Towards a UML Profile for Data Intensive Applications

Abel Gémez, José Merseguer
Departamento de Informatica e
Ingenieria de Sistemas
Universidad de Zaragoza
Maria de Luna 1, 50018 Zaragoza, Spain

{ abel.gomez | jmerse } @unizar.es

ABSTRACT

Data intensive applications that leverage Big Data technolo-
gies are rapidly gaining market trend. However, their design
and quality assurance are far from satisfying software engi-
neers needs. In fact, a CapGemini research shows that only
13% of organizations have achieved full-scale production for
their Big Data implementations. We aim at addressing an
early design and a quality evaluation of data intensive appli-
cations, being our goal to help software engineers on assess-
ing quality metrics, such as the response time of the appli-
cation. We address this goal by means of a quality analysis
tool-chain. At the core of the tool, we are developing a
Profile that converts the Unified Modeling Language into a
domain specific modeling language for quality evaluation of
data intensive applications.

CCS Concepts

eSoftware and its engineering — Unified Modeling
Language (UML); Specification languages; eInformation
systems — Computing platforms;

Keywords

Unified Modeling Language (UML), UML Profiles, Data-
Intensive Applications, Model-Driven Engineering (MDE)

1. INTRODUCTION

Data intensive applications that use Big Data technologies
such as Hadoop MapReduce or stream processing [18] are
important in many application domains, for instance, pre-
dictive analytics or smart cities. However, a Capgemini re-
search [4] shows that only 13% of organizations have achieved
full-scale production for their Big Data implementations.
The H2020 DICE project [3] aims at defining a quality-
driven framework for developing data intensive applications.
The DICE development approach follows the principles of
model-driven development [9], being the Unified Modeling

Elisabetta Di Nitto, Damian A. Tamburri
Politecnico di Milano
Piazza Leonardo da Vinci 32
Milan, Italy
{ elisabetta.dinitto |
damianandrew.tamburri } @polimi.it

Language (UML) [17] the DICE choice for design. There-
fore, providing the ability to continuously re-architect data
intensive applications designs based on quality improvements
such as performance or reliability.

The DICE approach allows reasoning about qualities in
terms of data properties (e.g., data volumes) and data us-
age patterns (e.g., read rates or write rates). These data
characteristics will be introduced in the UML designs by
means of a new profile [11], called DICE Profile. This pa-
per presents the DICE profile, its challenges, its architecture
and its conceptualization.

The OMG Model-Driven Architecture [16] contemplates
different abstraction layers for modeling: the Platform Inde-
pendent Model describes the general architecture and behav-
ior of the software while hiding the underlying platform; the
Platform Specific Model refines the previous one by adding
information related to a specific platform. Stemming from
these principles, the DICE Profile will consider three ab-
straction layers, called DPIM, DTSM, DDSM. The DICE
Platform Independent Model (DPIM) supports the specifi-
cation of source data format, computation logic synchronisa-
tion mechanisms and quality requirements. The DICE Plat-
form and Technology Specific Model (DTSM) is a refinement
of the previous one and it includes some technology specific
concepts, both for computation logic and data storage. Fi-
nally, the DICE Deployment Specific Model (DDSM) is a
further specialisation of the DTSM that includes complete
information of the technology in use and the application de-
ployment.

For quality assessment, the DICE profile will rely on two
already existing UML profiles, namely the standard MARTE
profile (Modeling and Analysis of Real-time and Embedded
Systems) [8] and the DAM profile (Dependability Analysis
and Modeling) [2]. The MARTE profile will enable DICE to
assess performance, while the DAM profile is its counterpart
for enabling reliability assessment.

The rest of the paper is organised as follows. Section 2
overviews the approach carried out for constructing the pro-
file. Section 3 summarizes the architecture of the DICE
profile. Section 4 presents the conceptual model support-
ing the DPIM layer. Section 5 describes the DPIM level of
the DICE profile. Section 6 illustrates the use of the DICE
profile and its performance analysis capabilities. The paper
finally offers a conclusion drawing next steps on the DICE
profile development.



