, roles can be
assigned to parts (i.e., contents or sub-workspaces) of the
workspace for fine-grained access control. The system can
use the roles in conjunction with the team(s) to identify

39

relevant team members who can access and perform the
corresponding tasks in the workspaces (or processes).

In some occasions, user-based access control is still needed.
For example, when a cooperative task is very informal and
involves only a few collaborators, to assign permissions
indirectly though roles may do more trouble than help.
Therefore, it is desirable to accommodate this option in a
role-based access control model.

Hypermedia Components and Composites
Hypermedia objects, as defined in the Dexter model [7], are
components (node and link objects) and composites
(structures). Analog to the classification of users according
to their roles, hypermedia components and composites can
be classified according to their semantics types. Access
authorizations of roles can be assigned based on object
types or specific objects. When they are assigned based on
types, access authorization for each object is automatically
determined according to the type of the object. There is no
need of specifying authorization upon each object. If a
specific object needs to have a set of permissions that are
different from those inherited from its type, the inherited
permissions can be overwritten.

Typical hypermedia composites (composite nodes) are
constructed by means of non-linking containment
relationships of nested nodes. Composite nodes can be used
as nested folders or wrappers for creating various shared
information spaces. Teams for a workspace can be
assigned to a composite node. The components contained
in a node usually have all the permissions of their
containing node unless more fine-grained permissions are
assigned to them. The composite mechanism may also
control whether or not to allow links from outside of a
composite connect to its components. When such ‘jump in
from side doors’ is allowed, the access permissions defined
upon the component and its containing node will still put
the person entering from the ‘side doors’ under access
control. It is very likely that he or she can only read the
part and can not go to any other parts of the composite, if
he or she has no such permissions.

Access and manipulation operations upon hypermedia
objects can be classified within their object types or across
all the object types. The classification on a per type basis
can be more fine-grained, while classification across all the
types can be easier to handle by end-users. In addition, if
task-specific operations are defined upon hypermedia
structures, application-specific classifications can be made,
which could provide a better mapping from access
permissions (roles for access control) to the responsibilities
of roles (roles in organizational context).

Cooperative Process Definition and Execution

Wang and Haake in [19] presented a general cooperative
hypermedia based process model and a general method to
incorporate process-related semantics into hypermedia
structures. In such a process model, tasks are represented
by task nodes; Control and data flow connectors between
tasks can be represented by process links. Process

definition corresponds to hypermedia schema definition and
template creation. Process execution corresponds to an

extended guided tour [191.

When hypermedia structures are used to represent
processes, the states of a task (or process) should be
reflected in access permission representations. To maintain
the integrity of a shared process structure and to keep a
cooperative process execution under proper control, there
should be dedicated access rights for manipulating process
definitions and for executing processes. The rights for
process execution may also include rights for switching
among cooperation modes (i.e., loosely coupled and tightly
coupled modes) and for handling cooperative transactions
(i.e., check-in/check-out a shared workspace). In each
cooperative session, one person may take multiple roles at a
time and multiple roles may work in the same workspace.
The permissions assigned to roles and teams would not
change within a transaction.

To address the requirement of automating the change of
access permissions of objects used by several cooperative
tasks (e.g. workflow steps); the concept of a ‘wrapper’ is
developed. A wrapper can “wrap” a collection of objects of
the same or of different types. The wrapped objects
combine their access permissions with those of their
wrappers. To access the wrapped objects, the wrapper has
to be opened. A wrapper may correspond to a task in a
process. The membership of objects in wrappers may
change dynamically as they flow from one wrapper into
another (e.g., along workflow steps). There could be many
different flow semantics, such as moving or coping by
value. This solves the problem of how to automatically
change access permissions of objects (passed to consecutive
steps of a process) overtime.

A SCENARIO

The following scenario, from user points of view, provides
an overview on the kind of access control we want to
support. This, together with the above problem analysis,
may help the understanding of the concepts defined and the
technical choices made in our team-and-role-based access
control model to be presented in next section.

