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Abstract. In the context of fog computing, we consider a simple case when
data centers are installed at the edge of the network and assume that if a

request arrives at an overloaded data center, then it is forwarded to a neigh-

boring data center with some probability. Data centers are assumed to have
a large number of servers and that traffic at some of them is causing satura-

tion. In this case the other data centers may help to cope with this saturation

regime by accepting some of the rejected requests. Our aim is to qualitatively
estimate the gain achieved via cooperation between neighboring data centers.

After proving some convergence results, related to the scaling limits of loss sys-

tems, for the process describing the number of free servers at both data centers,
we show that the performance of the system can be expressed in terms of the

invariant distribution of a random walk in the quarter plane. By using and
developing existing results in the technical literature, explicit formulas for the

blocking rates of such a system are derived.

1. Introduction

Cloud computing has become one of the major stakes in the development of
information technology by offering the possibility of reserving computing resources
online. Commercial offers already exist for customers (residential or business) rely-
ing on big data centers like Amazon or Azure for example. This kind of technology
is also relevant for network operators in the framework of network function virtu-
alization, where network functions can be instantiated on data centers instead of
dedicated hardware. In this context, there is currently a clear trend to distribute
data centers. For network operators, it is possible to instantiate at the edge of
the network functions which were so far centralized in servers (e.g., mobile core
functions). Furthermore, by allocating resources closer to end users, it is expected
to offer better quality of experience. Distributing cloud computing resources at the
edge of the network is known as fog computing. See [4, 9, 14] and [12].

Data centers involved in fog computing have a smaller capacity than those in the
case of cloud computing and therefore more subject to congestion. Hence, to reduce
the probability of request blocking, fog computing data centers have to collaborate.
For instance, when one request cannot be accommodated by one of them, it may
be forwarded to another one.

A typical example of such a situation is when data centers are located on a logical
ring at the edge of the network. See Figure 1. A request arriving in an overloaded
data center with index i, may be forwarded to a neighboring data center i−1 or i+1
with some probability. Hence, if the traffic to a data center is causing saturation,
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the other data centers may help alleviate this saturation regime. The aim of this
paper is of investigating the impact of such a cooperative scheme. In practice, the
network could be backed up by a central (bigger) data center at the core of the
network but at a price in terms of latency. We will not consider this additional
feature here.

Data Centers

i−1
i i+1

λi

pi

pi

Figure 1. A Fog Computing Architecture

Collaboration of Two Data Centers. Our aim here is to qualitatively estimate
the gain achieved by the collaboration of data centers at the edge of the network.
The main part of our analysis will concern the impact of the collaboration of two
data centers. It is shown in Section 2.4 that the analysis applies also to more general
architectures of fog computing, as in Figure 1, provided they are not congested.

For i ∈ {1, 2}, the external arrival process of requests to data center/facility #i,
referred to as class i requests, is Poisson with parameter λi. If one of the Ci servers
is idle upon arrival, then the request is processed by this data center. Otherwise, if
the data center is saturated, i.e., all the Ci servers are busy, then with probability pi
the request is forwarded to the other data center if it is not saturated too, otherwise
with probability 1 − pi the request is rejected. A request allocated at data center
#i is processed at rate µi.

By considering the number of requests processed at both data centers, this
scheme can be clearly represented by a two dimensional Markov process on {0, . . . , C1}×{0, . . . , C2}.
This Markov process, related to loss networks, is not reversible in general and its
invariant distribution does not have a product form expression. Even if a numer-
ical analysis of the equilibrium equations is always possible, it is very likely that
it will not give precise qualitative and quantitative results concerning the impact
of rerouting parameters p1 and p2 of the offloading scheme. Our goal is of giv-
ing explicit closed form expressions of the equilibrium probability that a request is
rejected, see Theorem 3 which is our main result in this domain.