2. APPROACH OVERVIEW

For constructing a technically correct high-quality UML pro-
file that covers the necessary concepts according to data in-
tensive applications and corresponding Big Data technolo-
gies, several steps need to be followed. First, conceptual
models for each abstraction level, i.e. DPIM, DTSM and
DDSM, are needed. We have carried out this step by care-
fully reviewing the abstract concepts for modeling data in-
tensive applications. Hence, we have obtained the abstrac-
tions for the DPIM level, which then conform the DICE do-
main model at DPIM level, Section 4 presents such model.
Later, we have reviewed the different Big Data technologies
addressed by DICE (e.g., Hadoop, Spark or Storm) and we
have defined the abstractions of interest, consequently ob-
taining the DICE domain model at DTSM level, which is
not reported in this paper for space reasons. Finally, the
last level, DDSM, is ongoing work. An initial presentation
of these models is provided in [6].

As a second step, we realized the need of introducing fresh
concepts for quality assessment since the DICE DPIM do-
main model initially just offers concepts for describing an
architectural view. Therefore, we searched in the litera-
ture for existing UML profiles that leverage quality con-
cerns, and decided to incorporate MARTE and DAM. Our
task was to select from the domain models of MARTE and
DAM those metaclasses of interest for supporting our spe-
cific needs on assessment. Later, we studied how to integrate
such metaclasses and the already developed DPIM domain
model. Consequently, we gained a final domain model which
integrates all needed features: applications abstractions at
DPIM level and behavioral abstractions for quality assess-
ment.

As a third step, the DICE profile at DPIM level was de-
fined. Following technical advise on profile construction [7,
10], we needed to map the concepts of the DPIM domain
model into proper UML profile constructors, i.e., stereotypes
and tags. In particular, for the DPIM level profile we have
designed: (i) the DICE Library, containing data intensive
applications specific types; and (ii) the DICE UML FEuxten-
sions (stereotypes and tags). The objective was to introduce
a small yet comprehensive set of stereotypes for the software
designer.

As a fourth and last step, we conducted a DPIM profile as-
sessment by identifying a set of requirements based on three
case studies from different application domains (fraud de-
tection, acquisition of news from social sensors, vessel traffic
management) and checking if they were met by the profile.
If a requirement was not met, we went back to the previous
step in order to refine it. Therefore, we followed an itera-
tive process for the profile definition. This paper does not
present the profile assessment step.

3. PROFILE ARCHITECTURE

Figure 1 offers a high-level view of the DICE profile organ-
isation, which basically contains the DICE Library and the
DICE UML Eaxtensions. From MARTE we apply the NFPs
and VSL sub-profiles (defined below), while from DAM we
import the DAM Library which also imports the MARTE
Library. The DICE Library, described in Section 5, contains
basic and complex types to describe data intensive applica-
tions.

DICE

£ DICE_Library

DAM «import» . «import
«import»

£ DICE_UML_Extensions |

MARTE

Figure 1: High-level view of the DICE profile

The DICE UML Eaxtensions package, also described in
Section 5, will provide the domain expert with a set of
stereotypes to be applied at model specification level, i.e.,
the stereotypes necessary to represent the different system
views using UML. We have organised the extensions accord-
ing to the DICE modeling levels, as proposed in Fig. 2.
Therefore, we are proposing three sub-profiles, DPIM, DTSM
and DDSM. The DTSM sub-profile is organised in packages,
one package per technology, all them inherit from a DTSM-
Core that offers useful extensions for all technologies.

The MARTE profile consists of three main parts: MARTE
Foundations, MARTE Design Model and MARTE Analysis
Model. For our purposes the Analysis Model is of inter-
est since it enables performance and schedulability analy-
sis of a system, being the former our target. The Analy-
sis Model consists of a Generic Quantitative Analysis and
Modelling (GQAM) profile and its specialization, the Per-
formance Analysis and Modelling (PAM) profile. In ad-
dition, MARTE owns an outstanding feature, the Value
Specification Language (VSL), for specifying the values of
constraints, properties, and stereotype attributes, particu-
larly related to Non Functional Properties (NFP). Finally,
MARTE also defines a library of primitive data types, a set
of predefined NFP types and units of measures.