Due to a successful project proposal, a team is set up to
start the project as outlined in the project proposal. The
selection of team members is based on the job functions
(roles) needed for the project. Then, work plans in the
proposal are developed into more detailed work processes.
For a process that is new to the team, the team members
may work together in a shared hypermedia workspace to
create a definition of the process (i.e., a process schema).
At this stage, to avoid being to restrictive to people working
on an emerging process structure, access control to the
workspace can be very loose (i.e., all team members may
have the same set of access permissions to the workspace).
When more detailed process structure emerges, more fine-
grained access permissions to the process structure are
assigned to various roles. The need for access control for
some shared artifacts may change overtime. This change

40

can be supported by moving the artifacts from one sub-
workspace into anther that has different access permissions.
A sub-workspace may be assigned to multiple roles that
have different access permissions to different parts of
information structure or functions in the workspace.
Through such access control, the consensus on the working
procedure and job allocation may be maintained.

The process definition together with its role-based access
permissions can be reused by all its process instances. The
process instances created from the definition can also be
performed by other teams without the need to repeat access
permission assignment. Just assigning a team to the
composite representing a process instance would be
sufficient if the team members can take all the roles needed
for the process. If one person taking a needed role is absent,
other people available for the same role in the team can take
over the work. If no people in the team can take a needed
role, then a new member can be brought in to take the role
and perform the job.

A TEAM-and-ROLE BASED ACCESS CONTROL MODEL
Conceptually, an access control model describes what a
protection state is and how protection state transitions occur
5141. The general subject-action-object based protection
state can be represented as a subset of the Cartesian product

of subjects, actions, and objects: P G S x A x 0. Subject s
is allowed to perform action a on object o, if there exists (s,

a, o) in P. Particular to RBAC, S is defined as a set of roles
rather than individual users. User u can perform action a

on object o, if there exists (r, a, o) in P, such that u E r.
This protection state representation corresponds to the
authorization relation in RDBMS [111.

The principle of dealing with collections of users in the
subject dimension by using the role concept, that earns the
advantage for RBAC, can also be applied to its object and
action dimensions. In the following subsections, first our
conceptual protection state representation and general
access review procedure are introduced, and then the
categories developed for each dimension of the protection
state representation are described. Finally, the authorization
specification and the issue of authorization policies for
administrating the role-based access model itself are
discussed.

Protection State and Access Review

Conceptually, the protection states (i.e., permissions) in our

access model can be represented as: P c S x A x 0 x T x
E, where S is a set of roles, A is a collection of function
categories, and 0 is a collection of object semantic types or
instances of these types. The additional dimensions of T
and E are context-dependent ones. They denote a
collection of teams and a collection of process states
respectively. User u can perform function f on object

instance i, if there exists (r, a, i, t, e) in P, such that u E r, f
E a, u E t, team(i) = t, state(i)‘= e. Otherwise the access

can also be granted if there exists (r, a, o, t, e) in P, such

that u E r, f E a, i E o, u E t, team(i) = t, and state(i) = e.

Here team(i) denotes a team that is assigned to access
object instance i; while state(i) denotes the process state of
object instance i. Corresponding to the above conceptual
representation, in our model an access control list (i.e., a list
of authorized roles and their permitted function categories)
is used for representing access permissions for hypermedia
objects. An access-review procedure is performed to grant
or deny an access request. This procedure includes two
parts: first the context dependent dimensions of T and E are
checked, and then, the normal access control list is checked.

Subject Categories: Roles, Teams, and Individuals
To provide flexible access control, the advantages of user-
based, group-based, and role-based access control should
be combined. This can be achieved by using three types of
roles in a RBAC framework:

l Organizational roles: a collection of participants (users)
exhibiting a specific set of attributes, qualifications
and/or skills. They are the very roles that are supported
by most RBAC models. Typically, any of the
participants taking a particular organizational role has a
common set of permissions for performing the job
function that is indicated by the name of the role.
Organizational roles are usually assigned to actors in a
process schema to achieve a global effect on all process
instances of the schema. Examples of such roles are
“Software engineer”, “Hypertext researcher” and
“Division manager”.

