This document is downloaded from DR-NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Efficient Screenspace Rendering for Area Lights

Koa, Ming Di; Johan, Henry
2016

Koa, M. D., & Johan, H. (2016). Efficient Screenspace Rendering for Area Lights. Proceedings
of the 33rd Computer Graphics International, 29-32.

https://hdl.handle.net/10356/81403

https://doi.org/10.1145/2949035.2949043

© 2016 The author(s), published by ACM. This is the author created version of a work that
has been peer reviewed and accepted for publication in Proceedings of the 33rd Computer
Graphics International, published by ACM on behalf of the author(s). It incorporates
referee’ s comments but changes resulting from the publishing process, such as
copyediting, structural formatting, may not be reflected in this document. The published
version is available at: [http://dx.doi.org/10.1145/2949035.2949043].

Downloaded on 28 Mar 2024 22:58:51 SGT

Efficient Screenspace Rendering for Area Lights

Ming Di, Koa
School of Computer Science and Engineering,
Nanyang Technological University
N4 Nanyang Avenue
02a-32, Singapore 639798
mdkoal@e.ntu.edu.sg

ABSTRACT

Efficient rendering of illumination from area lights in virtual
scenes has always proved to be challenging. We extend the
work of multi resolution rendering and Light Propagation
Volumes (LPV) to simulate direct and indirect illumination
from area lights respectively. To compute direct illumina-
tion, we create 2D multi resolution fragments to represent
the scene on the screenspace, in which higher resolution frag-
ments are created when normal, depth and visibility dis-
continuity are found. Our subdivision scheme performs a
sub-fragment visibility test (SFVT) within each fragment
and our proposed gradient aware screenspace subdivision
(GASS) algorithm accelerates the refinement by increasing
the number of subdivisions based on gradient differences.
We also propose a single pass screenspace irradiance up-
sampling scheme which uses Gaussian radial basis functions
(RBF) for interpolating scattered fragments. This reduces
artifacts caused by large fragments while also significantly
reducing the number of fragments that we require. Our indi-
rect illumination is computed by distributing a set of Poisson
sample points in the scene. Each LPV voxel performs a light
gathering operation on these samples and deposits them in-
ternally. Light intensity in the LPV is propagated simulating
indirect illumination from area lights. From experiments,
our techniques are able to run at interactive rates.

CCS Concepts

eComputing methodologies — Computer graphics;
Rendering;

Keywords

Computer Graphics; Interactive Rendering; Screenspace Ren-
dering;

1. INTRODUCTION

Efficient rendering of illumination from area lights has of-
ten been constraint by the integration of the visibility func-

CGI ’16, June 28-July 01, 2016, Heraklion, Greece

ACM ISBN -.
DOI: -

Henry Johan
Fraunhofer IDM@NTU, Nanyang Technological

University
NS1, 50 Nanyang Avenue
Singapore 639798

henryjohan@ntu.edu.sg

tion and radiance over the light surfaces. Direct illumination
from area lights produces varying illuminated regions and
these are usually visible as soft shadows. Indirect illumina-
tion created by area lights tends to produce color bleeding
effects. A complex scene with multiple objects of complex
geometry usually requires a large amount of visibility sam-
ples to produce a smooth image if an area light is present.

In this paper, we aim to handle dynamic lights and view-
points while efficiently rendering direct and indirect illu-
mination from area lights. Our paper draws inspiration
from the multi resolution [5] and Light Propagation Volumes
(LPV) [4] rendering. We present three main contributions
in this work.

e A screenspace sub-fragment visibility test (SFVT) for
checking visibility discontinuities. We also propose a
gradient-aware soft shadow (GASS) refinement frame-
work to skip refinement levels compared to former tech-
niques.

e A single pass upsampling method that approximates
shadow boundaries with scattered samples by radial
basis functions (RBF) interpolation. It is able to negate
errors caused by large fragments.

e An area lighting solution for LPV to produce indirect
illumination using Poisson samples.

2. RELATED WORK

Multi Resolution Algorithms: Direct illumination from
area lights is known to vary smoothly across flat regions.
Coarse sampling techniques such as multi resolution splat-
ting by Nichols et al. [5, 6] were devised to take advantage
of this property. Multi resolution splatting proposes to split
an image into patches known as fragments, where the frag-
ment size depends on the depth, normal and illumination
variations within the fragment. As illumination variation
decreases, the illumination on a fragment can be represented
using information from lower resolution fragments which re-
duces computation time.