The DAM profile addresses the dependability (reliability,
availability, safety and maintainability) modeling of real-
time and embeded systems (RTES) with UML. It is im-
portant to note that the DAM profile is a specialization of
the GQAM profile. As the DICE profile, DAM consists of
a library and a set of extensions to be applied at model
specification level.

DICE::DICE_UML_Extensions

£ DPIM

1\ «import»

F5 DTSM-Core

«import» «import»
mport> > <

£ DTSM-Hadoop | B2 DTSM-Spark
£ DDSM

Figure 2: DICE UML Extensions package



@ DPIM ﬁ DIAElement
= id : EString

———

g [ QoSRequiredProperty

=1 operator : Operator
= value : EDouble = 0.0

[0.."] diaelement

[0..*] gosrequiredproperty
= metric : EString ’

| [ simpleElement |

| [ CompositeElement

A[O..‘] isComposedOf

| [ CommunicationChannel |[0..'] subscribeTo | | |

‘ = targetTech : ChannelTechnology Z|§

[0..*] publishTo

E ComputeNode

[0..*] readFromDataSource

EEl DataSource [ DataSpecification |

[1..1] dataspecifi

= targetTech : ComputeTechnology
= procType : ProcessignType

= dataModel : EString

———

n
=1 description : EString
= dataFormat : DataFormat

[ storageNode

= sourceType : SourceType

| [ SourceNode |

‘ = sourceType : SourceType

[0..*] wirtesOn

£ Operator “ ComputeTechnology “ ChannelTechnology

“ DataFormat “* SourceType % ProcessignType

Figure 3: An excerpt of the DPIM Domain Model

4. DPIM DOMAIN MODEL

DICE identified a set of core concepts, at the DPIM layer,
for designing data intensive applications, both at the archi-
tecture level and at the behavioral one. Fig. 3 depicts the
fundamental concepts that constitute a data intensive ap-
plications. This model constitutes an initial asset and the
first step towards defining the DICE profile. Moreover, de-
signers may use the identified core architecture elements to
quickly put together the structural view of their Big-Data
application, highlighting and tackling concerns such as data
flow and essential high-level processing properties (e.g., rate,
properties provided and required by every component, etc.)
as well as key data processing needs (e.g., batch, streaming,
etc.).

The DPIM includes all concepts that are relevant for struc-
turing a data intensive application, then allowing, to define
the high level topology of the application. More in partic-
ular, the metamodel in Fig. 3 shows that elements of data
intensive applications are essentially aggregates of two sets
of components: ComputeNode and DataSource. The Com-
puteNode is basically responsible for carrying out computa-
tional tasks like map, or reduce in MapReduce. One impor-
tant attribute of ComputeNode is procType that shows the
processing type of Big Data, i.e., batch processing or stream
processing. Moreover, the ComputeNode is associated to
CommunicationChannel to represent communication chan-
nels of publication and subscription roles in the application.
The CommunicationChannel in DPIM is a representation
of Governance and data Integration which mainly includes
the technologies responsible for transferring the data, like
message broker systems. The DataSource itself, further spe-
cializes into StorageNode and SourceNode. The SourceNode
role is to provide data for processing. In other words, the
SourceNode represents the source of data which are coming
into application in order to being processed. The attribute
sourceType further specifies the characteristics of source.
The ultimate goal of a Big Data application is to process the
data that have high volume and velocity. So the SourceNode,

and ComputeNode are in DPIM since there are the essen-
tial part of each and every data intensive application. The
SourceNode is the entry point of data into application and
the ComputationNode is where data would process. The
third key element in the DPIM domain model is the Stor-
ageNode. As its name may suggest the StorageNode repre-
sents the element which is responsible for storing the data,
either for long term or not. The concept of StorageNode
in DPIM mainly corresponds to the database, in some case
it could be filesystem also. The other salient elements in
the model are DataSpecification and QoSRequiredProperty,
which are annotation stubs to support the specification and
subsequent evaluation of the type and format of data and
the QoS of data intensive applications, respectively.

