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ABSTRACT
The computing requirements of scientific applications have
influenced processor design, and have motivated the intro-
duction and use of many-core processors, i.e., accelerators,
for high performance computing (HPC). Consequently, it
is now common for the compute nodes of HPC clusters to
be comprised of multiple computing devices, including ac-
celerators. Although execution time can be used to com-
pare the performance of different computing devices, there
exists no standard way to analyze application performance
across devices with very different architectural designs and,
thus, understand why one outperforms another. Without
this knowledge, a developer is handicapped when attempt-
ing to effectively tune application performance, as is a hard-
ware designer when trying to understand how best to im-
prove the design of computing devices. In this paper, we use
the LULESH 1.0 proxy application to compare and analyze
the performance of three different accelerators: the IntelR©

Xeon PhiTM and the NVIDIA Fermi and Kepler GPUs. Our
study shows that LULESH 1.0 exhibits similar execution-
time behavior across the three accelerators, but runs up to
7X faster on the Kepler. Despite the significant architec-
tural differences between the Xeon PhiTM and the GPUs,
and the differences in the metrics used to characterize their
performance, we were able to quantify why the Kepler out-
performs both the Fermi and the Xeon PhiTM. To do this,
we compared their achieved instructions per cycle and vec-
torization usage, as well as their memory behavior and power
and energy consumption.
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1. INTRODUCTION
The computing requirements of scientific applications have

influenced processor design, and have motivated the intro-
duction and use of many-core processors for high perfor-
mance computing (HPC). Consequently, today’s HPC clus-
ters include multiple compute nodes that are comprised of
general-purpose multi- and many-core processors. In com-
parison to conventional multi-core processors, many-core pro-
cessors, i.e., accelerators, provide applications with a much
larger number of (simpler) cores that can be used to ex-
ploit the parallelism inherent in computation. The architec-
tures of multi-core processors and accelerators are diverse,
and those of different accelerators can be very dissimilar as
well. For example, while graphics processing units (GPUs)
are designed to work with a multi-core processor to perform
single operations on large blocks of data (i.e., exploit SIMD
(single-instruction, multiple-data) parallelism), the IntelR©

Xeon PhiTM is designed to work with or independently of a
multi-core processor to exploit both SIMD and MIMD (i.e.,
multiple-instruction, multiple-data) parallelism.

Although GPUs can significantly increase application per-
formance and efforts have been made to improve their pro-
grammability, effective GPU programming does not come
without a cost. For example, familiarity with the GPU ar-
chitecture and the CUDA programming model and language
is required to make good use of the parallel processing power
available in a GPU. In addition, there is a significant over-
head associated with moving data between a host processor
and a GPU. Nonetheless, because of the execution-time per-
formance benefits that GPUs can provide, it is very common
to find them in HPC clusters. Given these facts, IntelR© in-
troduced the Many Integrated Core (MIC) architecture with
the announcement of the Xeon PhiTM. Although the MIC
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architecture is similar to that of a stand-alone processor, it
has a large number of simpler cores and, unlike GPUs, it:
(1) supports programming models that are commonly used
in parallel computing, (2) can be programmed using C or
FORTRAN, and (3) is able to launch programs indepen-
dently (while a GPU requires a host processor).

With the emergence of these new many-core processors,
HPC systems are becoming increasingly complex. Often
their nodes are comprised of multi-core processors along
with many-core processors of different types, the perfor-
mance of which vary for the application being executed. For
an application developer, this can make it difficult to de-
termine, without extensive experimentation, whether a pro-
gram should be launched solely on multi-core processors or
should employ accelerators; and, if the latter, to determine
which accelerators should be employed and how they should
be utilized. For a hardware designer this also can make it
difficult to understand how best to enhance application per-
formance. This is because, although several tools exist to
study the performance of a computation on different com-
puting devices, most are designed to work with only one
class of devices, e.g., GPUs or multi-core processors. And,
due to the large variation in the design of device architec-
tures, many performance metrics are unique to a device or
class of devices, e.g., GPUs or IntelR© devices, making it
difficult to understand why one device outperforms another.