. Teams: a collection of participants (users) working in
the same work unit or for the same project. They
correspond to teams or groups in an organizational
structure. Each team has a responsible person (head or
manager). Any of the participants joining a team shares
a common goal and may share a default set of
permissions for their cooperative work. The notion of a
team role is used to restrict access permissions to those
individuals who not only have the right organizational
roles but also are associated to the task via team
membership. In this way, it associates relevant
individuals to a specific group of object instances (e.g.,
to all task instances in a process instance). Examples of
such roles are “CONCERT DIVISION”, “TELE-
LEARNING GROUP”, and “CHIPS PROJECT
TEAM”.

l Personal roles (individuals and their delegates): a
collection of individuals acting for a person. Each
personal role has a responsible person that the role is
primarily representing. Personal roles represent
individuals, but they differ from individuals in that a
personal role is a collection (although in most time with
only one member). It may also include other members
that are named by the responsible person to act in their
name for some of the person’s job. Personal roles can
be used to create private workspaces. Personal roles are
also used in situations where user-based access control
is required. Examples of such roles are “haake” and
“wwang”.

41

Action Categories: Query, Update, Execute, and Assign
To reduce the conceptual overhead for introducing access
control into a cooperative hypermedia environment, we
divide functions of each object class that are available at the
user interface into four categories: Query, Update, Execute,
and Assign. These correspond to the widely used Read,
Write, Execute, and Own access modes in operating
systems. Query functions allow read-only access, such as
open a node (or follow a navigational link) and inspect
object attributes. The Update category includes object
creation and manipulation functions for non-process
objects. Of particular importance to cooperative process
support are the Execute and Assign categories. The Execute
category covers rights for process definition and execution,

such as triggering of state transitions and modification of
process structures. The Assign category includes functions
for access permission assignment and functions for
coupling shared aspects (such as shared scrollbar and
navigation controls). In this way, different access concerns
of information objects people manipulate in a process and
the process structure themselves can be managed using the
same RB AC framework.

Object Categories: Types, Instances, and Composites
In this dimension, objects of each class are divided into
many semantic types. These semantic types can be
implemented as object prototypes. Prototypes are initialized
instances of a class; they are used for creating other
instances. An instance created from a prototype inherits all
attribute values that have not been set in the instance.
Access permissions on prototypes affect all their instances.
These permissions can be overwritten for object instances
and they can be changed back to the inherited rights (by
setting the attribute for access rights to nil). In this way, the
advantage of type-based control and fine-grained instance-
based access control can be combined.

Wrappers as described in the problem analysis section can
be implemented as composite node types. They may
correspond to steps (tasks) in a process. The access
permissions for wrappers can be assigned when the
corresponding process steps are defined. Wrappers may
have different semantic types. They can also be nested and
component objects within wrappers can set their own access
rights if more fine-grained control is needed.

Context Categories: Teams and Process States

Context-dependent access control could be very
complicated. To make it simple, currently in our model only
responsible teams and process states of hypermedia objects
are included. Teams are assigned to composite nodes and
are inherited along the node nesting structure of the
composite nodes. Therefore, given any hypermedia object,
a team (or teams) working on it can be identified.

The process states of hypermedia objects are application-
specific, such as process states (ready, running, suspended,
completed) for task nodes, process transition states (true,
false) for process links, version states (frozen), and
document states (draft, stable, release). The state

information can be used for constructing various processes
from very formal workflow processes to very informal
process with only state-based notification support. For the
access review procedure to check upon these dimensions, a
list of states that prohibit functions of the certain Action
categories should be provided.

For other multimedia objects, such text and images, the
state dimension of Protection State is irrelevant and
therefore is ignored in their access review procedures.

Authorization Specification

The authorization specification in our approach follows the
typical two-step process of a RBAC model:

l User-Role assignment: Roles and users are created and
their attribute values are modified, and users are
assigned to or removed from various types of roles.
Both user and role in the model are represented by
objects with their own attributes. The attributes of users
include ‘name’, ‘login name’ and ‘qualification’. The
attributes of roles include ‘name’, ‘coordinator’, and
‘responsibility’.

l Permission-Role assignment: permissions are assigned
to roles either for an object type or for an object
instance. Roles with permissions on an object are called
authorized roles of the object.

For objects involved in a process (or any cooperative task),
there are two additional steps:

Role-Actor assignment: Roles authorized in the above
step are assigned to actors of each task in a process
(usually for task node prototypes, and sometimes for
task node instances). Actors refer to those authorized
roles that may be notified to perform the tasks.

Team-Task assignment: Teams are assigned to a
process instance (or any cooperative task). For
example, they might be assigned to the root node of a
process instance, and/or to its sub-task node instances.
The latter is important if the teams assigned at a higher
level of the task hierarchy differ from those at a lower
level. Given authorized roles, actors and teams as
defined in the above steps, two specific collections can
be defined (computed): authorized team members for a

task and authorized actors for a task. The authorized

team members are defined as (u authorized roles) n

(u teams) and the authorized actors are equal to (u

actors) n (u teams). They relate specific individuals
to specific object instances. This knowledge is used for
access review and notifying relevant individuals to take
over a task.

