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ABSTRACT
In order to retrieve the secret key in a side-channel attack, the attacker
computes distinguisher values using all the available data. A profiling
stage is very useful to provide some a priori information about the
leakage model. However, profiling is essentially empirical and may not
be exhaustive. Therefore, during the attack, the attacker may come up on
previously unseen data, which can be troublesome. A lazy workaround
is to ignore all such novel observations altogether. In this paper, we show
that this is not optimal and can be avoided. Our proposed techniques
eventually improve the performance of classical information-theoretic
distinguishers in terms of success rate.

1. INTRODUCTION
The field of cryptography is currently very sensitive as it deals with

data protection and safety. Thus, in order to assess the security of
cryptographic devices, it is crucial to know and test their weaknesses.
For example, the Advanced Encryption Standard (AES) [1] is renowned
as trustworthy from a mathematical point of view—there is currently
no realistic way to cryptanalyze the AES-128. However, it is possible
to break the 128-bit secret key byte by byte using side-channel analysis
(SCA). SCA exploits the physical fact that the secret key leaks some
information out of the device boundary through various “side-channels”
such as power consumption or timing—number of clock cycles to
perform a given operation. These leakages, correctly analyzed by SCA,
yield the secret key of a device.

A good side-channel attack needs a good leakage model. Timing, for
example, can be modeled easily when the implementation is unbalanced:
Several successful attacks [2, 3, 4, 5] exploit a timing leakage in the
conditional extra-reductions of Montgomery modular multiplications.
Some conditional operations can also happen in AES, e.g. in field
operations, as for instance discussed in [6, Alg. 1]. Even when the code
is balanced—a recommended secure coding practice—some residual
unbalances in timing can result from the hardware which executes the
code. Indeed, processors implement speed optimization mechanisms
such as memory caching and out-of-order execution. As a consequence,
it is not possible to predict with certainty how timing leaks information.
The attacker is then led to make predictions about the way the device
leaks.
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In this paper, we consider side-channel attacks that are performed in
two phases:

1. a profiling phase where the attacker accumulates leakage from a
device with a known secret key;

2. an attacking phase where the attacker accumulates leakage from
the device with an unknown secret key.

This type of attack is known as a template attack [7]. It has been
shown [7] to be very efficient under three conditions: (a) leakage
samples are independent and identically distributed (i.i.d.); (b) the noise
is additive white Gaussian; and (c) the secret key leaks byte by byte,
which enables a divide-and-conquer approach. For some side-channels,
such as power or electromagnetic radiations, condition (b) is met in
practice. However, for timing attacks, the noise cannot be Gaussian as
timing is discrete. Moreover, the noise source is non-additive in this
case, since it arises from complex replacement policies in caches and
processor-specific on-the-fly instructions reordering.

The first proposed profiled timing attack is the seminal timing attack
of Kocher [8]. The same methodology can be used on AES, as noted by
Bernstein in 2005 [9]. Further works used the same method [10, 11, 12].
To our best knowledge, all these works consist in profiling moments,
such as the average timing under a given plaintext and key. However, it
is known [7] that the best attacks should use maximum likelihood.

In this paper, as illustrated in Tab. 1, we focus on a profiling where
the distribution is kept, and is not reduced to its moments. The attacker
computes distributions using histogram methods. These distributions
are then used to recover the correct secret key.

Table 1: State-of-the-art on profiled timing attacks

Profiling method Reference articles
Moments [9, 10, 11, 12]

Distributions Our paper (Caution about empty bins)

The discrete nature of timing leakage leads to an empty bin issue
which appears when a data value in the attacking phase has never been
seen during the profiling phase. Based on profiling only, this data should
have a zero probability, which can be devastating for the attack. One
known workaround is to use kernel distribution methods [13] to estimate
probabilities since the smoothing can be such that no empty bins remain.
However, this method has very large computational complexity and its
performance highly depends on ad-hoc choices of several parameters
such as kernel type and bandwidth.