To address this and other cross-architecture and cross-
programming model concerns, Lawrence Livermore National
Laboratory (LLNL) developed the Livermore Unstructured
Lagrangian Explicit Shock Hydrodynamics (LULESH) proxy
application. LULESH has been ported to several different
programming models in order to identify optimization tech-
niques that are portable across the models [5]. In addition,
LULESH contains algorithms that are commonly used in
hydrodynamics as well as in a variety of computer simu-
lations of science and engineering phenomena. As a result,
lessons learned from LULESH regarding its performance can
be applied to larger applications that make use of these al-
gorithms. Accordingly, LULESH is an ideal candidate to
study the performance of different architectures.

Nonetheless, it is still the case that, given the available
performance tools, it is difficult to analyze application per-
formance across computing devices with very different archi-
tectures and understand why one outperforms another. In
an effort to explore these difficulties and illustrate how avail-
able tools can be used, this paper, which is a short summary
of the work presented in [3], uses LULESH 1.0 to study the
performance of three accelerators: the IntelR© Xeon PhiTM

and the NVIDIA Fermi and Kepler GPUs. These comput-
ing devices are compared in terms of execution time, power
consumption, memory behavior, vectorization usage, and in-
structions per cycle (IPC). In addition, the performance of
LULESH 1.0 executed on the Xeon PhiTM and a dual IntelR©

Sandy Bridge multi-core processor is compared in terms of
execution time, parallel overhead, and scalability.

As reported in the paper, LULESH 1.0 exhibits similar
runtime behavior across the three accelerators, but executes
up to 7X faster on the Kepler. Despite the significant ar-
chitectural differences between the Xeon PhiTM and the
GPUs, we demonstrate how we quantify the performance of
LULESH executed on the three accelerators and show why
the Kepler outperforms both the Fermi and Xeon PhiTM. In
addition, the paper demonstrates that comparing the per-

formance of a class of devices (e.g., NVIDIA GPUs) and
understanding why one outperforms another can be rela-
tively easy, while understanding the performance differences
between devices with diverse architectures remains a chal-
lenge.

The rest of the paper is organized as follows: Section 2 de-
scribes the application and systems employed in this study
and how the performance metrics are computed for each
computing device. Next, the collected performance data are
presented and discussed in Section 3. Finally, before sum-
marizing our findings and conclusions in Section 5, Section
4 provides an overview of related research.

2. METHODOLOGY
LULESH 1.0, the proxy application employed in this com-

parative performance study, is discussed in Section 2.1, while
the studied computing devices are described in Sections 2.2.
Sections 2.3, 2.4, and 2.5 present the methods that were used
to collect device-specific performance data and compute and
analyze the selected performance metrics. As noted below,
these methods are dissimilar due to the differences in the
device architectures. LULESH 1.0 was executed 10 times to
collect the performance data needed to compute each perfor-
mance metric; the minimum, maximum, and average values,
along with the standard deviation, were recorded. Since the
resultant standard deviations are acceptable, average values
are used in our comparative analysis.

2.1 LULESH 1.0
There are multiple versions of LULESH, including ones

appropriate for the studied architectures. Thus, an OpenMP
code with data layout optimizations tuned for the Sandy
Bridge (DL code) was executed on the IntelR© devices, while
two different CUDA codes tuned for the Fermi and Kepler
were executed on the NVIDIA GPUs. Table 1 lists the de-
vice/code pairs used in this study and the notations with
which we refer to them in the remainder of the paper.

Table 1: Device/code pairs.
Device Code Notation

dual Sandy Bridge DL SB/DL

Xeon PhiTM DL Phi/DL
Fermi CUDA Fermi FGPU/F
Kepler CUDA Kepler FGPU/K

As shown in Figure 1, which illustrates the flow of exe-
cution of LULESH, each code version is comprised of four
main phases of execution. The grayed-out portions of the
figure, i.e., the initialization and termination phases, are not
studied because they do not map well to real applications.
The problem domain of LULESH is described by a mesh of
elements, which is used to scale the problem size. Mesh sizes
representative of the workload typically executed on a single
node, i.e., 503, 703, and 903, are used in this study.