Administration Policies

Also important for authorization specification and access
review are administrative authorization policies. They
determine who is authorized to modify the allowed
accesses. In our model, by default an ownership policy and
a decentralized administration policy are adopted. Other
policies are possible. By default, a user is considered the

42

owner of the objects he or she creates. The owner can grant
and revoke access rights for other roles to the object. The
owner can also grant other roles the privilege of
administrating authorization for the object. If this done,
then the owner relinquishes his or her own assignment right
for the object. However, if all the roles revoke themselves
such rights, then the owner’s assignment right would
resume. In addition, a “super user” role is supported to by-
pass access control in exceptional situations. Private
workspaces can be created by owners or by using personal
roles. One person can play multiple roles and multiple
people taking different or the same roles can work together
in the same workspace in a cooperative session.

Three types of roles are managed differently. Personal
roles are managed by the responsible person (who takes the
‘Coordinator’ role of the personal roles when they are
created). Only the responsible person can name his or her
delegates. Team roles are managed by their managers (by
default, the creator of the team is the manager of a team
(i.e., Coordinator of a team role)). Organizational roles are
managed flexibly. Any individual taking any role in the
system can create new organizational roles, add members to
them, or remove members from them. The ‘Coordinator’
of the role (as recorded in the ‘coordinator’ attribute value
of the role by default the creator of the role) can modify the
attribute values of the role object.

In addition, an ‘any user’ role represents any users of a
system. Like ‘super user’, the permission assigned to ‘any
user’ is checked in the access review procedure before
those to roles and teams are checked. Audit is supported as
a deterrence of the misuse of the permission assignment
privileges [111.

IMPLEMENTATION IN CHIPS
CHIPS stands for Cooperative Hypermedia Integrated with
Process Support [8, 191. It is a cooperative hypermedia-
based process support system. It uses cooperative
hypermedia to model both the content of teamwork and the
working processes of the teamwork. Access control is an
important mechanism of the system to support various
shared hypermedia workspaces, including process spaces in
different formalities: i.e., from manually coordinated to
automated processes.

Strict access control often faces the tradeoffs between
security and task accomplishment, while a general tailorable
model often meets tradeoffs between flexibility and ease of
use. Although we tried to make our model simpler, to meet
various requirements in cooperative hypermedia
environments led to a still quite complex model for many
end users. Nevertheless, it is possible to layout simpler
models upon it, and there is still of quite amount of
flexibility. Therefore, we target two levels of users. One is
for application programmers or power users who can
understand the relatively low-level customization interface
for tailoring the model to meet their needs. The other is for
ordinary users who would rely on a predefined incarnation
of the model as a starting point. Such a simplified model

has been implemented in our CHIPS system. In the
implementation, default settings include a matrix defining
the mapping of functions into the Action categories and a
matrix defining in which states functions of the Action
categories for each relevant class of objects are permitted

The CHIPS system and its RBAC model are implemented
using our COAST toolkit [131. COAST supports a
Cooperative Model-View-Controller (CMVC) framework.
All application data objects modeled using the framework
automatically get transaction-based concurrency control,
coupling support, and prototype mechanisms. The
cooperative MVC paradigm supports the manipulation of
shared objects, e.g., in a whiteboard-style. All co-located
or distributed users can see the changes made by others
immediately.

In our implementation, an access control list (ACL) is
implemented as an attribute of each class of hypermedia
objects (such as node, link, and other multimedia objects),
which are sub-classed from the COAST Model class. A
method for access review is defined in the controllers of
corresponding objects under the COAST Controller class.
When an action is activated at the user interface, this
method is called. Among the four action categories, Update
implies Query. Execute implies Update and Query. Implied
rights are automatically set in the Permission-Role
assignment phase. This reduces some burden on the access
review phase.

Next, an example is given to present the user interface of
the tools for access authorization. The example is derived
from the previously described scenario.