Our DPIM domain model is then useful for representing
architectural views of data intensive applications. However,
the capabilities for defining QoS and behavioral properties in
UML designs are mainly inherited from aforementioned pro-
files, namely MARTE and DAM. Therefore, we need to com-
bine the DPIM conceptual model with MARTE and DAM
conceptual models for getting a profile that accounts for all
design views: architectural and behavioral. Next section de-
velops the DICE profile, at DPIM level, by leveraging the
previous forces.

5. A PROFILE FOR DATA INTENSIVE AP-
PLICATIONS AT THE DPIM LEVEL

Fig. 4 shows an excerpt of the DICE profile at DPIM level.
For its construction, we have followed design principles and
guidelines proposed by Selic [10] and Lagarde et al. [7]. In
particular, we applied such principles to the domain model
described in the previous section, enriched with MARTE
and DAM abstractions for addressing behavioural and qual-
ity concerns.

For reading Fig. 4, elements annotated as «Stereotype»
are DICE stereotypes. Those with white background were
purposely created for the DICE profile, while the light gray



«Metaclass»

«Metaclass» «Metaclass»
Message Extend Dependency
«Metaclass»
Include
«Stereotype»

DaConnector
DAM::DAM_UML_Extensions::System::Core)

T «Stereotype»

DiceChannel

«Metaclass» « > «Metaclass» «Metaclass»
Instar ification| ConnectableElement Lifeline Classifier Connector
«Metaclass» \ «Stereotype»
Property | g Resource «Metaclass»
MARTE::MARTE_Foundations::GRM) Association
<Stereotype» «Stereotype»
DaComponent StorageResource
DAM::DAM_UML_Extensions::System::Core) MARTE::MARTE_Foundations::GRM
[E3 + elementSize: NFP_Integer [0..1]
«Stereotype»
«Stereotype» DiceComponent
DiceSourceNode = n - NFPF o «Stereotype»
+ throughput: NFP_Frequency [0.. DiceStorageResource
= + sourceType: SourceType [0..1] _[> (=) + type: ComputationType [0.1] .g —
=+ rate: NFP_Frequency [0..1] & + targetTech: TechType [0.1] =l + respondsTo: DiceDataSpecification [0..1]
= + procType: ProcessingType [0.1] [=1 + crudRate: NFP_Frequency [0..1]

=1 + rate: NFP_Frequency [0..1]
= + messageBroker: String [0..1]
=1+ channelDescription: DiceChannelSpecification [0..1]

Figure 4: An excerpt of the DICE DPIM Profile

ones are inherited from DAM and the dark gray ones from
MARTE. Finally, those classes annotated as «Metaclass»
correspond to those standard UML metaclasses that may
be extended by the DICE profile stereotypes.

In the following, we describe the rational behind some of
the stereotypes to exemplify how the guidelines for creat-
ing a profile has been applied. Abstract classes, e.g., DI-
AElement and DataSource, do not map into stereotypes,
nor the class representing the model itself, i.e., the DPIM
domain class. On the other hand, classes of interest can be
either transformed into stereotypes or datatypes. For exam-
ple, StorageNode is transformed into DiceStorageResource
stereotype. In this case, we also inherited from the Stor-
ageResource MARTE stereotype, since the resource storage
concept was already present in MARTE, although not ini-
tially tailored for the domain of data intensive applications.