2.2 Experimental Platforms
The Texas Advanced Computing Center (TACC) Stam-

pede cluster was used to collect performance data associ-
ated with SB/DL, Phi/DL, and KGPU/K, while LLNL’s
now-retired Edge cluster was used to collect the data associ-
ated with FGPU/F. In addition, stand-alone servers at the
University of Tennessee-Knoxville (UTK) were employed to
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Figure 1: LULESH 1.0 flowchart.

collect the power and energy consumption data. The ar-
chitectures studied are described in Table 2; note that the
architectures of the accelerators in the UTK systems are
identical to those in the Stampede and Edge clusters.

Table 2: Accelerator/host processor architectures.
Device Architecture Speed Cores RAM

dual Xeon E5-2680 Sandy Bridge 2.70 GHz 8 750 GB

Xeon PhiTM SE10P MIC 1.10 GHz 61 8 GB
Tesla M2050 Fermi 1.15 GHz (SM) 14 3 GB
Tesla K20 Kepler 705.00 MHz (SMX) 13 5 GB

2.3 Execution Time and Parallel Overhead
To measure the solve time of LULESH 1.0, i.e., the time it

takes to execute its four main phases of execution, and the
execution time of each phase, each binary was launched in
the best runtime environment of each studied device. On the
Xeon PhiTM, which supports multiple modes of execution,
the application was executed in native mode. Experiments
were conducted for each of the three problem sizes.

All versions of LULESH include the timing constructs re-
quired to measure execution time. For the Intel devices,
the C function gettimeofday(), which collects the current
time expressed in seconds and microseconds, is employed.
In contrast, the GPUs require the use of CUDA events to
obtain timestamps from the devices: calls to cudaEven-

tRecord() collect timestamps and subsequent calls to cud-

aEventElapsedTime() report the elapsed time between the
recorded timestamps of these two CUDA events.

In addition, for SB/DL and Phi/DL, the overhead intro-
duced by parallel constructs is measured using the methodol-
ogy employed by the EPCC OpenMP microbenchmarks [8]:

Op = Tp − Ts/p, (1)

where Op is the parallel overhead, p is the number of pro-
cesses that executed the program, and Tp and Ts are the
execution times of the OpenMP program and the parallel
program compiled without the -openmp flag, which causes
the OpenMP pragmas to be ignored by the compiler and,
thus, serializes program execution. To measure the growth
of the overhead as p increases, executions with 2, 4, 8, and
16 Sandy Bridge threads and with 60, 120, and 240 Xeon
PhiTM threads are employed. On the Xeon PhiTM, bal-

anced affinity is used to ensure that all cores are utilized
and the number of threads per core is the same.

2.4 Power and Energy Consumption
Different tools are required to measure the power and

energy consumption of the three accelerators. The power
draw of the GPUs was measured using the NVIDIA System
Management Interface program (NVIDIA-SMI) [12], while
that of the PhiTM was measured using the IntelR© System
Management Controller (SMC) [4]. Using these utilities, we
wrote scripts, which run concurrently with LULESH 1.0, to
read power consumption data every .1 second. Given the
solve time (t) and the average power consumption (P), the
energy consumption (E) of LULESH 1.0 was calculated by:

E = P ∗ t. (2)

2.5 Vectorization, Memory Behavior, and IPC
The NVIDIA Visual Profiler [13] is designed specifically to

provide data regarding an application’s use of NVIDIA GPU
resources. Thus, it was used to obtain execution profiles of
FGPU/F and KGPU/K, from which we extracted the vec-
torization usage, memory behavior, and IPC. The vectoriza-
tion usage was measured using the occupancy of the GPU,
which ranges from zero to one and can be translated to a
percentage of utilization of the available parallel resources.
In contrast, PAPI [10], which requires instrumentation of the
code, was used for the Xeon PhiTMto collect event counts
related to memory performance and IPC. However, due to
the small number of available hardware event counters, only
events for a single thread could be counted and vectoriza-
tion usage could not be measured. Consequently, compiler
vectorization reports were used to determine the number of
loops that were effectively vectorized for the PhiTM.