Contributions.
In this paper we show that even when all requirements (a), (b), (c)

above are not present, timing attacks with incomplete profiling can be



achieved successfully by adapting the maximum likelihood distinguisher
and keeping the histogram method for probabilities estimation. We build
six different distinguishers which are all good answers to the empty
bin issue. For some of them, new histograms are built, such that the
empty bin issue totally disappears. Furthermore, we compare these
distinguishers and show which one of them is the best in every specific
context. Finally, we provide some theoretical results proving how
optimal some of the distinguishers can be.

Organization.
The paper is organized as follows. Section 2 provides mathemati-

cal tools to understand distinguishers and notations. Section 3 intro-
duces new distinguishers that are suitable in the context of empty bins.
Section 4 provides simulations for these distinguishers and Section 5
investigates real attacks on an ARM processor. Section 6 concludes.

2. MATHEMATICAL DERIVATIONS
2.1 Notations and Assumptions

We consider a side-channel attack with a profiling stage and use the
following notations:

• during the profiling phase, a vectorbt of bq text bytes is sent and
the profiler garners a vector of bx measurements;

• during the attacking phase, a vectoret of eq text bytes is sent and
the attacker gathers a vector ex of leakage measurements—also
customarily known as traces;

• we use simplified notations t, q and x when discussing either
profiling data or attacking data;

• the probability of a vector x with i.i.d. components xi is denoted
by P(x) = ’iP(xi);

• we define the following sets:

1. cX , cT , fX and fT are the sets of possible values of com-
ponentsbx,bt,ex andet, respectively;

2. X = cX [fX and T =cT [fT ;
3. K is the set of all possible values for the key k.

• k and t are made of n bits (in particular, they are “bytes” when
n = 8).

Here all sample components of one vector are i.i.d. and belong to some
discrete set. Typically, X is a finite subset of N and T is equal to
{0,1}n.

In the profiling stage, the secret key bk⇤ is known and variable. In the
attacking phase, the secret key ek⇤ is unknown but fixed. Further, we
assume that xi depends only on ti and k⇤ for all i = 1,2, . . . ,q, in the
form:

xi = y(ti�k⇤) (i = 1,2, . . . ,q) (1)

where � is the XOR (exclusive or) operator and y is an unknown func-
tion which may contain noise, masking and other hidden parameters1.

Furthermore, in this paper, we use of the notation nx,t to denote the
number of occurrences of (x,t). Thus we can write

bnx,t = Âbq
i=11bxi=x,bti=t bnx = Âbq

i=11bxi=x,

enx,t = Âeq
i=11exi=x,eti=t enx = Âeq

i=11exi=x.

1The AES meets the secret and the text byte through a xor (SubBytes)
executed in a fixed number of clock cycles. However, the rest of the
AES consists in table lookups and other miscellaneous operations which
are difficult to model and need different amounts of time to execute,
hence the use of unknown function y.

where 1A = 1 if A is true, = 0 otherwise.

DEFINITION 2.1 (PROBABILITIES). We define three2 different
types of probabilities P, bP and eP. P is the actual (real) underlying
probability distribution, but it is generally not available and has to be
estimated by either bP or eP.

• bP is computed using the profiling data:

bP(x,t) = 1
bq

bq

Â
i=1
1bxi=x,bti=t =

bnx,t

bq
, (2)

bP(x) = 1
bq

bq

Â
i=1
1bxi=x =

bnx
bq
. (3)

• eP is computed using the attacking data:

eP(x,t) = 1
eq

eq

Â
i=1
1exi=x,eti=t =

enx,t

eq
, (4)

eP(x) = 1
eq

eq

Â
i=1
1exi=x =

enx
eq
. (5)

In practice, as the secret key leaks through the function via a XOR
(Equation (1)), we shall often consider P(x,t�k).

For a fair comparison between distinguishers, Standaert et al. [14]
have put forward the success rate as a measure of efficiency of a given
distinguisher.

DEFINITION 2.2 (SUCCESS RATE). The success rate SR is prob-
ability, averaged over all possible keys, of obtaining the correct key.

SR=
1
2n

2n�1

Â
k⇤=0

Pk⇤(ek = k⇤), (6)

where ek is the key guess obtained by the distinguisher during the attack.