EXAMPLES OF USE
The CHIPS system consists of several tools, i.e., the
hypermedia activity space browser and the hypermedia
schema editor. The user interface of each editor/browser
has seven major areas (see the lower window in Figure 1).
At the top is a title bar, which presents the name of the tool,
the name of the current node and the type of the current
page. Under the title bar is a system logo and a list of users
(represented by little pictures) who are currently working
together on the same page. On the right-hand side is the
current node label whose color indicates the state of the
current task node. The largest area in the middle displays
the content of the current page. To the left is a palette of
tools for navigation, editing, and task-related triggers. On
the right is a palette of hypermedia object types that are
allowed in the current page. Each instance of a node is
represented by a box, which carries its type as a little red
label and shows its name in the box. Links are represented
as arrows carrying their type name as a label, too. Color-
coding is used to signal the state of a task node, e.g. green
task nodes are active. The node type label is also used to
display planned task duration and end date as well as the
logic of preconditions for task node activation. Here, ‘&’
means AND-joint. Similarly, the letter ‘t’ (for true) and ‘f
(for false) at the end of link label denote the current value
of the trigger condition of the link.

43

Figure 1 shows in the lower window a schema for an
equipment purchase process. This process has three steps:
purchase request, purchase approval, and the actual
purchase task. The internal structure of the document to be
processed and transferred in the process is defined in the
first step of the process. As shown in the upper window of
Figure 1, the document has a form-like structure. Some of
its column items are hypertext nodes that may have their
own internal structures and may contain multimedia
contents. The process schema is created by multiple people
(here, users wwang and haake).

Figure 1. Process schema: composite type definition

At the initial stage, they change the process structure very
frequently. The access control at this stage has to be very
loose to be non-intrusive to people working on an emergent
process structure. Gradually, the structure is changed from
ordinary hypertext structure to a process structure with
specific task nodes and process links (see also [19]).
Finally, the created structure consists of one process task
node functioning as the root of the structure, and four
atomic task nodes representing each step. When a process
schema emerges and is ready to be instantiated, more tight
access control on the process schema becomes necessary.
This is important, because any change to it would affect all
of its instances. This kind of flexible handling of access
permissions to’an emergent process structure can avoid the
problem of formalizing a premature process and the
problem of trying to formalize an informal process
structure. The simplest way to loosen or tighten up access
control is to change the access permission of the root node
of the process schema. The root node serves as a wrapper
for all of its content, which may be a nested structure.

After a process structure is defined, other attributes (whose
values will affect all its instances) can be assigned. Among
these attributes are access control related and process
execution related attributes, such as ‘access rights’ and
‘actor’. These are to be set for each of the object prototypes

(that appear in the type palette). If required roles and users
for the process do not exist in the organizational context of
the system, new roles and/or users have to be created.
Figure 2 shows that a newly added user ‘schummer’ is
being assigned to the ‘Software engineer’ role. As
illustrated in Figure 2, different types of roles can be
recognized by their naming conventions. The ones in all
upper case are teams; the initial capital ones are

organizational roles; and ones in all lowercase are personal
roles. It is sometimes a problem to decide whether a team
needs to bring in new members to fill a needed role or just
to let a person take multiple roles (if he or she is capable
and has the time to take over the corresponding tasks). The
User-Role assignment tool can help here. By selecting a
team role, all roles available in the team and all members of
the team can be seen. By selecting a role, all the people
taking the roles can be seen, no matter which teams these
people belong to. By inspecting a user, all the possible roles
he or she can take is given. Thus, a team can act
appropriately.
. rl : ‘Wser-Rola Assignment Editor

.-!

rc.hs (Job &ump,:
,.‘. ‘..

- al Blected mta: uswa bb l&L+&

any “OBI
CHIPS PROJECTTEAM
COAST PROJECTTERM
CONCERTDlVlSlON
cscw rsDBarthel
txvwon meoager
Hardumreexpert
"yperme*lareSearChw
Javaexpert
Leamlng ezyxm
M"ltemad,a eF.pan

Figure 2. User-Role assignment: organizational context

Figure 3 shows user wwang, who is the owner (creator) of
the first step (the Request task) of the process, is using the
Permission-Role assignment tool to assign full permissions
of the task to ‘Hardware expert’ role and Execute
permission to ‘Software engineer’ role. The Query and
Update permissions that are implied by the Execute
permission are automatically set by the tool. He also sets
Query permission to the whole ‘CONCERT DIVISION’.
The internal structure of the task is a form as illustrated in
the upper window in Figure 1. The task node serves as a
wrapper for the form contained in it. Therefore, only users
who can open the node (with Query permission) can see the
form.