Direct comparison of of the accelerators’ memory behavior
and IPC is not straightforward. The memory hierarchy of
the GPUs is much more complex than that of the Xeon
PhiTM. While the PhiTM has two levels of cache, an L1
data TLB, and an L2 unified TLB, the GPUs have a texture
memory, constant memory, an L1 data cache, and a unified
L2 cache. Furthermore, the GPUs include an abstraction of
local (to each thread) and global memory, which reside in
the same physical location, and the Kepler has a read-only
data cache. As a result of these differences and because the
number of L1 and L2 cache accesses could not be counted
on the PhiTM, only the memory behavior of the GPUs could
be compared and only in terms of L1 and L2 cache misses.

There are other reasons, besides architectural differences,
why direct comparison of the accelerators’ IPC is not pos-
sible: The IPC of only a single thread (IPCThread) of the
PhiTM could be counted, while the IPC of the GPUs was
measured per streaming multiprocessor (IPCSM/SMX).
Since we know that the main computational unit of a Xeon
PhiTM is a core, while that of a Fermi or Kepler is an SM or
SMX, the IPC per PhiTM core (IPCCore) is compared to the
IPC per SM of the Fermi (IPCSM ) and the IPC per SMX
of the Kepler (IPCSMX). IPCCore is calculated by multi-
plying IPCThread by the size of the Xeon PhiTM pipeline,
and since each core consists of a dual-issue pipeline:

IPCCore = IPCThread ∗ 2. (3)

Although one might argue that a better approach would be
to multiply IPCThread by the number of threads used per
core, it requires unrealistically assuming that each employed



PhiTM thread achieves the same IPC. Furthermore, directly
comparing a PhiTM thread to a GPU SM/SMX is inappro-
priate since it does not distribute its work across many sim-
pler parallel processing elements as does the GPU SM/SMX.
Consequently, given the size of the Xeon PhiTM pipeline, it
is more reasonable to assume that at least half of the threads
executed on a core are able to attain IPCThread.

3. RESULTS
This section compares the execution-time and power and

energy performance of the three accelerator/code pairs. To
explain the differences in execution times and speedups, col-
lected performance data are used to compare IPC, memory
behavior, and vectorization usage. In addition, the perfor-
mance of LULESH 1.0 executed on a dual IntelR© Sandy
Bridge multi-core processor and a Xeon PhiTM are compared
in terms of execution time, parallel overhead, and scalability.

3.1 Execution Time
As shown in Figure 2, of the three accelerator/code pairs,

KGPU/K provides the best execution-time performance for
the three problem sizes. In comparison, FGPU/F and
Phi/DL are about seven times slower.
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Figure 2: LULESH 1.0 execution times.

Although the accelerators have very different architec-
tures, the distribution of LULESH’s execution time across
its four phases of execution is similar for all three problem
sizes; Figure 3 depicts this behavior for the 903 problem
size. When the percentage of execution time consumed by
each phase is rounded to the nearest whole percentage, for
KGPU/K and FGPU/F it changes by at most 2% from one
problem size to the next, while for Phi/DL it changes by at
most 5%.

For each problem size Calc Volume Force is clearly the
most time-consuming phase, with the next being Lagrange.
In contrast, Calc & Apply Accel and Time Constraints con-
sume much less of the total execution time, from 5.07% to
14.61% depending on the accelerator/code pair and problem
size. Of interest is the fact that although KGPU/K spends
approximately the same amount of time in Time Constraints
as does FGPU/F and Phi/DL, it spends about twice as much
time in Calc & Apply Accel - this may represent an oppor-
tunity for further code optimization.
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Figure 3: Distribution of execution time across ex-
ecution phases of LULESH for 903 problem size.

3.2 Power and Energy Consumption
As shown in Figure 4, for the three accelerator/code pairs,

the average power draw increases with the problem size.
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Figure 4: Average power draw.