It has been proven [15, Theorem 1, equation (3)] that for equiprobable
keys the optimal distinguisher maximizes likelihood:

DOptimal(ex,et) = arg max
k2K

P(ex|et�k). (7)

In real life, however, the attacker does not know the leakage model per-
fectly and thus P(ex|et�k) is not available. In order to get an estimation
of P, we use the profiling data to build bP defined in Equation (2). This
is the classical template attack. The distinguisher becomes

DTemplate(ex,et) = arg max
k2K

bP(ex|et�k). (8)

This distinguisher is no longer optimal as it does not use the real distri-
bution P. However, if profiling tends to exhaustivity, bP and P will be
very close since by the law of large numbers,

8x,t bP(x,t) �!
bq!•

P(x,t).

In practice, it is convenient to use the logarithm arg max
k2K

logbP(ex|et�k).

In fact, since the samples are i.i.d., we have

P(ex|et�k) =
eq

’
i=1

P(exi|eti�k) and bP(ex|et�k) =
eq

’
i=1

bP(exi|eti�k).

2For the sake of evading the empty bin issue, we will also introduce yet
another notation “sPa” in section 3.1 (Equation (15)).



Therefore, the attacker computes

DTemplate(ex,et) = arg max
k2K

eq

Â
i=1

logbP(exi|eti�k) (9)

where the logarithm was used to transform products into sums for a
more reliable computation. However, we would like to avoid empty
bins for which bP(exi|eti�k) = 0, since otherwise, Equation (9) would not
be well defined.

2.2 About Empty Bins
The empty bin issue appears when there exists i 2 {1, . . . ,eq} and

k 2K such that eP(exi|eti �k)> 0 and bP(exi|eti �k) = 0. This may even
happen for the correct key hypothesis, leading to a wrong key guess
during the attack.

0

0.02

0.04

0.06

0.08

0.1

0.12

2200 2210 2220 2230 2240 2250 2260 2270 2280

Pr
ob

ab
ili

ty
b P(

x|t
�

k)

Value of x

Empty Bins

Figure 1: Empirical probability bP(x|t�k) for t = 0 and k = 67 and
bq = 2560000
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Figure 2: Empirical probability bP(x|t � k) for t = 0 and k = 149
and bq = 2560000

Figures 1 and 2 show how empty bins can look like after a profiling
phase3. We notice that some parts of the histograms are left blank, some

3Figures obtained with the STM Discovery Board presented in Section 5.
The unit of x is the “clock cycle”.

of them indicated by arrows. These timing values x are the “empty
bins”. Notice that no additional “binning” is needed as in the case of
continuous distributions. The figures also show that the noise is not
Gaussian as can be observed from the shape of the distribution.

The shortcoming of empty bins can be seen when evaluating the
likelihood. The attacker encounters a zero probability, which makes the
product vanish for the probability of a given key guess, even if many
traces are used. This multiplication by zero is not inherent to the attack;
it is rather a profiling artifact. In fact, with more profiling traces, the
empty bin would likely be populated. Thus the empty bin issue is a mere
side-effect of insufficient profiling, which results in an attack failure if
it is encountered in the computation of the likelihood of the correct key.

3. DISTINGUISHERS WHICH TOLERATE
EMPTY BINS

3.1 Building Distributions or Models
Before presenting the novel distinguishers in Subsection 3.2, we need

to define yet another other type of distribution known as a Dirichlet a
posteriori in a Bayesian approach.

The Dirichlet A Posteriori
In order to avoid zero probabilities, we use a method based on Dirichlet
Prior calculations [16, Section 1]. This method leads to a new distribu-
tion denoted by sPa , where a > 0 is a user-defined parameter whose
value (typically = 1) will be discussed next.

Let X be the set of possible values for x and T be the set of possible
values for t. For any x,, we set px,t = P(x,t) their joint probability and
p = (px,t)x,t . Prior to obtaining any trace, px,t is completely unknown
and we consider a Bayesian approach to estimate px,t .