Voxel Based Algorithms: Voxel based techniques use
a voxel structure to approximate illumination and scene in-
formation. They are also known for rendering indirect il-
lumination. In Crassin et al.’s Gigavoxels [3], a multi level
voxel structure is created by voxelizing the scene. During
rendering, a voxel cone [3] is used to traverse the voxelized
scene. Similarly, voxel cone tracing can also be used for ap-
proximating visibility, however their storage costs scale up
with accuracy exponentially. In Kaplanyan et al.’s Light

Direct lllumination

/7
[~~~

Screenspace
Rendering

Create Multi-Res
mipmap

SFVT & GASS

Depth, Curv. And
Light Culling Test

Fragments

N\

Single Pass
Upsampling

—}.

Generate
Irradiance Map

Compute
lllumination

Indirect lllumination

}
ﬁw Gatherin|
| ST
,/’ Poisson Samples SH Intensities LPV Process Render)
/' Albedo

Combined Image

Figure 1. The pipeline of our direct and indirect
contributions.

Propagation Volumes (LPV) [4], a similar voxel structure
is used to store lighting and geometric information. Their
voxel resolution is of magnitudes lower than the Gigavoxels
and indirect illumination is distributed throughout the vox-
els using a propagation process. In our work, we chose to
extend the LPV for indirect illumination because of its low
memory footprint and its computation efficiency.

3. SYSTEM DESIGN

Figure 1 describes an overview of our method. Our direct
and indirect illumination frameworks run separately. The
final render is a combination of direct and indirect illumi-
nation, multiplied by the albedo. We explain each stage
of our direct and indirect illumination pipeline in this sec-
tion. The direct illumination pipeline takes in screenspace
textures (depth, normal and albedo) as input and outputs
an irradiance texture. The irradiance texture will be mul-
tiplied by the albedo to obtain direct illumination similar
to a deferred shading pipeline. Whereas for indirect illu-
mination, Poisson samples are generated and ray gathering
is performed on those samples. The indirect illumination
pipeline also generates an output texture with every pix-
els corresponding to tri-linearly interpolated values from the
LPV.

3.1 Direct Illumination - Multi Resolution Re-
finement for Area Lights

3.1.1 Geometric Discontinuity and Light Culling

The first stage of multi resolution refinement receives a
depth and normal curvature discontinuity mipmaps as in
Nichols et al.’s work [5, 6]. Fragments with high geomet-
ric/depth discontinuities are refined. Fragments that passed
the geometric discontinuity stage can be further checked if
they receive any light through back-face culling. Fragments
that fail the light culling stage will have a zero value stored
in an illumination texture. The illumination texture stores
illumination information of fragments of different mipmap
levels.

3.1.2 Sub-Fragment Visibility Tests (SFVT)

Nichols et al. [5, 6], performed fragment refinement based
on visibility tests. In their work, they ray traced shadow rays
to a number of virtual point lights (VPLs) on the light source

illumination with area lights. Red boxes indicate our

in fragments within a 3x3 fragment neighbourhood. Next,
they used visibility bit comparisons in the 3x3 neighbour-
hood. If the number of visibility bits differs by a threshold,
the fragment would be refined into 4 finer fragments. Instead
of performing visibility tests for neighbouring fragments, we
perform a subdivision on the current fragment into 4 sub-
fragments, which are evenly divided areas within a fragment
used for visibility testing. This reduces our bit arrays from
9 to 4 and reduces the total number of visibility rays. In our
work, we use 1 bit as our difference threshold. The visibility
testing is done using a GPU ray tracer. Although less visi-
bility rays (16 per sub-fragment) as compared to Nichols et
al. [6] were used, this SFVT scheme still allows re-using of
visibility information for irradiance computation.

3.1.3 Gradient Aware Soft Shadow Refinement (GASS)

A standard implementation of fragment refinement would
split the fragment into 4 fragments of higher resolution. We
note that for cases with high bit discontinuities, this refine-
ment is rarely sufficient to capture the smooth transition in
visibility. Eventually, additional stages of refinement and
visibility testing would still be required. In our refinement
process (Figure 2)), we process a visibility gradient term for
each of the 4 sub-fragments, where the gradient term is de-
termined by finding the absolute difference (red arrows) be-
tween the previous sub-fragment and current sub-fragment.
A high gradient (>4) indicates that both current and pre-
vious sub-fragment would need to be subdivided to 4 frag-
ments. Once all needed fragments are generated, we can
compute the illumination of each fragment in the illumina-
tion texture. A maximum of 16 finer fragments instead of 4
can be generated from this stage. For fragments with zero
visibility bits, no refinement is needed and a zero value is
written into the illumination texture. This stage of produc-
ing fragments of different resolutions can be done using the
OpenGL transform feedback shader.