To overcome the difficulty of not having an explicit expression of the equilibrium,
we have chosen to study a scaled version of this network. The input rates λ1, λ2
and the capacities C1, C2 are assumed to be proportional to a large parameter N
which goes to infinity. This scaling has been introduced by Kelly in the context of
loss networks, see [11]. As it will be seen, there is a relation between the parameters
(see Condition (E) below), which implies that both data centers can be saturated



OFFLOADING SCHEME FOR DATA CENTERS 3

with positive probability. We will focus mainly on this case which is, in our view,
the most interesting situation to assess the benefit of offloading mechanisms in a
congested environment. Otherwise, the situation is much simpler. One of the data
centers will be underloaded, so that the rejection rate at equilibrium will converge
to 0 as N gets large, in particular external arrivals to this data center and the
rerouted jobs from the other data center will be accepted with probability 1 in the
limit. See Proposition 1 and Theorem 1.

In this limiting regime we prove convergence results for the process describing
the number of free servers at both data centers in the same way as in [10] for loss
networks. We show that the invariant distribution of a random walk in the quarter
plane is playing a key role in the asymptotic behavior of the loss probabilities at
equilibrium. The derivation of the equilibrium is based on the analysis of random
walks in N2 by [7]. By taking advantage of the specific characteristics of the ran-
dom walks considered, we are able to get an explicit expression of the generating
function of their invariant distributions in terms of elliptic integrals instead of con-
tour integrals in the complex plane as in [7]. See Theorem 3. With these results
we can then assess quantitatively the interest of this load balancing mechanism by
comparing the respective loss probabilities of the two streams of requests.

The organization of this paper is as follows: in Section 2 the stochastic model
is introduced and the limit results for the scaling regime are obtained. A family of
random walks is shown to play a central role. Section 3 establishes the functional
relation satisfied by the generating function of the invariant measure of one of these
random walks. Section 4 gives an explicit representation of this generating function
in Theorem 3 and therefore of the performance metrics of the load balancing mech-
anism. Section 5 presents some numerical examples of these results. Concluding
remarks are presented in Section 6.

2. Model description

2.1. Model. We consider in this paper two processing facilities in parallel. The
first one is equipped with C1 servers and serve requests (for computing resources)
arriving according to a Poisson process with rate λ1; each request requires an expo-
nentially distributed service time with mean 1/µ1 (a request if accepted occupies a
single server). Similarly, the second processing facility is equipped with C2 servers
and serves service requests arriving according to a Poisson process with rate λ2;
service times are exponentially distributed with mean 1/µ2.

To reduce the blocking probability, we assume that requests arriving at a service
facility with no available servers are forwarded to the other one with a given prob-
ability. More precisely, if a request arrives at service facility #1 with no available
servers, the request is forwarded to the other service facility with probability p1.
Similarly, a request arriving at facility #2 with no available servers is forwarded to
the other facility with probability p2. See Figure 2.

Let L1(t) and L2(t) denote the number of occupied servers in facilities #1 and
#2 at time t, respectively. Owing to the Poisson and exponential service time
assumptions, (L(t)) = ((L1(t), L2(t))) is a Markov process with values in the set
{0, . . . , C1} × {0, . . . , C2}, and transitions from (`1, `2) to (`1 + i, `2 + j) occurring
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#1

C1

λ1

p11−p1

1
1

if #1 saturated

#2

C2

λ2

p2
1−p2

2
2

if #2 saturated

Figure 2. Load Balancing between Two Data Centers

at rate 
(λ1 + p2λ21{`2=C2}) · 1{`1<C1} if (i, j) = (1, 0),

(p1λ11{`1=C1} + λ2) · 1{`2<C2} if (i, j) = (0, 1),

µ1`1 if (i, j) = (−1, 0),

µ2`2 if (i, j) = (0,−1)

and 0 otherwise.
The equilibrium characteristics of this Markov process on a finite state space,

like loss probabilities, do not seem to have closed form expressions in general. A
scaling approach is used in the following to get some insight on the performance of
such a strategy. We first introduce a random walk in N2.

2.2. A random walk in the extended positive quadrant. We now consider
the following random walk in the extended positive quadrant.