Although Phi/DL is comparable to FGPU/F in terms of
execution time, its average power draw is 21.8%, 14.5%, and
22.7% higher for the 503, 703, and 903 problem sizes, respec-
tively. In fact, Phi/DL has the highest power draw of the
three accelerator/code pairs. Although KGPU/K performs
best in terms of execution time and power consumption, the
rate at which its power consumption grows with the problem
size is greater than that of FGPU/F or Phi/DL. The per-
centage change for KGPU/K maps to the percentage change
in the problem size. Specifically, the 703 problem size is 40%
larger than the 503, and the 903 is 28.5% larger than the 703.
Similarly, KGPU/K uses 39.06% more power to execute the
703 problem size as compared to that used to execute the
503; and 29.21% more power for the 903 than for the 703.
In contrast, the power consumption of the other accelera-
tor/code pairs grows less than 12% from one problem size
to the next.

For each of the accelerator/code pairs, average energy con-
sumption tracks execution-time performance. As shown in
Figure 5, the Kepler, which executed its version of LULESH
1.0 in the least amount of time, consumes the least amount of
energy for all problem sizes. The energy consumption of the
Xeon PhiTM and the Fermi GPU, executing their versions,
are similar. For the 503 and 703 problem sizes, the difference
between them is less than 10% but for the 903 problem size
there is a 20% difference, with the energy consumption of
the PhiTM being higher.
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3.3 Memory Behavior
Regardless of the computing device utilized, if an applica-

tion exhibits poor memory behavior, its execution-time per-
formance will be negatively affected. Accordingly, for each
accelerator/code pair we attempted to quantify the number
of misses at each level of the accelerator’s memory hierarchy.

The Fermi’s L1 cache stores data that is resident in either
local or global memory, while the Kepler’s stores only data
that is resident in local memory. Thus, during the execution
of LULESH 1.0, the L1-cache misses generated on the Fermi
are due to accesses to both local and global memory, while
those generated on the Kepler are due to accesses to local
memory (note that Kepler global memory transactions are
not cached at this level). Also, only on the Kepler does
LULESH 1.0 use the available texture memory. Thus, the
L2-cache misses generated by KGPU/K are the result of
both L1-cache misses and accesses to texture memory, while
for FGPU/F they are the result of only L1-cache misses.

0%

20%

40%

60%

80%

100%

50 70 90

Pe
rc

en
tag

e

Problem Size

Calc Volume Force Calc & Apply Accel Lagrange Time Constraints

Figure 6: Phi/DL L1-cache misses.

For all three problem sizes, the distribution of L1-cache
misses generated by the execution phases of LULESH is sim-
ilar on the Xeon PhiTM and Fermi. As shown in Figure 6, al-
most all of the L1 data cache misses generated by LULESH
1.0 on the Xeon PhiTM are attributable to Lagrange and
Calc Volume Force. This is true on the Fermi as well. Es-
sentially, for the three problem sizes: (1) Calc Volume Force
generates over 70% of the PhiTM L1 data cache misses and
60% (due to local and global memory transactions) of the
Fermi L1-cache misses; (2) Lagrange generates around 28%
on the PhiTM and 40% (due to local memory transactions)
on the Fermi, while on the PhiTMTime Constraints and Calc
& Apply Accel together generate less than 1% of the L1 data

cache misses; (3) as shown in Figure 7, 25% of the Fermi L1-
cache misses generated by Lagrange are due to global mem-
ory transactions; and (4) in contrast, the L1-cache misses
generated by LULESH 1.0 on the Kepler are only generated
by the Lagrange phase.
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Figure 7: FGPU/F L1-cache misses due to global
memory transactions.
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Figure 8: KGPU/K L2-cache misses.

Calc Volume Force and Lagrange also generate the vast
majority of L2-cache misses on the Xeon PhiTM, i.e., 66%-
70% and 26%-27%, respectively. As was the case for the
L1 data cache, the number of L2-cache misses generated
by Time Constraints and Calc & Apply Accel is minimal,
ranging from 3% to 6%. Similar to the Xeon PhiTM, over
90% of the Fermi L2-cache misses (due to L1-cache misses)
are attributable to the two most time-consuming phases of
LULESH. However, only 53% of the misses are generated by
Calc Volume Force, while 43% are generated by Lagrange.
Finally, 4% of the L2-cache misses are generated by Calc &
Apply Accel and Time Constraints. The L2-cache behav-
ior of the Kepler, which is illustrated in Figure 8, is similar
to that of the Fermi. However, the distribution of the Ke-
pler L2-cache misses across the four phases of execution of
LULESH mirrors the distribution of the execution time.