1. We consider the following a priori: without further information,
we suppose that for all x,t,

sPa(x,t) =
ax,t

Âx0,t0 ax0,t0
,

where ax,t > 0 is an a priori parameter. To simplify we may
choose ax,t =a constant for all x,t. Let us suppose that p follows
a Dirichlet (prior) distribution, whose probability density function
is

f (p) =
G(Âx,t ax,t)

’x,t G(ax,t)
’
x,t

pax,t�1
x,t , (10)

where G is the Gamma function defined for x > 0 as

G(x) =
Z +•

0
tx�1e�t dt. (11)

The Dirichlet distribution can also be written as

f (p) =Na ’
x,t

pax,t�1
x,t , (12)

where Na =
G(Âx,t ax,t)

’x,t G(ax,t)
is a normalization factor. Notice that the

prior distribution is uniform when ax,t = a = 1 for all x,t.

2. Then suppose we know bx, ex,bt andet. We can now compute the a
posteriori probability

P(x,t|bx,ex,bt,et) =
Z

f (p,x,t|bx,ex,bt,et) dp.

By Bayes’ rule,

f (p,x,t|bx,ex,bt,et) = P(x,t|p,bx,ex,bt,et) f (p|bx,ex,bt,et).



As components xi and ti are i.i.d., we can write

f (p,x,t|bx,ex,bt,et) = P(x,t|p) · f (p|bx,ex,bt,et,t)

= px,t · f (p|bx,ex,bt,et)

Again by Bayes’ rule,

f (p|bx,ex,bt,et) = P(bx,ex,et,bt|p) f (p)
P(bx,ex,et,bt)

=
’x0,t02X ⇥T p

bnx0,t0+enx0,t0 (k)
x0,t0

P(bx,ex,et,bt)
f (p)

=
Na

P(bx,ex,et,bt) ’
x0,t02X ⇥T

p
bnx0,t0+enx0,t0+ax0,t0�1
x0,t0 .

We recognize another Dirichlet distribution with parameters
bnx0,t0+enx0,t0+ax0,t0 . Let Na 0 =

G(Âx0,t0 ax0,t0+enx0,t0+ax0,t0 )

’x,t G(ax,t+enx0,t0+ax0,t0 )
be the new

normalization constant for this distribution. We finally obtain

f (p,x,t|bx,ex,bt,et) = px,t ·Na 0 ’
x0,t02X ⇥T

p
bnx0,t0+enx0,t0+ax0,t0�1
x0,t0 .

(13)

Therefore,

P(x,t|bx,ex,bt,et) =
Z

px,t ·Na 0 ’
x0,t02X ⇥T

p
bnx0,t0+enx0,t0+ax0,t0�1
x0,t0 dp.

which is known as the Dirichlet a posteriori.

3. The integral can be easily expressed in terms of the Gamma
function:

P(x,t|bx,ex,bt,et) =
G(Âx0,t0 ax,t +bnx0,t0 +enx0,t0)

’x0,t0 G(ax,t +bnx0,t0 +enx0,t0)

⇥ ’x0,t0 G(ax,t +bnx0,t0 +enx0,t0 +dx,t)

G(Âx0,t0 ax,t +bnx0,t0 +enx0,t0 +dx,t)

which simplifies to

P(x,t|bx,ex,bt,et) = bnx,t +enx,t +ax,t

bq+eq+Âx0,t0 ax0,t0
.

This new distribution will now be noted:

sPa(x,t) = P(x,t|bx,ex,bt,et) = bnx,t +enx,t +ax,t

bq+eq+Âx0,t0 ax0,t0
. (14)

It is important to notice that for all (x,t) 2 X ⇥T , one has
sPa(x,t)> 0. In other words, sPa has no empty bin issue.

4. With sPa(x,t) we can calculate

sPa(t) =Â
x

sPa(x,t) =Â
x

bnx,t +enx,t +ax,t

bq+eq+Âx0,t0 ax0,t0

=
bnt +ent +Ât ax,t

bq+eq+Âx0,t0 ax0,t0
=

bnt +ent +at
bq+eq+Âx0 ax0

.

where at = Âx ax,t . The resulting conditional probability4 is

sPa(x|t) =
sPa(x,t)
sPa(t)

=
bnx,t +enx,t +ax,t

bnt +ent +at
. (15)

4We should normally have used the notation ebPa instead of sPa , but
found this too heavy and confusing, hence the use of sPa .

The Learned MIA Model
When bq is small, the model cannot be profiled accurately and bP is a bad
approximation of P. However, these profiled values ex andet can still be
useful yet they require a more robust distinguisher.