More fine-grained permission can be assigned to the
columns in the form. For instances, an Update permission
to the “Review” column in Figure 1 is assigned to the
‘Division manager’ role. Therefore, although many
members having the above mentioned three authorized roles
may read this page or comment on the purchase proposal
column (which has a multimedia page as its content), only a
‘Division manager’ can write in the “Review” column.

44

After the authorized roles are assigned for the first task,
user wwang assigns some of the authorized roles to be
‘actor’ of this type of task. In this case, ‘Hardware expert’
and ‘Software engineer’ roles are assigned to ‘actors’ of the
task. The actual performers of the task will be decided later
when a process instance is created and one or more team(s)
are assigned to the process instance.

Figure 3. Permission-Role assignment for a node type

For the second step (the Approval task) of the process, the
Update permission is assigned to the ‘Division manager’
role. For this task the ‘Division manager’ role is its only
actor. Therefore, when the form is passed from the Request
task (in the first step) into the Approval task node (the
second step) the access permission to the form changes
automatically (i.e., only ‘Division manager’ can access it).

The authorized role and actor of the third step “Purchase”
or “Denied” is assigned to the ‘Hardware expert’ role. If
the ‘Division Manager’ role approves the proposal,
hardware experts would be notified to carry out the
purchase and complete a brief report on the task.

Figure 4. Team-Task assignment for a composite node

After relevant attributes that have global effects have been
assigned; the process schema is ready for use. Users can
create an instance from it with a copy-as-template function.
The activity space launcher tool as illustrated by Figure 4
shows the root node of an instance of the process. User
wwang is assigning a team to the root node of the process
instance. This permits the access review procedure to

identify the authorized actors and authorized team
members, who will perform the tasks of the process.

After task-related attribute values that are local to this
instance have been assigned (by any roles with Execution
permissions), the process can be started by an actor. For
process consistency and record-keeping purposes, when a
task is completed, the task node is protected by our RBAC
mechanism (i.e., by its task state-related contextual
condition) to prevent any further changes.

CONCLUSION
In this paper, we presented an extended RBAC model for
cooperative hypermedia environments. This access model
extends the RBAC approach by

. adding the concepts of team role and personal role,

. introducing four categories of actions including process
control and sharing aspects,

. introducing two context dimensions to the protection
state representation for teams and states of tasks (or
processes),

. applying access control dynamically not only to object
types and instances but also to composites and nested
wrappers, and

. providing a cooperative environment for specifying
and applying access permissions.

Using our approach, the problems of applying RBAC to
cooperative hypermedia can be addressed:

By integrating a team-and-role-based organizational
context in the cooperative hypermedia system, it is
possible to apply the RBAC approach. This aids
changing teams, shifting responsibilities, and emerging
processes and hypermedia workspaces.

Using the wrapper approach and by defining access
permissions on the object type and instance levels
permissions can be flexibly assigned. By using
inheritance mechanisms, access permissions to
dynamic composites and for navigation between
composites can be computed.

Categorizing functions into few categories require
limited learning by end users. Furthermore, the
cooperative definition of access permissions should
facilitate understanding of access policies in the teams.

Context-dependent access control (i.e. when the access
permissions vary with the state of cooperation or the
state of the hypermedia workspace) is supported via
our definition of Protection State and the access review
procedures.

An example demonstrated how the extended RBAC model
is used in CHIPS. It enables teams to work cooperatively
and in a coordinated fashion on a shared information space.
Different styles of cooperation can be supported by using
emergent process definitions. The extended RBAC model
provides the necessary
access permissions.

support for dynamically adapting

45

Compared to related work our approach differs in several
aspects. In [181, each team has a set of roles that are
defined within the team. In our model, the concept ‘team’ is
used to identify relevant team members among authorized
actors and roles that are defined across teams. In the object
dimension, many access control models have used object
types and inheritance relationship between types and their
instances. In those models, types refer to object classes [11,
151 while in our model types refer to semantic object types
(or prototypes). This allows more fine-grained
categorization. In general, we tried to incorporate RBAC
into a cooperative hypermedia environment, that exhibits
the simplicity virtue of a RBAC model, rather than making
major changes that may make it too much complicated for
users to understand.