«EPackage, ModelLibrary»
=1 DICE _Library
«EPackage»

B3 Complex_DICE_Types
«EPackage»

E3 Data_Types

«DataType»
DiceDataVolume
[= + volume: NFP_DataSize [0..1]

«DataType»
DiceDataSpecification
=+ description: String [0..1]
[E3 + size: NFP_DataSize [0..1]
E3 + refModel: RefType [0..1]
[E3 + refDataFormat: RefDataFormatType [0..1]

«DataType»
DiceChannelSpecification
=1 + rate: NFP_Frequency [0..1]
[E3 + size: NFP_DataSize [0..1]

Figure 5: The DICE Library::Complex DICE_Types:
:DataTypes package

A case of a domain class that has been transformed into a
data type is DataSpecification, then creating DiceDataSpeci-
fication in the DICE_Library::Complexz_DICE_Types::Data-
Types package (see Fig. 5). This data type will be useful
for specifying tagged values related to data formats, data
sizes and reference models, as in the case of the respondsTo
tagged value of DiceStorageResource. In fact, following the
design principles aforementioned, associations in the domain
model can be transformed into tagged values. The respond-
sTo tagged value aims to represent the dataspecification as-
sociation between StorageNode (inherited from DataSource)
and DataSpecification in the domain model.

Finally, it is important to highlight how the QoSRequired-
Property domain concept has been represented in the DICE
profile. As stated in Section 3, MARTE provides both the
VSL language and the NFP framework to specify values of
non-functional properties. Thus, QoS requirements that in
the domain model are expressed using the QoSRequired Prop-
erty class, are expressed in the profile using tagged values
of some NFP type.

6. THE DICE PROFILE IN ACTION

This section illustrates the DICE profile capabilities for spec-
ifying data intensive applications at the DPIM level. Also,
it illustrates how the annotated UML design, which repre-
sents such application and its specific data properties, pro-
vides the grounds to carry out performance assessment of the
very same application. It is important to say that the DICE
tool-chain implements the DICE profile and the assessment
capabilities for easily guiding the developer through the dif-
ferent phases of the specification and quality analysis. In
a further use case, the DICE tool-chain will also incorpo-
rate deployment, testing, and acquisition of feedback data
through monitoring and data collection.

6.1 Using the DICE Profile for Modeling

Performance evaluation is traditionally carried out using sce-
narios, i.e., typical system paths of usage. Therefore, at
DPIM level we need models specifying the system behavior



Sample Activity Diagram
«DiceComponent, GaScenario»

«GaStep»

= «GaStep»
prob=$p2 o P
Al
star g
«GaWorkloadEvent» «GaStep> A3
pattern=(closed= prob=$p3 hostDemand=3s

(population=3))

Figure 6: Sample activity diagram

of the data intensive application. We can do this by model-
ing directed graphs that express dependencies between com-
putation and/or data, for which the UML AD is suitable.
At this DPIM level, the modelling is done independently
of the target platform and technology, and, for this reason,
the DICE profile heavily relies on the DAM and MARTE
profiles.

As a simple example we model the internal behavior of a
single component of a data intensive application by exploit-
ing a UML activity diagram (AD), see Fig. 6. The diagram
consists of an initial node (Start), a final node (End), and
three activities (A1, A2 and A3). Two of the activities (A2
and A3) are executed alternatively after A1.

The example illustrates the use of four DICE stereotypes:

DiceComponent, GaScenario, GaWorkloadEvent and GaStep.

The DiceComponent stereotype specifies that the diagram
represents a component behavior. The GaScenario stereo-
type, imported from MARTE, specifies that the diagram
represents a generic quantitive analysis scenario and it en-
ables the use of parameters for the performance analysis of
the scenario, like the variables $p2 and $p3, in fact this is a
feature provided by the MARTE’s VSL standard language.
The GaWorkloadEvent stereotype is used to specify the sys-
tem workload, it is applied to the initial node and here it
determines that the system will receive a closed load with
an initial population of 3 jobs. The GaStep stereotype is
used to specify the service demand requirements for activi-
ties A1, A2 and A3, they will require 1, 2 and 3 seconds of
host demand in average, respectively. Finally, the applica-
tion of GaStep to the flows between decision nodes, A2 and
A3, is useful for specifying the system routing rates. In this
case, it indicates the probabilities of executing either A2 or
A8, which are $p2 or $p3 respectively.