Definition 1. For fixed l = (l1, l2) ∈ R2
+, one defines the random walk (ml(t)) on

(N ∪ {+∞})2 as follows: the transition from (m1,m2) to (m1+a,m2+b) occurs at
rate

(1)


µ1l1 if (a, b) = (1, 0),

µ2l2 if (a, b) = (0, 1),

λ1 + p2λ21{m2=0} if (a, b) = (−1, 0) and m1 > 0,

λ2 + p1λ11{m1=0} if (a, b) = (0,−1) and m2 > 0,

for (m1,m2) ∈ (N ∪ {+∞})2 with the convention that +∞± x = +∞ for x ∈ N
(see Figure 3).

In particular (+∞,+∞) is an absorbing point for the process (ml(t)). The
random walk (ml(t)) is a special case of the Markov process investigated in [7].

The following result summarizes the stability properties of this random walk.
Critical cases are omitted.

Proposition 1. For l = (l1, l2) ∈ R2
+,
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ml,1

ml,2

0

µ2l2

λ2 + p1λ1

µ1l1

µ1l1λ1 + p2λ2

µ2l2

µ1l1

µ2l2

λ1 µ1l1

λ2

µ2l2

Figure 3. Transitions for m̄l(t).

(i) If one of the conditions

a) λ2 < µ2l2 and λ1p1 + λ2 > µ1l1p1 + µ2l2

b) λ1 < µ1l1 and λ1 + λ2p2 > µ1l1 + µ2l2p2

c) λ1 > µ1l1 and λ2 > µ2l2

holds then the Markov process (ml(t)) is ergodic on N2. In this case the unique
invariant distribution on N2 is denoted by πl.

(ii) If λ1 < µ1l1 and λ2 < µ2l2, the unique invariant distribution of (ml(t)) on
the extended state space (N ∪ {+∞})2 is the Dirac measure δ(∞,∞).

(iii) If λ1 > µ1l1, λ2 < µ2l2 and λ1p1 + λ2 < p1µ1l1 + µ2l2, the unique invariant
distribution of (ml(t)) on (N∪{+∞})2 is Gδ1⊗δ∞, where Gδ1 is the geometric
distribution with parameter δ1 = µ1l1/λ1.

(iv) If λ2 > µ2l2, λ1 < µ1l1 and λ2p2 + λ1 < p2µ2l2 + µ1l1, the unique invariant
distribution of (ml(t)) on (N∪{+∞})2 is δ∞⊗Gδ2 , where Gδ2 is the geometric
distribution with parameter δ2 = µ2l2/λ2.

Proof. Due to [7], see also [13, Proposition 9.15], (ml(t)) is ergodic if and only if
one of the conditions of (i) holds. As long as it does not hit 0, the first (resp.
second) coordinate of (ml(t)) behaves as an M/M/1 queue with arrival rate µ1l1
(resp. µ2l2) and service rate λ1 (resp. λ2). Under the conditions of (ii), each of
these M/M/1 queues is transient, in particular starting from 1, it has a positive
probability of not returning to 0. This implies that after some random time, the
process (ml(t)) stays in the interior of the quadrant N2 and therefore behaves as
a couple of independent transient M/M/1 queues. Consequently, both coordinates
of (ml(t)) are converging in distribution to +∞. Similarly, for (iii) and (iv), the
process (ml(t)) can be coupled to two queues, the first one, an M/M/1 queue
which is transient and the second one, an ergodic M/M/1 queue, with an invariant
distribution which is geometrically distributed. �

2.3. Heavy Traffic Scaling Regime. We investigate now the case when some of
the parameters of the processing facilities are scaled up by a factor N ∈ N. The
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arrival rates are given by λ1N and λ2N with λ1 > 0 and λ2 > 0. Similarly the
capacities are given by CN1 = Nc1 and CN2 = Nc2 for some positive constants c1
and c2. To indicate the dependence of the numbers of idle servers upon N , an
upper index N is added to the stochastic processes. A similar approach has been
used in [3] to study a load balancing scheme in an Erlang system.