Our approach can be applied to any cooperative
hypermedia environment that is built on shared information
spaces. Currently, our model has been implemented in the
CHIPS cooperative hypermedia system using the COAST
framework. Using CHIPS in our group has led to some
early observations: (1) managing changing team
membership and new types of information has become
easier; (2) in the case of emerging process structures, the
wrapper concept has eased the dynamic adaptation of
access permissions to changing document spaces; (3) the
set-based representation of user-role relationship is simple
and flexible for dynamic organization structures. However,
how to specify constraints between roles needs to be
addressed.

Our next plans include testing the applicability of our
model in a more realistic setting (i.e. outside of our group).
We are also working on including the extended RBAC
models and tools into the COAST kernel system. This
would make the access control features available to all
applications built on COAST. Finally, we want to
investigate alternative policies and flexible ways to select
and apply them in different situations.

ACKNOWLEDGMENTS

The author wants to especially thank J&g Haake for his
concrete suggestions and constructive comments on this
paper. Thanks are also due to Christian Schuckmann and
the anonymous referees for their very helpful comments.

REFERENCES

Akscyn, R., McCracken, D., Yoder, E. KMS: A
distributed hypermedia system for managing knowledge
in organizations, Communications of the ACM, 31, 7,
820-835, 1988.

Atluri, V., and Huang, W. An authorization model for
workflows. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, 122- 136, 1992.

Baker, D.B., Barnhart, R.M., and Buss, T.T. PCASSO:
Applying and extending state-of-art security in
healthcarc domain, Proceedings of CSAC’95, 1997.

4.

5.

6.

7.

8.

9.

Bertino, E., Ferrari, E., and Atluri, V. A flexible model
supporting the specification and enforcement of role-
based authorization in workflow management systems.
Proceedings of ACM RBAC’97, 1997.

Edwards, W.K. Policies and roles in collaborative
applications, Proceedings of CSCW’96, 1 l-20, 1996.

Ellis, C.A., Gibbs, S.J., and Rein, G.L. Groupware:
some issues and experiences, CACM, 34, 1, 38-58, 1991

Gronbaek. K, and Trigg. R. Design Issues for a Dexter-
Based Hypermedia System, Proceedings of ACM
Hypertext‘92, pp. 19 l-200, 1992

Haake, J. M., and Wang, W. Flexible support for
business Processes: Extending cooperative hypermedia
with process support, Proceedings of GroupP7, 341-
350, Nov. 1997.

Ramaswamy, R., Sandhu, R. Role-Based Access Control
Features in Commercial Database Management Systems.
In Proceedings of NISSC’98, 1998

10. Sandhu, R. Roles Versus Groups in Workshop
Summary, ACM RBAC Workshop’95, pp. I-25, 1995

11. Sandhu, R. and Samarati, P. Authentication, access
control, and audit, ACM Comput. Surv. 28, 1, 241-243,
March 1996.

12. Sandhu. R. Rationale for the RBAC96 family of access
control models. In Proceedings of ACM RBAC’97,
1997

13. Schuckmann, C., Kirchner, L., Schtimmer, J., and
Haake, J.M. Designing object-oriented synchronous
groupware with COAST, In Proceedings of the ACM
CSCW ‘96, 30-38, Boston, 1996.

14. Shackelford, D.E., Smith, J.B., and Smith, F.D. The
architecture and implementation of a distributed
hypermedia storage system, Proceedings of ACM
Hypertext’93, l-13, 1993.

15. Shen, H. and Dewan, P. Access control for collaborative
environments, in Proceedings of ACM CSCW’92, !992.

16.Sheth, A. From contemporary workflow process
automation to adaptive and dynamic work activity
coordination and collaboration, in SIGGRUOP Bulletin,
18, 3, 17-20, 1997.

17.Sikke1, K.: A Group-based authorization model for
Cooperative Systems, Proceedings of ECSCW ‘97, 345-
360, Sept., 1997.

18,Thomas, R.K. Team-based access control (TMAC): A
primitive for applying role-based access controls in
collaborative environments, ACM RBAC’97, 1997.

19.Wang, W. and Haake M.J. Flexible Coordination with
Cooperative Hypermedia, Proceedings of ACM
Hypertext’98, PP. 245-255, June, 1998

46