6.2 Exploiting the DICE Profile for Quality
Assessment

While the annotated UML model is useful for the engineer
to specify both the workflow of the application and its data
characteristics, it is not suitable for an assessment of its
performance requirements. Thus, a strategy is to transform
the annotated UML model into a suitable formalism, e.g.,
stochastic Petri nets [1], that allows this kind of analysis.
Stochastic Petri nets are a graphical formalism for the mod-
eling, analysis and evaluation of concurrent systems. Fig. 7
depicts the Petri net automatically obtained by the DICE
tool-chain from the AD in Fig. 6. In the Petri net, rounded
nodes represent places, while the rectangular ones represent
transitions. Black transitions correspond to immediate tran-
sitions, i.e., those with no firing delay, while white transi-

W(ts) = $p1 %/CA;\ T(ts) = 2
AN

Figure 7: Generated Petri net

tions correspond to timed transitions, i.e., those with an
exponentially distributed firing time.

As for the DICE annotations in Fig. 6, they are treated
as follows: (i) the closed pattern of the system’s workload
defined for the Start initial node implies that the Petri net
should be evaluated under a steady-state assumption, then
we need to “close” the Petri net through transition, ts; (ii)
the workload population determines the initial marking of
the Petri net, in this case associated to the place S; (iii)
the hostDemand associated to each activity determines the
timing — T(t;) — of its corresponding transitions, t2, t3 and
ta; and (iv) the probability associated to the flows between
the decision node and A2 and A8 determines the weight
— W (t;) — of transitions t3 and t4. Using this Petri net,
an analysis tool, such as GreatSPN [5], may provide accu-
rate results, e.g., response time or throughput, to reasoning
about the performance characteristics of the system modeled
in UML. We are currently carrying out work to validate the
results obtained with our Petri net.

7. CONCLUSIONS AND FUTURE WORK

DICE is a project that, following the model-driven engineer-
ing paradigm, aims to define a quality-driven framework for
developing data intensive applications leveraging Big Data
technologies. A key asset of DICE is the so called DICE
profile, which offers the ability to design such application
using UML and a set of additional stereotypes to charac-
terize specific data intensive features. DICE-profiled mod-
els are the cornerstone of the DICE framework, since they
are exploited by the DICE tool-chain to guide developers
through the whole application lifecycle (e.g., development,
quality analysis, deployment, testing, monitoring, etc.).

In this paper, we have presented the DICE profile, its
foundations and its architecture; and we have outlined how
DICE-profiled models can be exploited in further software
development phases. The DICE profile has deep roots on
other two profiles, namely MARTE and DAM, and has been
structured to fit different abstraction levels (DPIM, DTSM,
DDSM) similarly to the MDA standard. For its construc-
tion, we have followed a guided process as recommended by
state of the art works [7,10] for building quality profiles.

The DICE profile has been implemented and integrated
within Papyrus UML [14], a UML modeling tool based on
the well-known Eclipse [15] integrated development environ-
ment. The DICE domain models and the DICE profile are
publicly available under an open source license in their cor-
responding repositories, namely the DICE-Models Reposi-
tory [12] and the DICE-Profiles Repository [13].



In the near future, we will focus on the completion and
validation of the DICE profile. Specifically, the DTSM level,
that still lacks of some technology-specific packages (such as
those for Storm and Oryz), while the DDSM layer still needs
to be addressed.

8. ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation framework programme
under grant agreement No. 644869 (DICE), the Spanish
Government (Ministerio de Economida y Competitividad) un-
der project No. TIN2013-46238-C4-1-R and The Aragonese
Goverment Ref. T27 — DIStributed COmputation (DISCO)
research group.

9. REFERENCES
[1] M. Ajmone-Marsan, G. Balbo, G. Conte, S. Donatelli,

and G. Franceschinis. Modeling with Generalized
Stochastic Petri Nets. John Wiley and Sons, 1994.

[2] S. Bernardi, J. Merseguer, and D. Petriu.
Model-driven Dependability Assessment of Software
Systems. Springer, 2013.