3.1.4 Additional Samples Generation

The single sample location in a large fragment center would
be insufficient to approximate regions with thin shadows.
Hence, additional sample points are added to the refinement.
In our case, we generate three finest resolution samples with
a certain specific pattern to maximize coverage. These three
samples of mipmap level 0 are positioned at the top-center,

Initial 4 Sub-Fragment
sub-fragments Visibility Test

0000 1111 16

0000 1un

0000 un

0000 un 0 14 *
- 0000 0010 -

0000 0001

0000 0000

0000 0000 2

Figure 2. Illustration of how gradients (red arrows)
are computed from the visbility information of 4 ini-
tial sub-fragments and later refined into 13 finer res-
olution fragments.

Compute Gradient 13 Fragments

top-left and left-center of the fragment. Additional samples
are only generated for fragments of mipmap level greater
than two. Figure 3(a) shows the placement of these new
samples (in red) and their stable regions (green) as com-
puted during SFVT. These additional samples enable ma-
jority of the fragments to have samples to be found along
its edges. For example, the 16x16 fragment is connected to
two 8x8 fragments on the right and has 4 additional samples
along the edge for interpolation. It is also connected to an-
other 16x16 fragment at the bottom edge, which provides it
with 2 additional edge samples. This allows lower resolution
fragments to be influenced by higher resolution fragments,
which are usually more accurate in value. Figure 3(b) shows
the additional fragments (in cyan dots) generated in our
work compared to Nichols et al. [5]. Only 182,041 fragments
were used in our work compared to 340,288 fragments in
Nichols et al. [5] for a 1024x768 resolution image.

g
\1

| | ’ ;
(a) Additional Samples Place- (b) Comparison
ment with Nichols [5]

Figure 3. (a) Three additional samples (in red) are
positioned in the 16x16 and 8x8 sized fragments.
Texels in green indicate the stable regions that were
computed using the visibility refinement. (b) Com-
parisons between fragments generated in our work
(top) and Nichols et al.[5] (bottom). Each fragment
is represented by a colored square tile.

3.1.5 Screenspace Single Pass Upsampling

After generating fragments and computing their irradi-
ance information in the illumination texture, the results
should be combined into a whole image of finest resolu-
tion, known as the irradiance texture. In previous work [6],
a multi pass upsampling algorithm performs bilinear inter-
polation upsampling and addition of illumination informa-
tion for each mipmap level starting from the coarsest res-
olution. The multi pass algorithm gives too much influ-
ence to fragments from lower resolution which leads to ar-
tifacts seen in Figure 4(a) as fragments from lower resolu-
tion would have errors propagating to the higher resolution

(a) Multi Pass Upsampling (b) Single Pass Upsampling
by Nichols et al. [5] - Ours

Figure 4. Results of irradiance texture from a
Sponza scene. (a) Larger fragments are able to influ-
ence smaller fragments despite being less accurate.
Artifacts appear as small holes near shadow bound-
aries. (b) Single pass algorithm reduces these arti-
facts by giving more weights to smaller fragments.

fragments. Although these errors can be removed by over-
refining such fragments [6], we demonstrate that these errors
can be negated using RBF interpolation while keeping frag-
ment usage low. We refer to Figure 4(b) for our results.

The full irradiance texture is generated by producing a
fragment thread for each texel. In this section, we refer the
texel of the final irradiance texture as a target texel. The val-
ues for fragments of high resolution (mipmap level 0 to 2)
can be directly copied into their target texel. Subsequently,
for target texels of mipmap level 3 and higher, basis func-
tions are created by selecting samples found along the edge
(in red) of the fragment shown in Figure 5. Scattered data
interpolation techniques [1] with Gaussian RBF are used as
they are guaranteed to produce continuous results. Three
basis functions, x;, are selected which overlaps the target
texel in Equation 1. The estimated irradiance value I (x) at
target texel x, can be evaluated by solving the weight w; for
each basis ¢. This can be done by solving the linear equation
in Equation 2a where w is a vector of weights, w;, and ®
is a correlation/distance matrix consisting of ¢ rows and j
columns of ®. I is a vector consisting of irradiance values at
samples x;j.

I(x) :Zwi@(\lemll), (1)

where
w==&"xI, (2a)
®;; = exp (—d*/C) (2b)

In Equation 2b, d is the L2 distance in texels between
the chosen sample location and the targeted texel. d is also
inversely scaled by the mipmap width of the target texel
giving samples from coarser resolution a higher variance. C
is a variance scaling factor, which we use C=2. In this work,
we use only 3 basis functions so that the inverse could be
easily calculated using the inverse function in OpenGL. For
target texels with only 2 basis functions, we only need to
do weighted interpolation using the function in Equation 2b
between 2 samples, x1 and X2 to produce:

(@(lIx = xal]) * I(x1) + P(llx = x2[) * I(x2))

I(x) = B(||x — x1]) + (||x — x2||)

®3)

o0 : ® @ Additional Samples
ole N
oo @ Sample Located at
e 575 Fragment Center
oo B Target Texel
°e {) .
® Continuous region
e oo created by RBF

Figure 5. Our upsampling scheme on a target blue
texel. The blue texel is computed by a weighted
sum of RBF created from its nearest samples. RBF
can be chosen from the green circles (fragment cen-
ters) and the red samples (additional samples). The
yellow region is the continuous region formed by the
selected three RBF.