3.4 IPC and Vectorization Usage
Vectorization usage gauges the ability of a computing de-

vice to simultaneously compute one operation over multiple
pairs of operands. The Phi/DL compiler vectorization re-
ports indicate that 30% of LULESH’s loops were success-
fully vectorized, but 26.667% of them were not completely
vectorized. FGPU/F achieves an occupancy of .378, .369,
and .376 for the 503, 703, and 903 problem sizes, respec-
tively; and these occupancies are .428, .433, and .435 for



KGPU/K. Considering the occupancy to be a percentage
and comparing it to the upper bound of vectorization for
the version of the code executed on the Xeon PhiTM: (1)
KGPU/K does best in terms of vectorization usage, fol-
lowed by FGPU/F, and then Phi/DL. (2) And, comparing
the occupancy achieved on the Fermi and the percentage of
the loops that were vectorized for the Xeon PhiTM, the dif-
ference between their vectorization usage is less than 15%.
This behavior maps to the execution-time performance of
these accelerator/code pairs, i.e., for the three problem sizes:
(1) the execution times of KGPU/K are less than those of
FGPU/F and Phi/DL, and (2) although the execution times
of Phi/DL are less than those of FGPU/F, the differences
between their execution times do not exceed 15% percent.

With respect to the IPC of the three accelerator/code
pairs, which is presented in Table 3: (1) Coinciding with
the fact that across the three problem sizes KGPU/K has
the shortest execution times, it also has the highest IPC.
(2) Unlike FGPU/F and Phi/DL, the IPC of KGPU/K in-
creases, albeit slightly, with the problem size. (3) Although
the execution times of FGPU/F and Phi/DL are similar in
magnitude across the three problem sizes, the IPC achieved
by Phi/DL is consistently higher by about 20%.

Table 3: Instructions per Cycle (IPC).

Architecture/Code Pair 503 703 903

KGPU/K 1.161 1.175 1.178
FGPU/F 0.306 0.309 0.307
Phi/DL 0.360 0.361 0.361

Table 4: Xeon PhiTM IPC per phase of LULESH.
Code Section 503 703 903

Calc Volume Force 0.348 0.348 0.342
Calc & Apply Accel 0.510 0.520 0.522
Lagrange 0.398 0.372 0.358
Time Constraints 0.560 0.614 0.588

Table 5: Fermi IPC per phase of LULESH.
Code Section 503 703 903

Calc Volume Force 0.269 0.272 0.270
Calc & Apply Accel 0.333 0.331 0.330
Lagrange 0.341 0.339 0.339
Time Constraints 1.088 1.243 1.402

Table 6: Kepler IPC per phase of LULESH.
Code Section 503 703 903

Calc Volume Force 0.916 0.924 0.933
Calc & Apply Accel 0.332 0.333 0.334
Lagrange 1.645 1.690 1.681
Time Constraints 1.898 1.933 1.936

Tables 4 - 6 present the IPC of the three accelerator/code
pairs for each execution phase of LULESH. As is the case
with the overall IPC: (1) the Kepler delivers the highest IPC
for three of the four phases, the exception being Calc & Ap-
ply Accel, for which the PhiTM’s IPC is greater; and (2) for

two of the four phases, the Kepler’s IPC increases, albeit
slightly, with the problem size. Since the Fermi’s IPC re-
mains fairly constant for three of the four phases, it cannot
be said that LULESH 1.0 will achieve good performance and
scalability on GPUs. Measurement of the IPC of each execu-
tion phase allows us to understand why the execution time
of Phi/DL is smaller than that of FGPU/F. With the excep-
tion of Time Constraints for the 503 problem size, Phi/DL
attained a higher IPC. Clearly, the IPC and vectorization us-
age of LULESH indicate that its execution-time performance
is linked to an accelerator’s ability to exploit the inherent
parallelism in LULESH 1.0.

