
A Tool for Verification of Big-Data Applications

Marcello M. Bersani, Francesco
Marconi, Matteo Rossi

DEIB, Politecnico di Milano, Italy
{firstname.lastname}@polimi.it

Madalina Erascu
Institute e-Austria Timisoara & West University of

Timisoara, Timisoara, Romania
merascu@info.uvt.ro

ABSTRACT
Quality-driven frameworks for developing data-intensive applica-
tions are becoming more and more popular, following the remark-
able popularity of Big Data approaches. The DICE framework,
designed within the DICE project (www.dice-h2020.eu), has the
goal of offering a novel profile and tools for data-aware quality-
driven development. One of its tools is the DICE Verification Tool
(D-VerT), which allows designers to evaluate their design against
safety properties, such as reachability of undesired configurations
of the system. This paper describes the first version of D-VerT,
available open source at github.com/dice-project/DICE-Verification.

CCS Concepts
•Software and its engineering→ Formal software verification;

Keywords
Formal verification; temporal logic.

1. INTRODUCTION
Big Data is a prominent area that researches innovative solu-

tions to support the entire life-cycle of data-intensive applications
(DIAs), i.e., software and hardware infrastructures able to process
huge amounts of information over frameworks which require high
computational power. The area gained considerable relevance in
the recent years, promoted by the pervasive spread of applications
like, for instance, Facebook or Twitter.

Defining methodologies and frameworks for the development of
DIAs leveraging Big Data technologies is nowadays fundamental.
The DICE project [1] tackles this issue by defining techniques and
tools for the data-aware quality-driven development of DIAs. In
the DICE approach, designers model DIAs through UML diagrams
tagged with suitable annotations capturing the features of Big Data
applications, and in particular their topology. A topology provides
an abstract representation of a DIA through directed graphs, where
nodes are of two kinds: computational nodes implement the logic
of the application by elaborating information and producing an

outcome; input nodes bring information into the application from
the environment. The semantics underlying the topology typically
changes depending on the target Big Data technology.

The DICE Verification Tool (D-VerT) checks whether a given
topology reaches an unwanted configuration; i.e., whether it allows
for bad executions that do not conform to some non-functional re-
quirements. It focuses on the analysis of the effects of the incor-
rect design of timing constraints which might cause the following
anomalies: (i) latency in processing the information; and (ii) mono-
tonic growth of the size of used memory.

This paper presents the architecture of the D-VerT tool, the ver-
ification approaches it supports, and some experiments carried out
for applications based on Apache Storm (storm.apache.org).

2. VERIFICATION TOOL OVERVIEW
Verification (see Fig. 1) is performed on annotated UML models

which contain all the necessary information related to a topology.
To this end, D-VerT receives a DTSM (DICE Technology Specifi-
cation Model, “DICE-profiled Model” in Fig. 1), a UML diagram
which captures, through ad-hoc stereotypes, the technological as-
pects of a DIA platform that the designer is going to adopt for de-
ploying the application. At the DTSM level, the designer specifies
the topology and all the relevant parameters that are needed for the
verification, e.g., the number of processes that can be run in a com-
putational node or the emit rate of the source nodes. The designer
also selects a property to be checked, using suitable templates in
the main IDE of the DICE framework.

The DTSM annotated model and the property to be verified are
converted into a formal model that is suitable for verification. D-
VerT is designed to support different verification approaches which
are tailored to express various kind of properties. Based on the
property to verify and on the type of model the user specifies, D-
VerT creates through a series of transformations a file containing
the respective formal model (“Logic Model” in Fig. 1), selects
the appropriate solver and runs the verification. All the parameters
defining the verification approach to use and, possibly, other con-
figuration settings related to the model-checker are selected by the
user on the IDE when specifying the running configuration. This
“configuration model” is provided as input to D-VerT along with
the DICE-profiled UML Model. The outcome produced by the
solver is interpreted and translated so that it can be sent back to
Verifier-GUI which, finally, outputs the result. In particular, D-
VerT shows whether the property holds or not and, if the property
is violated, it presents a trace of the system that violates it.

2.1 Tool Architecture
D-VerT is composed of three modules, as shown in Figure 1.
• DTSM2Json converts DTSM diagrams into an intermediate

http://www.dice-h2020.eu/
https://github.com/dice-project/DICE-Verification
http://storm.apache.org/


Figure 1: Verification workflow

description of the topology specified in a JSON file.
• Json2MC instantiates the semantics of the DIA – specified

in the DTSM diagram and encoded into a JSON file – in a
file containing the formal model expressed in either temporal
logic (TL) or first order logic (FOL).
• Outcome Parser processes the result provided by the solver

and shows it in a graphical form on the IDE.
Each topology, specified through a DTSM diagram, is encoded into
a JSON object by the DTSM2Json component. DTSM2Json loads
the annotated UML file and extracts the relevant model features
based on the DICE profile. These features, plus the configuration
parameters provided by the user, are serialized in a JSON file.