We will consider the process

(2) (mN (t)) = (CN1 − LN1 (t), CN2 − LN2 (t))

describing the number of idle servers in both processing facilities. As it will be
seen, the random walks (ml(t)), l ∈ R2

+, play an important role in the asymptotic

behavior of (mN (t)) as N goes to infinity.

Theorem 1. If one of the following conditions
(E){
λ2 < µ2c2,

λ1p1 + λ2 > µ1c1p1 + µ2c2,

{
λ1 < µ1c1,

λ1 + λ2p2 > µ1c1 + µ2c2p2,
or

{
λ1 > µ1c1,

λ2 > µ2c2

holds, and if the initial conditions are such that mN (0) = m ∈ N2 and

lim
N→+∞

(
LN1 (0)

N
,
LN2 (0)

N

)
= c = (c1, c2)

then, for the convergence in distribution,

lim
N→+∞

(
LN1 (t)

N
,
LN2 (t)

N
,

∫ t

0

f(mN (u)) du

)
=

(
c1, c2, t

∫
N2

f(x)πc(dx)

)
for any function f with finite support on N2, πc is the invariant distribution of the
process (mc(t)) defined previously.

Proof. By using the same method as in [10], one gets an analogous result to Theo-
rem 3 of this reference. For the convergence in distribution of processes, the relation
(3)

lim
N→+∞

(
LN1 (t)

N
,
LN1 (t)

N
,

∫ t

0

f(mN (u)) du

)
=

(
l1(t), l2(t),

∫ t

0

∫
N2

f(x)πl(u)(dx) du

)
holds, where (l(t)) = ((l1(t), l2(t))) satisfying the following integral equations

l1(t) = c1 +

∫ t

0

(
λ1πl(u)(A1) + p2λ2πl(u)(A1 ∩ Ac2)− µ1l1(u)

)
du

l2(t) = c2 +

∫ t

0

(
λ2πl(u)(A2) + p1λ1πl(u)(A2 ∩ Ac1)− µ2l2(u)

)
du,

for i ∈ {1, 2}, Ai = {m ∈ N2,mi 6= 0} and, for l ∈ R2
+, πl is the unique invariant

distribution of (ml(t)).
Let us assume without loss of generality that, under condition (E), for example

the first condition of (E) is satisfied. It will be assumed throughout the paper. It
is not difficult to construct a coupling so LN1 (t) ≥ QN1 (t) holds almost surely for all
t ≥ 0, where (QN1 (t)) is the number of jobs of an M/M/CN1 /C

N
1 queue with arrival

rate λ1N and service rate µ1. Since λ1 > µ1c1, a classical result, see Section 7 of
Chapter 6 of [13] for example, gives the convergence in distribution

lim
N→+∞

(
LN1 (t)

N

)
= (c1),
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in particular, (l1(t)) is a constant equal to c1.
If, for i ∈ {1, 2}, NλiN is the Poisson process of arrivals at facility #i, by using

the same coupling as before one gets that the number UN2 (t), arrivals at facility #2

up to time t, satisfies, for 0 ≤ s ≤ t, UN2 (t)− UN2 (s) ≥ UN (t)− UN (s),

UN (t)
def.
= Nλ2N [0, t] +

∫ t

0

1{QN
1 (u−)=CN

1 ,B1(u−)=1}Nλ1N (du),

where (B1(u), u ≥ 0) is a family of independent Bernoulli random variables with
parameter p1. The lower bound includes the direct arrivals Nλ2N [0, t] to facility
#2 and the rejected jobs from #1. One gets that

LN2 (t) ≥ QN2 (t),

where (QN2 (t)) is a G/M/CN2 /C
N
2 queue with the arrival process (UN (t)).

The ergodic theorem gives that, almost surely

lim
N→+∞

UN (t)

N
= t

(
λ2 + λ1p1

(
1− µ1c1

λ1

))
> µ2c2t,

by condition (E). By using this relation, one can show that, for the convergence in
distribution, the relation

lim
N→+∞

(
QN2 (t)

N

)
= (c2)

holds. In particular (l2(t)) is constant and equal to c2. Therefore, almost surely,
(l(t)) = (c) holds, hence πl(t) = πc. Relation (3) shows that the theorem is proven.