3.5 Parallel Overhead
With the exception of the 503 problem size, Phi/DL out-

performs SB/DL by 5.17% and 4.30% for the 703 and 903

problem sizes, respectively. Referring to Figure 9 and not-
ing that computation time is the total execution time minus
the parallel overhead, the reason for this is twofold: (1)
the computation times of Phi/DL are 19%, 17%, and 18%
smaller than those of SB/DL, while (2) the parallel over-
head of Phi/DL is 142% and 5% larger for the two smaller
problem sizes and then 13% smaller for the largest.
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Figure 9: Computation time vs. parallel overhead.

Clearly, this behavior causes SB/DL to initially outper-
form Phi/DL and then allows Phi/DL to outperform SB/DL
for the two larger problem sizes. Nonetheless, of concern is
that for both, with the exception of SB/DL for the 503 prob-
lem size, the parallel overhead consumes more than 50% of
the total execution time! Also, as the problem size increases,
the SB/DL overhead grows faster than that of Phi/DL. In
contrast, the computation time of Phi/DL grows slower than
that of SB/DL. Thus, it appears that the gap in execution
times will grow with the problem size, along with the supe-
riority of Phi/DL over SB/DL.

In terms of scalability, for both SB/DL and Phi/DL the
parallel overhead grows with both the problem size and the
number of threads employed. As shown in Figures 10 and
11, the parallel overhead of executing Phi/DL with 60 or
120 threads is larger than that of executing SB/DL with
two, four, or eight threads. However, when SB/DL is exe-
cuted with 16 threads, the parallel overhead exceeds that of
Phi/DL executed with 60, 120, or 240 threads. Phase analy-
sis indicates that this is due to the larger overhead associated
with the execution of Calc & Apply Accel, Lagrange, and
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Figure 10: Scalability of Phi/DL parallel overhead.
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Figure 11: Scalability of SB/DL parallel overhead.

4. RELATED WORK
As new computing devices materialize, it is common for

studies to emerge that exploit their features. And, an effec-
tive way to study their performance capabilities is through
the use of benchmarks. Established benchmarks for study-
ing multi- and many-core processors are the Rodinia [1],
SHOC [2], and OpenDwarfs [6] benchmark suites. These
benchmarks, which use algorithms in various domains to
stress different processor components, have been used in
several studies of accelerators. For example, [9] compares
the many-core IntelR© Xeon PhiTM to the IntelR© Sandy
Bridge Xeon E5-2620 multi-core processor and the many-
core NVIDIA Tesla c2050 GPU (which employs the Fermi
architecture). The SHOC benchmarks are used to compare
the PhiTM with the Tesla in terms of power consumption
and execution time, while the Rodinia benchmarks are used
to compare the PhiTM to the Sandy Bridge in terms of ex-
ecution time. The PhiTM outperforms the Tesla in terms
of execution time for both compute- and memory-bound
benchmarks, but it consumes more power. For compute-
bound benchmarks, the PhiTM has shorter execution times
than the Sandy Bridge, but for memory-bound benchmarks,
the Sandy Bridge performs better. Although these findings
can help determine which types of algorithms will perform
better on a particular type of processor, they provide little
insight as to why this is the case.

The need for a common set of metrics to characterize the
performance and power efficiency of applications executed
on heterogeneous systems inspired not only our study, but

also the work presented in [11]. The set of metrics pre-
sented in [11] are based on the roofline model and measure:
achieved bandwidth, execution time, power consumption,
operational intensity, energy, and performance per Watt.
First, using a set of micro-benchmarks, the roofline model
for a given device is created and used to measure the de-
vice’s peak performance and memory bandwidth. Next,
these measurements are collected for several implementa-
tions of OpenCL kernels executed on the device and are
compared to the established roofline model. Although it was
demonstrated that this methodology is useful for comparing
how well an algorithm utilizes the computing resources of
a given set of devices, this particular study focuses only on
the OpenCL programming model.

The use of peak performance to compare computing de-
vices is not novel. In [14], it is used along with the time-to-
solution of molecular dynamics (MD) applications to rank
different types of supercomputers. The peak performance of
the entire computing system is considered and the time-to-
solution is specific to MD applications, i.e., it is defined as
the time for one MD integration step to complete. Although
of use for this particular purpose, this methodology is not
applicable to understanding why an application performs as
it does on a specific computing system.