Distinguishers that compute models using profiling have already
been proposed. For example, [17] computes a correlation on moments.
However, correlations analysis may be sensitive to model errors [18].
Mutual Information Analysis (MIA) yields a distinguisher that can be
robust when models are not perfectly known [18, Section 4] but it
requires at least a vague estimation of the leakage model.

Since our function y is unknown, we can create a first-order model
by with the profiled data as

by(t�bk⇤) = Step
⇣ 1

nt
Â

i s.t. bti=t
bxi

⌘
(8t 2T ). (16)

The Step function is a function that ensures the non-injectivity of the
model. The simplest way to define Step would be the following:

Step(x) =
bd ·xc

d
(x 2R)

where d > 0—the greater d, the smaller the step size. This parameter d
has to be small enough in order to make the model non-injective [19].
In our case, we choose, for all our experiments, d = 1. With such a
model, it is possible to compute a MIA which successfully distinguishes
the correct key.

3.2 Robust distinguishers
In this subsection, we present several distinguishers that tackle null

probabilities. Some of these solutions seem quite obvious while others
are deduced from the notions presented in the preceding Subsection 3.1.

Hard Drop Distinguisher
The first naive method consists in removing all the traces which, for any
key guess, have a zero probability.

DEFINITION 3.1 (HARD DROP DISTINGUISHER). The hard drop
distinguisher is defined as followed:

DHard(ex,et) = arg max
k2K

Â
i2I

logbP(exi|eti�k), (17)

where I is defined as

I =
n

i 2 {1, . . . ,eq} | 8k 2K , bP(exi|eti�k)> 0
o
. (18)

Recall that bP, defined in Equation (2), is an empirical histogram esti-
mated on profiled data bx (along with corresponding textsbt).

The Hard Drop Distinguisher, as the name indicates, drops some data.
In very noisy cases, it may even drop most of the data.

Soft Drop Distinguisher
The second possibility is to drop values only for some keys. However, it
has to be done carefully because dropping a value in a product implicitly
implies a probability value of one. For this reason, instead of removing
the trace, we replace the zero probability by a constant which is smaller
than the smallest probability.

DEFINITION 3.2 (SOFT DROP DISTINGUISHER). We define the
Soft Drop Distinguisher as

DSoft(ex,et)= arg max
k2K

Â
i s.t. bP(exi|eti�k)>0

logbP(exi|eti�k) + Â
i s.t. Ph(exi|eti,k)=0

logg,

(19)



where g 2 R⇤
+ is a constant such that 8i,k 2 {1, . . . ,eq}⇥K , g 

bP(exi|eti�k). This means that we penalize data with zero probability. The
smaller g, the harder the penalty.

The Dirichlet Prior Distinguisher
The Dirichlet Prior Distinguisher uses the Dirichlet a posteriori distribu-
tions presented in Subsection 3.1.

DEFINITION 3.3 (THE DIRICHLET DISTINGUISHER). We define
the Dirichlet Distinguisher as:

DDirichlet(ex,et) = arg max
k2K

sPa(ex|et�k). (20)

REMARK 1. As can be seen in the construction of the Dirichlet a
posteriori, the Dirichlet distinguisher is a-dependent. It is important
to evaluate the influence of a over the success rate. In practice, a = 1
seems a natural choice since the corresponding prior is uniform, which
minimizes the impact of the a priori. In contrast, another value of a like
1/2 can be interpreted as an a priori bin count. We may also consider
scenarios where a ⇡ 0 to have the least possible impact to the modified
values of the histogram.

Offline-Online Profiling
The Dirichlet Prior Distinguisher is parameterized by a. As we dis-
cussed in Remark 1, we can choose any a so long as it is strictly positive
(the Dirichlet distribution would not be defined if a = 0). However, it
is interesting to study its asymptotical behavior as a vanishes:

lim
a!0

sPa(x|t) =
bnx,t +enx,t

bnt +ent
.

This distribution can be denoted as sP0(x|t) and resembles a profiling
stage that would start offline and continue online.