Json2MC has been designed to be extensible and configurable.
It is composed of a core component, Model Configurator, and a set
of model templates, which embed the syntax and semantics of the
different models that have to be produced to run the formal verifi-
cation. Model Configurator reads the topology description encoded
in JSON format and instantiates the formal model by rendering the
selected template, according to the input configuration.

The result of the verification task can be a “counter-example”
trace describing a computation that violates the desired property, or
the message no such trace exists. When the tool returns a counter-
example trace, the designer needs to inspect it to better understand
the system behaviour, hence what led to the violation. To make the
output of the tool more user-friendly, the Outcome Parser module
assists the user by providing a graphical interpretation of the result.
Figure 2 provides an example of output produced by the tool. Each
of the two plots refers to a specific computation node.

2.2 Verification Approaches
D-VerT supports two verification approaches based on two dis-

tinct logical formalisms. Extending the tool to other formalisms is
however easy, thanks to the D-VerT architecture that allows para-
metric model-to-model transformations to be configured by means
of templates. We here summarize the approaches in D-VerT.

Bounded satisfiability checking. Given two temporal logic for-
mulae, one modelling the temporal behaviour of a topology, and
one capturing the property to be analysed, D-VerT checks whether
it is possible to satisfy the conjunction of the former with the nega-
tion of the latter (i.e., whether there is an execution that violates
the property); if it is not possible, the tool returns “unsatisfiable”
(UNSAT), otherwise it returns an execution trace, i.e., a counterex-
ample. In the former case (UNSAT result), we can conclude that
the property holds in the model. For this approach, D-VerT relies
on the Zot (github.com/fm-polimi/zot) tool as verification engine.

Reachability checking. In this approach, a topology is defined
through an array-based system that undergoes verification of a safety
problem. A model comprises: (i) a set of system transitions and

Figure 2: Example of D-VerT output trace

an initial configuration; (ii) a formula that defines the set of un-
safe (i.e., “undesired”) states. The result is either SAFE (“unde-
sired” configurations can not be reached in the model) or UNSAFE
together with an unsafe trace (“undesired” configurations can be
reached in the model and the output trace shows how). For this ver-
ification approach, D-VerT uses MCMT (users.mat.unimi.it/users/
ghilardi/mcmt/) and Cubicle (cubicle.lri.fr).

2.3 Experimental Results
We used D-VerT, and in particular the bounded satisfiability

checking approach, to verify different topologies ranging from a
simple DIA to a more complex topology (named “focused-crawler”)
provided by an industrial partner within the DICE consortium. In
both cases, we verify the property “all queues associated with the
computational nodes have a bounded occupation level”. If the prop-
erty holds, then we claim that all bolts are able to process the in-
coming information in a timely manner. A counterexample that
violates (i.e., disproves) the property corresponds to an execution
of the topology where at least one queue grows with an unbounded
trend. This behavior can be easily expressed as a bounded satisfia-
bility problem with a formula constraining the size of the queues.

Figure 2 shows two of the graphical output traces provided by
D-VerT (referring to the computational nodes expander and wpDe-
serializer from the given topology). It can be noticed, by looking at
the quantity of information stored in queues over time (black solid
lines), how they both represent a periodic model in which a suffix
(in gray) of a finite sequence of events is repeated infinitely many
times after a prefix. After ensuring that the trace is not a spurious
model, we concluded that the expander queue, having an increasing
trend in the suffix, is unbounded.

We carried out experiments on different topologies with various
configurations to evaluate the performance of the tool. The results
are reported at dice-project.github.io/ DICE-Verification.

Acknowledgements
Work supported by Horizon 2020 project no. 644869 (DICE).

3. REFERENCES
[1] G. Casale, D. Ardagna, M. Artac, F. Barbier, E. D. Nitto,

A. Henry, G. Iuhasz, C. Joubert, J. Merseguer, V. I. Munteanu,
J. Pérez, D. Petcu, M. Rossi, C. Sheridan, I. Spais, and
D. Vladušič. DICE: Quality-driven development of
data-intensive cloud applications. In Proc. of MiSE, pages
78–83, 2015.

https://github.com/fm-polimi/zot
http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/
http://cubicle.lri.fr/
http://dice-project.github.io/DICE-Verification

	Introduction
	Verification tool overview
	Tool Architecture
	Verification Approaches
	Experimental Results

	References