�

The following proposition states that the performances of the load balancing
mechanism can be expressed with the invariant distribution πc.

Proposition 2. Under Condition (E), as N goes to infinity, the probability that
at equilibrium a job of class i ∈ {1, 2} is rejected converges to

βi = πc
(
m ∈ N2,mi = 0

)
(1− pi) + piπc (0, 0) ,

where πc is the invariant distribution of (mc(t)).

Proof. Assume that (LN1 (t), LN2 (t)) is at equilibrium, the number of class 1 jobs
rejected between 0 and t is given by

RN1 (t) =

∫ t

0

1{mN
1 (u−)=0,B1(u−)=0}Nλ1N (du)+

∫ t

0

1{mN
1 (u−)=0,mN

2 (u−)=0,B1(u−)=1}Nλ1N (du).

The probability of rejecting a class 1 job is hence given by

P(mN
1 (0) = 0, B1(0) = 0) + P(mN

1 (0) = 0,mN
2 (0) = 0, B1(0) = 1) =

E(RN1 (1))

λ1N
.

By using the martingales associated with Poisson processes, one gets

E(RN1 (1))

λ1N
= (1−p1)E

(∫ 1

0

1{mN
1 (u−)=0} du

)
+p1E

(∫ 1

0

1{mN
1 (u−)=0,mN

2 (u−)=0} du

)
,

one concludes with the convergence of the previous theorem. �
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When condition (E) is not satisfied, one can obtain an analogous result. Its
(elementary) proof is skipped. The results on the asymptotic blocking probability
of jobs are summarized in the following proposition, where (A), (B1) and (B2) are
exclusive.

Proposition 3. Let

(A)

{
λ1<µ1c1

λ2<µ2c2
(B1)

{
λ2>µ2c2

λ1+λ2p2<µ1c1+µ2c2p2
(B2)

{
λ1>µ1c1

λ2+λ1p1<c2µ2+µ1c1p1

then, at equilibrium, the loss probability of a job of class i ∈ {1, 2} is converging to
βi as N goes to infinity, where

(4) βi =


πc
(
m ∈ N2,mi=0

)
(1−pi)+piπc(0, 0) if (E) holds,

0 if (A) or (Bi) holds,

(1− pi) (1− µici/λi) if (B3−i) holds.

2.4. An Extension to Multiple Data Centers. In this section, it is assumed
that there are J data centers, for 1 ≤ j ≤ J , the jth data center has cjN servers
and the external arrivals to it are Poisson with parameter λjN and services are
exponentially distributed with parameter µj . If an external request at data center
j finds all cjN servers occupied, it is re-routed to data center j+1 (with J+1 = 1)
or to data center j−1 (with 0=J) with probability pj , otherwise it is rejected. In
particular a job is rerouted with probability 2pj in the case of congestion. See
Figure 1.

For 1 ≤ j ≤ J , one defines the random walk (mj
c(t)) on N2 as follows: the

transition from (m,n) ∈ N2 to (m+a, n+b) occurs at rate
µjcj if (a, b) = (1, 0),

µj+1cj+1 if (a, b) = (0, 1),

λj + pj+1λj+11{n=0} if (a, b) = (−1, 0) and m > 0,

λj+1 + pjλj1{m=0} if (a, b) = (0,−1) and n > 0.

If one of the conditions
(Ej){
λj > µjcj ,

λj+1 > µj+1cj+1,

{
λj+1 < µj+1cj+1

λj+λj+1pj+1>µjcj+pj+1µj+1cj+1,
or

{
λj < µjcj ,

λj+1+λjpj>µj+1cj+1+pjµjcj ,

holds, one gets that the associated Markov process is ergodic by Proposition 1,
one denotes by πjc its invariant probability distribution. As before, one takes the
following convention for the indices, J+1=1 and 1−1=J .