DEFINITION 3.4 (OFFLINE-ONLINE PROFILING). The Offline-
Online Profiled (OOP) distinguisher is defined as:

DOOP(ex,et) = arg max
k2K

sP0(ex|et�k) (21)

The OOP distinguisher seems easier than the Dirichlet prior distinguisher
since a is no longer in use. Of course, it also solves the empty bin issue
since for all (x,t)2X ⇥T , one has sP0(x,t)> 0.

Learned MIA Distinguisher
The Learned MIA Distinguisher is made with the profiled model func-
tion presented in Subsection 3.1.

DEFINITION 3.5 (THE LEARNED MIA DISTINGUISHER).
The Learned MIA Distinguisher is defined as:

DMIA_Learned = arg max
k2K

eI
⇣
ex; by(et�k)

⌘
, (22)

whereeI is the empirical mutual information [20].

Empty Bin Distinguisher
The empty bin Distinguisher is yet another intuitive solution based on
the idea that instead of avoiding null probabilities, we may take only
these into account. It is the key guess with the least number of null
probabilities that “should” be the correct key.

DEFINITION 3.6. The Empty Bin Distinguisher is defined as:

DEmpty_Bin(ex,et) = arg min
k2K

eq

Â
i=1
1bP(exi|eti�k)=0. (23)

The Empty Bin Distinguisher assumed that missing data contain more
information than actual (measured) data. More precisely, a drop should
normally not happen unless the guessed key is wrong, hence the key
guess with the least drops should be the correct key. Obviously, this
distinguisher is not effective anymore if no drop occurs for at least two
key guesses.

Further Remarks.
All these distinguishers use a profiling phase. Before comparing

them, we would like to make a priori discussion about their respective
efficiencies. As the Hard Drop Distinguisher does not take into account
some data, we may suppose that it will be the one with the least success
rate for a given number of traces. The OOP Distinguisher takes into
account two types of data: profiling and attacking data. Therefore, it
should be more efficient than other distinguishers. Lastly, we build the
Learned MIA Distinguisher in order to prevent model errors, such as
inaccurate profiling. In that case, we suppose that Learned MIA should
work better with few data during the profiling stage.

4. SIMULATED RESULTS
In this section, we present results obtained on a simulated model.

With these results, we can give a comparison of the proposed distin-
guishers.

4.1 Presentation of the Simulated Model
The simulated model is built as follows:

xi = Hw(SubBytes(ti�k⇤))+ui

= f(ti�k⇤)+ui = yi(k⇤)+ui,
(24)

where ui is a discrete uniformly distributed noise ui ⇠ U (�s,s),
SubBytes is the AES substitution box function, and Hw is the Hamming
weight of a byte.

This very simple leakage is used to compare distinguishers in the
case the attacker has no information about the model.

REMARK 2 (OPTIMAL DISTINGUISHER). The optimal distingui-
sher (7) can be easily calculated if the model is perfectly known, as

DOptimal(ex,et) = arg max
k2K

eq

’
i=1

ds (exi�Hw(SubBytes(eti�k))), (25)

where ds is defined such that ds (x) = 1 if |x| s and 0 otherwise. In
Figures 3, 4 and 5, we include the optimal distinguisher for reference,
to show how far the other curves are from the fundamental limit of
performance.

By construction, the leakage simulation (24) generates some traces
with zero probability but notice that there is no i such that P(xi|ti,k) = 0
for the correct key guess. This academic example is useful to compare
the distinguishers defined in Section 3.

4.2 Attack Results
We computed the success rates (6) of the various attacks for for

s = 24, n = 4 bits, and bq ranging from small to high values.
The only difference between Figures 3, 4 and 5, is that we have

increased the number of data during the profiling stage. When profiling
is bad (Figure 3), the best distinguisher is the Offline-Online profiling
distinguisher, while the Learned MIA Distinguisher is not as good as
was expected. When bq = 1 600 (Figure 4), all distinguishers improve.
Finally, when profiling is good (bq = 4 000, Figure 5) the best distingui-
sher is now the Empty Bin distinguisher, followed by the Soft Drop
distinguisher and the Offline-Online profiling.
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Figure 3: SR for bq = 320 and s = 24 on synthetic measurements
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Figure 4: SR for bq = 1 600 and s = 24 on synthetic measurements