Another property that has been used to compare different
computing devices is programmability, which quantifies the
complexity of using a device’s programming model. Since
ease-of-use is not a quantifiable metric, determining a de-
vice’s programmability is a difficult task. Despite this, at-
tempts have been made to assess the programmability of the
NVIDIA Kepler and IntelR© Xeon PhiTM MIC architectures.
For example, in [7] the programmability of the Sandy Bridge
(used as a baseline) was measured by counting the num-
ber of lines of source code that were introduced to develop
a parallel code. In addition, common optimization tech-
niques were implemented in the code and their impact on
application performance was measured by calculating their
achieved speedup. The highest speedup, i.e.,1,020.88X, was
achieved using the Kepler, followed by the Xeon PhiTM with
a speedup of 885.18X. However, the Kepler required much
more manual tuning than did the PhiTM. While these types
of studies can be useful for determining if the effort required
to port a code to a device is commensurate with the ex-
pected performance gains, they do not identify the causes of
performance bottlenecks.

While there is a growing interest to establish a set of met-
rics that can be used to compare the performance of multi-
and many-core processors, the differences in device architec-
tures introduce several limitations. This is due, at least in
part, to the fact that different processors do not expose the
same metrics, and if they do, they may not be directly com-
parable. In this work, we address these challenges by com-
paring metrics that dissimilar devices expose, taking into
consideration their architectural differences.

5. CONCLUSIONS AND FUTURE WORK
Our comparative study of the performance of versions of

LULESH 1.0 executed on the IntelR© Xeon PhiTM (Phi/DL)
and the NVIDIA Fermi and Kepler GPUs (FGPU/F and
KGPU/K) shows that KGPU/K runs up to 7X faster than
FGPU/F and Phi/DL, which have comparable execution
times. But, despite the variations in the architectural de-
signs of these three accelerators, the distribution of their



execution times across the four main phases of execution of
LULESH is similar. Phi/DL has the highest power and en-
ergy consumption, while KGPU/K has the lowest. However,
unlike FGPU/F and Phi/DL, the power draw of KGPU/K
grows similarly to how the problem size grows.

Just as the execution-time and power/energy performance
of Phi/DL and FGPU/F are comparable, so are their mem-
ory behaviors, i.e., the Calc Volume Force and Lagrange
phases of LULESH generate similar miss rates (from 85%-
98%). Unfortunately, the limited number of available met-
rics that can be used to quantify a program’s memory be-
havior on the three accelerators is not sufficient to explain its
effect on their execution-time performance. Nonetheless, our
IPC and vectorization usage data provide some insights: (1)
KGPU/K has the best vectorization usage and highest IPC
across the three problem sizes. (2) The IPC of KGPU/K in-
creases with the problem size and appears to correlate with
its lower execution times. (3) In contrast, although the ex-
ecution times of FGPU/F and Phi/DL are comparable, the
vectorization usage of FGPU/F is roughly 10% higher than
that of Phi/DL, while the IPC of Phi/DL is consistently
about 20% higher than that of FGPU/F. (4) Phi/DL and
FGPU/F are similar w.r.t. IPC, vectorization usage, and
memory behavior, and the clock rates of the PhiTM (1.1
GHz) and Fermi (1.15 GHz) are similar.

Currently, commonly used metrics like IPC and cache
hit/miss rates cannot be directly compared across accelera-
tors because of their architectural differences and the limited
number of available hardware event counters. Nonetheless,
we were able to identify reasons why LULESH 1.0 executed
faster on the Kepler GPU, as compared to the Fermi GPU
and the Xeon PhiTM. And, in doing so, we introduced pos-
sible ways to circumvent the challenges of comparing the
performance of disparate accelerators.

To expand and improve the contributions of this work, ad-
ditional runtime execution configurations must be explored
and other metrics must be considered, e.g., the transfer time
between the accelerators and host processors should be con-
sidered. Also, the results of this study should be validated
using additional applications executed on the studied com-
puting devices. Finally, the power experiments should be re-
fined to include finer-grain measurements and identify how
the power draw of the GPUs is affected by their ability to
spin up and down as they are loaded.
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