We now give a version of the previous proposition in this context.

Proposition 4. At equilibrium, the loss probability of a job of class j ∈ {1, . . . , J}
is converging to βj as N goes to infinity in the following cases,

(1) No Congestion.
If λj < µjcj for all j ∈ {1, . . . , J} then βj ≡ 0.

(2) One saturated node.
If, for some j0 ∈ {1, . . . , J}, λj0>µj0cj0 and if λj < µjcj holds for all
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j 6= j0 and{
λj0+1 + λj0pj0 < µj0+1cj0+1 + pj0µj0cj0
λj0−1 + λj0pj0 < µj0−1cj0−1 + pj0µj0cj0 ,

then βj = 0 if j 6= j0 and βj0 = (1− 2pj0)(1− µj0cj0/λj0)
(3) Two saturated neighboring nodes.

If, for some j0 ∈ {1, . . . , J}, one of the conditions (Ej0) holds and λj < µjcj
holds for all j 6= j0, j0+1 and

(5)

{
λj0+2 + λj0+1pj0+1π

j0
c (N×{0}) < µj0+2cj0+2

λj0−1 + λj0pj0π
j0
c ({0}×N) < µj0−1cj0−1

then {
βj0 = πj0c ({0}×N) (1−2pj0)+pj0π

j0
c (0, 0)

βj0+1 = πj0c (N×{0}) (1−2pj0+1)+pj0+1π
j0
c (0, 0).

The proof is similar to the proof of the previous proposition and is therefore
omitted. Note that Condition (5) implies that the nodes with index j0 − 1 and
j0 + 2 are underloaded, so that only nodes with index j0 and j0 + 1 are congested.
This result covers partially the set of various possibilities but, as long as only two
neighboring nodes are congested, it can be extended quite easily to the case where
only pairs of nodes are congested.

When there are at least three neighboring congested nodes, this method does not
apply. It occurs when one of the conditions (Ej0) holds and one of the conditions
of (5) is not satisfied. One has to consider the invariant distributions of a three
dimensional random walk in N3 for which there are scarce results. Nevertheless
this situation should be, in practice, unlikely if the fog computing architecture
is conveniently designed so that a local congestion can be solved by using the
neighboring resources.

This proposition shows that the evaluation of the performances of the offloading
algorithm can be expressed in terms of the invariant distributions of the random
walks (mc(t)) introduced in Definition 1. The rest of the paper is devoted to the
analysis of these invariant distributions when they exist. In particular, we will
derive an explicit expression of the blocking probabilities βi at facility # i.

3. Characteristics of the limiting random walk

3.1. Fundamental equations. Throughout this section, we assume that the first
condition of (E) holds. Let mc,1 and mc,2 denote the abscissa and the ordinate of
the random walk (mc(t)) in the stationary regime. Under stability condition (E),
it is shown in [7] that the generating function of the stationary numbers mc,1 and
mc,2, defined by P (x, y) = E(xmc,1ymc,2) for complex x and y such that |x| ≤ 1 and
|y| ≤ 1, satisfies the functional equation

(6) h1(x, y)P (x, y) = h2(x, y)P (x, 0) + h3(x, y)P (0, y) + h4(x, y)πc(0, 0),
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with πc(0, 0) standing for P (0, 0) and

h1(x, y) = −µ1c1x
2y − µ2c2xy

2 + (λ1 + λ2 + µ1c1 + µ2c2)xy − λ1y − λ2x,
h2(x, y) = λ2 ((1− p2)xy − x+ p2y) ,

h3(x, y) = λ1 ((1− p1)xy − y + p1x) ,

h4(x, y) = (λ1p1 + λ2p2)xy − p2λ2y − p1λ1x.

It is worth noting that

(7) λ1p1(λ1+λ2p2)h2(x, y)+λ2p2(λ2+λ1p1)h3(x, y)−λ1λ2(1−p1p2)h4(x, y) = 0.