0

0.2

0.4

0.6

0.8

1

0 125 250 375 500 625 750 875 1000 1125 1250

Su
cc

es
sr

ate

Number of traces eq

ML soft
ML hard

Off-On Attack
Optimal

Learned MIA
Empty bin

Figure 5: SR for bq = 4 000 and s = 24 on synthetic measurements

REMARK 3. In this very special case, we can show that the Empty
Bin Distinguisher can accurately approximate the Optimal Distinguisher.
Indeed, the actual probability is such that for all (x,t)2X ⇥T ,

P(x|y(k)) =
(

1
2s+1 if �s  x�f(t�k) s,
0 otherwise,

(26)

which is constant if x is in the appropriate interval. For the Empty Bin
Distinguisher,

bP(x|y(k))> 0 =) P(x|y(k)) = 1
2s +1

due to the leakage model. Therefore, we can predict that at least
bq = (2s +1)|Y | 1

min P(y) = 3 920 profiling traces are needed to make
sure that the Empty Bin Distinguisher becomes as efficient as the Opti-
mal Distinguisher. As profiling consists in random draws with replace-
ment, the DEmpty_Bin distinguisher is found very close to the DOptimal
distinguisher with bq = 4 000 profiling traces.

5. RESULTS ON REAL DEVICES
We have chosen to carry out a timing attack on an STM32F4 dis-

covery board [21]. One interesting aspect is that we do not make any
assumption on the model. In real life, the leakage model happens to
be much more complex than the one employed in simulations (e.g.,
Equation (24)). As will be seen, in practice empty bins appear even for
the correct key guess and for a “good” profiling phase. This observation
differs from the ideal case of our simulations carried out in the preceding
Section 4.

5.1 The ARM processor
We used a STM32F4 discovery board by STMicroelectronics. It

contains an STM32F407VGT6 microcontroller which has an ARM
cortex-M4 MCU with 1 MB flash memory for instructions and data,
and a 192 KB Random Access Memory (RAM). The RAM is divided
into three sections: one of 16 KB, another one of 112 KB, and a last
one consisting of 64 KB Core Coupled Memory (CCM). The CCM has
a zero flash wait state and is often used to store critical data such as data
from the operating system. Since the RAM is divided into three regions
the users are unable to make use of the 192 KB RAM as a continuous
memory block.

STM32F4 microcontrollers contain a proprietary prefetch module
(Adaptive Real-Time memory accelerator - ART accelerator). ART
accelerator contains an instruction cache which has 64 lines and a data
cache which contains 8 lines. The line size of both instruction cache
and data cache is 128-bits. The precise details about ART accelerator
(cache replacement policy and cache associativity) are not mentioned as
the module is an intellectual property of STMicroelectronics.

The STM32F407VGT6 microcontroller does not have either a CPU
cycle counter or a performance register to measure a cycle accurate
time. However the Data Watchpoint and Trace (DWT) unit has a cycle
accurate 32 bit counter (DWT_CYCCNT register) which can be used
for measuring the duration of critical operations. When processor runs
at 168 MHz, the DWT_CYCCNT register will overflow at every 25.5
seconds providing enough time window to measure the encryption / de-
cryption time for an adversary to measure the elapsed time without timer
overflowing. In practice, we collected timing data repeatedly within the
ARM, and then dump it as large data buffers sporadically. This modus
operandi allowed us to reach about 10000 measurements per second.

We use OpenSSL (version 1.0.2) AES as the cryptographic library,
where the SubBytes function is implemented with large 1 KB T-boxes.
The AES timing acquisition is illustrated in Figure 6. Before each
encryption we reset DWT_CYCCNT register. This yields the exact
timing of the AES execution. Of course, a real attacker would measure



a noisy timing using an external “chronometer”. However, our attack
models the best case for an attacker, hence bounds the security of the
analyzed implementation.