[3] G. Casale et al. DICE: Quality-driven Development of
Data-intensive Cloud Applications. In Proceedings of
the Seventh International Workshop on Modeling in
Software Engineering, pages 78-83, NJ, USA, 2015.
IEEE Press.

[4] M. Colas, I. Finck, J. Buvat, R. Nambiar, and R. R.
Singh. Cracking the data conundrum: How successful
companies make big data operational. Technical
report, Capgemini consulting, 2014. URL:
https://www.capgemini-consulting.com/cracking
-the-data-conundrum.

[5] Dipartamento di informatica, Universita di Torino.
GRaphical Editor and Analyzer for Timed and
Stochastic Petri Nets, Dec., 2015. URL:
www.di.unito.it/~greatspn/index.html.

[6] M. Guerriero, S. Tajfar, D. Tamburri, and E. Di Nitto.
Towards a model-driven design tool for Big Data
architectures. In Proceedings of the 2nd International
Workshop on BIG Data Software Engineering, 2016.

[7] F. Lagarde, H. Espinoza, F. Terrier, and S. Gérard.
Improving UML profile design practices by leveraging

(12]

(13]

(14]
(15]

(16]

conceptual domain models. In 22nd IEEE/ACM
International Conference on Automated Software
Engineering (ASE 2007), Atlanta (USA), pages
445-448. ACM, November 2007.

UML Profile for MARTE: Modeling and Analysis of
Real-Time and Embedded Systems, June 2011.
Version 1.1, OMG document: formal/2011-06-02.

B. Selic. The pragmatics of model-driven
development. IEEE Software, 20(5):19-25, 2003.

B. Selic. A Systematic Approach to Domain-Specific
Language Design Using UML. In Tenth IEEE
International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2007), 7-9
May 2007, Santorini Island, Greece, pages 2-9. IEEE
Computer Society, 2007.

The DICE Consortium. Design and quality
abstractions - Initial version. Technical report,
European Union’s Horizon 2020 research and
innovation programme, 2016. URL:
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/u
ploads/sites/75/2016/02/D2.1_Design-and-quali
ty-abstractions-Initial-version.pdf.

The DICE Consortium. DICE Models Repository,
Apr., 2016. URL:
https://github.com/dice-project/DICE-Models.
The DICE Consortium. DICE Profiles Repository,
Apr., 2016. URL:
https://github.com/dice-project/DICE-Profiles.
The Eclipse Foundation. Papyrus, 2016. URL:
https://eclipse.org/papyrus/.

The Eclipse Foundation. Website, 2016. URL:
http://wuw.eclipse.org/.

The Object Management Group (OMG).
Model-Driven Architecture Specification and
Standardisation. Technical report, . URL:
http://wuw.omg.org/mda/.

Unified Modeling Language: Infrastructure, 2011.
Version 2.4.1, OMG document: formal/2011-08-05.
P. Zikopoulos and C. Eaton. Understanding Big Data:
Analytics for Enterprise Class Hadoop and Streaming
Data. McGraw-Hill Osborne Media, 1st edition, 2011.


https://www.capgemini-consulting.com/cracking-the-data-conundrum
https://www.capgemini-consulting.com/cracking-the-data-conundrum
www.di.unito.it/~greatspn/index.html
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D2.1_Design-and-quality-abstractions-Initial-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D2.1_Design-and-quality-abstractions-Initial-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D2.1_Design-and-quality-abstractions-Initial-version.pdf
https://github.com/dice-project/DICE-Models
https://github.com/dice-project/DICE-Profiles
https://eclipse.org/papyrus/
http://www.eclipse.org/
http://www.omg.org/mda/

	Introduction
	Approach Overview
	Profile Architecture
	DPIM Domain Model
	A Profile for data intensive applications at the DPIM level
	The DICE Profile in action
	Using the DICE Profile for Modeling
	Exploiting the DICE Profile for Quality Assessment

	Conclusions and future work
	Acknowledgments
	References