3.2 Irlldirect Illumination with Poisson Sam-
ples

As the usual LPV scheme does not handle area lights,
our proposed solution generates a set of Poisson distributed
samples [2] around the 3D scene we are rendering. The illu-
mination for each Poisson sample is computed by performing
a gathering operation to the light source. Each gathering ray
that receives light will deposit a reflected light intensity (rep-
resented by spherical harmonics) into a voxel (illustrated in
Figure 1). Each voxel will be divided by the number of Pois-
son samples it received. The remaining processes follows the
standard LPV [4].

4. RESULTS AND LIMITATIONS

We show our results rendered in 1024x768 pixels, with 64
samples per fragment in Figure 6. Our images were rendered
with a Nvidia GeForce GTX980. The timings required to
compute indirect illumination is approximately 10 ms in the
rendered scene. The timings in Table 1 indicate the time
required for the different stages of our work. Timings for
visibility testing for our work includes SFVT and GASS.
The large discrepancies in irradiance timings between Fig-
ures 6 (a) and (b)[5] compared to the reference are due to
lesser fragments and visibility rays being re-used. Figures
6 (d) and (e) show the fragment maps. Further results are
available in our supplemental video.

The single pass upsampling algorithm produces certain
noisy artifacts. This is mainly due to artifacts caused by
extrapolation when using RBF as we cannot guaranteed to
find basis functions that overlap the target texel. However,
the single pass method uses lesser texture memory due to the
removal of intermediate textures that were formerly needed
in the multi pass upsampling approach. To improve accu-
racy of RBF interpolation, it is advisable to use more sam-
ples to create basis functions, however for the sake of GPU
efficiency, only 3 basis functions were used for this work.
Artifacts may also be present due to undersampling in the
presence of large area lights, in such cases, it is advisable to
use more than 16 visibility rays.

5. CONCLUSION

Our paper outlined a multi resolution approach that is
able to render direct illumination efficiently by culling off
large portion of unnecessary fragments. A single pass RBF
interpolation upsampling approach was proposed to reduce
impacts of shadow artifacts that were visible in the previ-
ous multi pass upsampling approach. We also proposed a
Poisson samples gathering approach to enable the LPV illu-

Table 1. Rendering Statistics - Direct Illumination
timings and information. VT refers to visibility test-
ing and subdivision, Irr. refers to irradiance com-
putation.

Figure Fragments VT(ms) Irr.(ms) Total(ms)
6 (a) 186,031 35 32 72
6(b) 352,085 70 66 144
6 (c) 786,432 - 199 314

Nichols et al.

(c) Reference

Figure 6. Results of our rendering (a) compared to
Nichols et al. [5] in (b) and reference image (c). All
images are rendered with 64 samples per fragment.
Indirect illumination is overlay-ed on all 3 results.
(d) and (e) show the fragment maps.

mination scheme to render indirect illumination created by
area lights.

6. REFERENCES

[1] K. Anjyo, J. P. Lewis, and F. Pighin. Scattered data
interpolation for computer graphics. In ACM
SIGGRAPH 2014 Courses, SIGGRAPH ’14, pages
27:1-27:69. ACM, 2014.

[2] J. Bowers, R. Wang, L.-Y. Wei, and D. Maletz. Parallel
poisson disk sampling with spectrum analysis on
surfaces. ACM Trans. Graph., 29(6):166:1-166:10, Dec.
2010.

[3] C. Crassin, F. Neyret, M. Sainz, S. Green, and
E. Eisemann. Interactive indirect illumination using
voxel cone tracing: A preview. In Symposium on
Interactive 8D Graphics and Games, 13D ’11, pages
207-207. ACM, 2011.

[4] A. Kaplanyan and C. Dachsbacher. Cascaded light
propagation volumes for real-time indirect illumination.
In Proceedings of the 2010 ACM SIGGRAPH
Symposium on Interactive 8D Graphics and Games,
13D ’10, pages 99-107, 2010.

[5] G. Nichols, R. Penmatsa, and C. Wyman. Interactive,
multiresolution image-space rendering for dynamic area
lighting. In Proceedings of the 21st Eurographics
Conference on Rendering, EGSR’10, pages 1279-1288.
Eurographics Association, 2010.

[6] G. Nichols and C. Wyman. Interactive indirect
illumination using adaptive multiresolution splatting.
IEEE Transactions on Visualization and Computer
Graphics, 16(5):729-741, Sept. 2010.