In [7, 8], it is shown how to compute the unknown functions by using the zeros of
the kernel h1(x, y) and the results on Riemann-Hilbert problems. In the following
we briefly describe how to achieve this goal. For the system under consideration,
let us recall that the performance of the system is characterized by the blocking
probabilities of the two classes of customers. For customers arriving at facility #1,
the blocking probability is given by

(8) β1 = P (0, 1)(1− p1) + p1πc(0, 0)

and that for customers arriving at the second facility by

(9) β2 = P (1, 0)(1− p2) + p2πc(0, 0).

By using the normalizing condition P (1, 1) = 1, we can easily show that

λ1 + λ2p2P (1, 0)− µ1c1 = λ1P (0, 1) + λ2p2πc(0, 0)

and

λ2 + λ1p1P (0, 1)− µ2c2 = λ2P (1, 0) + λ1p1πc(0, 0).

We then deduce that

P (0, 1) =
λ1 − µ1c1 + p2(λ2 − µ2c2)− p2(λ2 + λ1p1)πc(0, 0)

(1− p1p2)λ1
(10)

and

P (1, 0) =
λ2 − µ2c2 + p1(λ1 − µ1c1)− p1(λ1 + λ2p2)πc(0, 0)

(1− p1p2)λ2
.(11)

The above relations show that the blocking probabilities β1 and β2 can be estimated
as soon as the quantity πc(0, 0) is known.

3.2. Zero pairs of the kernel. The kernel h1(x, y) has already been studied in
[7] in the framework of coupled servers. For fixed y, the kernel h1(x, y) has two
roots X0(y) and X1(y). By using the usual definition of the square root such that√
a > 0 for a > 0, the solution which is null at the origin and denoted by X0(y), is

defined and analytic in C \ ([y1, y2] ∪ [y3, y4]) where the reals y1, y2, y3 and y4 are
such that 0 < y1 < y2 < 1 < y3 < y4. The other solution X1(y) is meromorphic in
C \ ([y1, y2] ∪ [y3, y4]) with a pole at 0. The function X0(y) is precisely defined by

X0(y) =
−(µ2c2y

2 − (λ1 + λ2 + µ1c1 + µ2c2)y + λ2) + σ1(y)

2µ1c1y

with

∆1(y) = (µ2c2y
2 − (λ1 + λ2 + µ1c1 + µ2c2)y + λ2)2 − 4µ1c1λ1y

2,
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where σ1(y) is the analytic continuation in C \ ([y1, y2] ∪ [y3, y4]) of the func-

tion
√

∆1(y) defined in the neighborhood of 0. The other solution X1(y) =
λ1/(µ1c1X0(y)).

When y crosses the segment [y1, y2], X0(y) and X1(y) describe the circle Cr1
with center 0 and radius r1 =

√
λ1/(µ1c1) > 1, since from the first of condition

of (E), we have λ1 > µ1c1.
Similarly, for fixed x, the kernel K(x, y) has two roots Y0(x) and Y1(x). The

root Y0(x), which is null at the origin, is analytic in C \ ([x1, x2] ∪ [x3, x4]) where
the reals x1, x2, x3 and x4 are such that with 0 < x1 < x2 < 1 < x3 < x4 and is
given by

Y0(x) =
−(µ1c1x

2 − (λ1 + λ2 + µ1c1 + µ2c2)x+ λ1) + σ2(x)

2µ2c2x

with

∆2(x) = (µ1c1x
2 − (λ1 + λ2 + µ1c1 + µ2c2)x+ λ1)2 − 4µ2c2λ2x

2,

where σ2(x) is the analytic continuation in C \ ([x1, x2] ∪ [x3, x4]) of the function√
∆2(x) defined in the neighborhood of 0. The other root Y1(x) = λ2/(µ2c2Y0(x))

and is meromorphic in C \ ([x1, x2] ∪ [x3, x4]) with a pole at the origin.
When x crosses the segment [x1, x2], Y0(y) and Y1(y) describe the circle Cr2 with

center 0 and radius r2 =
√
λ2/(µ2c2).