DWT_CYCCNT

DWT_CYCCNT

Figure 6: Measuring elapsed time for AES encryption

Time deviations for different configurations of instruction cache and
data cache are shown in Figure 7. We observe a huge time difference
when data cache is turned Off / On. Even though both IC and DC are
turned off, time still varies as the plaintext is changed.
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Figure 7: Time deviations for different configurations of Instruc-
tion Cache (IC) and Data Cache (DC). The horizontal axis holds
t 2 {0,1}8 and the vertical axis consists in corresponding x 2Z for
a given fixed key k⇤

5.2 Attack Results
As already noticed above, the leakage model is mostly unknown.

We only suppose that the text byte is mixed with the key through a
XOR operation. As a consequence, the optimal distinguisher (giving
the limit of performance) is not known. The SNR of the leakage is
Var(E(x|t))/E(Var(x|t)) = 0.4.

In Figure 8, we notice that Learned MIA is the best distinguisher
in the case of poor profiling. The Hard Drop Distinguisher is not
succeeding at all since it drops about 90% of the data.

Figure 9 presents the success rate for a better profiling stage. We
notice the following interesting improvements:

• The Learned MIA distinguisher is only slightly better than in
Figure 8. To reach 80% success rate, 1 100 traces are needed as
compared to 1 250 traces previously.

• The Soft Drop and Offline-Online distinguishers are the best
distinguishers in this scenario, with a small advantage for the Soft
Drop distinguisher.

• The Hard Drop distinguisher remains unsuccessful.
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Figure 8: SR for bq = 25 600 on real-world measurements
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Figure 9: SR for bq = 256 000 on real-world measurements

We notice that the Soft Drop Distinguisher has been established using
the g parameter defined in Equation 19 such that g = 1/eq.

Figure 10 is the continuation of Figure 9 with much more traces in
the profiling stage. The resulting profiling is very good and one may
consider that the approximation of P is tight. In this case, Soft Drop
and OOP Distinguishers are both very successful which seems natural
regarding the fact that bP has converged to the actual probability P.

As a conclusion to this study on the STM32F4 discovery board, we
have learned the following comparisons between the proposed distin-
guishers:

• when the profiling stage is poor, the best distinguisher is the
Learn MIA Distinguisher;

• when there is enough data in the profiling stage, the best distingui-
sher is the Soft Drop Distinguisher, closely followed by the OOP
Distinguisher;

• the Empty Bin Distinguisher converges to the optimal success
rate, but is not as efficient as previously in Section 4. This can be
explained by the fact that we skip a lot of data in the computation;

• the Hard Drop Distinguisher is the slowest to converge to 100%
success rate.

REMARK 4. When comparing Figures 9 and 10, we notice that the
Empty Bin distinguisher does not improve as the number of profiling
traces increases. An explanation that there is no more empty bins to be
filled between these two situations; then only a more precise estimation
of the probability would make the difference.
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Figure 10: SR for bq = 2 560 000 on real-world measurements

6. CONCLUSION AND PERSPECTIVES
We have derived several “information-theoretic” distinguishers as

possible solutions to the empty bin issue. Some of them, like the Dirich-
let Prior and the Offline-Online distinguishers, required the computation
of novel distributions. We have shown in particular that the empty bins,
previously believed to be an annoyance and dropped accordingly, can
turn out to be valuable assets for the attacker as long as they are treated
carefully.

We have also compared the various distinguishers under two frame-
works: a simulated test with synthetic leakage and real-world timing
attacks. In both cases, we noticed that the attacks outcome depends on
the quality of the profiling stage. A good profiling improves the results,
where the best distinguisher seems to be the Soft Drop Distinguisher. A
poor profiling makes the traditional distinguishers beak down. More
sophisticated solutions like Offline-Online Profiling and Learned MIA
distinguishers are very useful in this case.

The interesting aspect on the studied timing attack is that one does
not have to make any assumption on the leakage model. In addition, the
main advantage of the new distinguishers is that the empty bin issue is
completely solved. We also introduced distinguishers which can jointly
exploit offline and online side-channel measurements. As an interesting
perspective, our approach could advantageously be analyzed using the
“perceived information” metric recently introduced by Standaert et al.
in [22, Eqn. (1)].

Another perspective would be to compare our information-theoretic
attacks with attacks based on machine learning techniques. Surprisingly,
and contrary to results reported in other papers, our preliminary results
show that SCA based on support vector machines [23] has poor perfor-
mance, even when profiling with very few traces (bq is small), which
may be due to the univariate nature of the leakage.
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