4. Boundary value problems

4.1. Problem formulation. In [8], it is proven that the functions P (x, 0) and
P (0, y) can be extended as meromorphic functions in C \ [x3, x4] and C \ [y3, y4],
respectively. By using the fact that X0(y) and X1(y) are on circle Cr1 for y ∈
[y1, y2], we easily deduce that the function P (x, 0), analytic in Dr1 (the disk with
center 0 and radius r1), is such that for x ∈ Cr1

(12) <
(
i
h2(x, Y0(x))

h3(x, Y0(x))
P (x, 0)

)
= =

(
h4(x, Y0(x))

h3(x, Y0(x))
πc(0, 0)

)
where Y0(x) ∈ [y1, y2].

Similarly, the function P (0, y) is analytic in Dr2 , which is the disk with center 0
and radius r2, and for x ∈ Cr2 , we have

(13) <
(
i
h3(X0(y), y)

h2(X0(y), y)
P (0, y)

)
= =

(
h4(X0(y), y)

h2(X0(y), y)
πc(0, 0)

)
.

By using Equation (7), we have

=
(
h4(x, y)

h2(x, y)

)
= −p2(λ2 + λ1p1)

λ1(1− p1p2)
<
(
i
h3(x, y)

h2(x, y)

)
.

Equation (13) can then be rewritten as

(14) <
(
i
h3(X0(y), y)

h2(X0(y), y)

(
P (0, y) +

p2(λ2 + λ1p1)

λ1(1− p1p2)
πc(0, 0)

))
= 0.

Similarly, Equation (12) can be rewritten as

(15) <
(
i
h2(x, Y0(x))

h3(x, Y0(x))

(
P (x, 0) +

p1(λ1 + λ2p2)

λ2(1− p1p2)
πc(0, 0)

))
= 0.
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Problem (15) corresponds to Problem (7.6) in [7] for which i1 = i2 = i3 = 0 in
the notation of that paper. The ratio h2(x, Y0(x))/h3(x, Y0(x)) corresponds to the
function J(x) in [7].

In the following, we focus on Riemann-Hilbert problem (14). The analysis of
problem (15) is completely symmetrical. Moreover, to compute the blocking prob-
abilities β1 and β2, we only need to compute the quantity πc(0, 0).

4.2. Problem resolution. The function P (0, y) is analytic in the open disk Dr2 .
By using the reflection principle [5], the function

y 7→ P (0, r22/y)

is analytic on the outside of the closed disk Dr2 . It is then easily checked that if
we define

(16) FY (y) =


P (0, y) +

p2(λ2 + λ1p1)

λ1(1− p1p2)
πc(0, 0), y ∈ Dr2 ,

P (0, r22/y) +
p2(λ2 + λ1p1)

λ1(1− p1p2)
πc(0, 0), y ∈ C \Dr2 ,

the function FY (y) is sectionally analytic with respect to the circle Cr2 , the quantity
FY (y) tends to πc(0, 0)(λ1 + λ2p2)/(λ1(1− p1p2)) when y goes to infinity, and for
y ∈ Cr2
(17) F iY (y) = αY (y)F eY (y),

where F iY (y) (resp. F eY (y)) is the interior (resp. exterior) limit of the function
FY (y) at the circle Cr2 , and the function αY (y) is defined on Cr2 by

(18) αY (y) =
aY (y)

aY (y)

with

aY (y) =
h3(X0(y), y)

h2(X0(y), y)
.

The solutions to Riemann-Hilbert problems of form (17) are given in [6]. We
first have to determine the index of the problem defined as

κY =
1

2π
vary∈Cr2 argαY (y).

In [7, Theorem 7.2] it is shown that the stability condition (E) is equivalent to
κY = 0.

To obtain explicit expressions, let us first study the function αY (y), which can
be expressed as follows.

Lemma 4.1. The function αY (y) defined for y ∈ Cr2 by Equation (18) can be
extended as a meromorphic function in C \ ([y1, y2] ∪ [y3, y4]) by setting

(19) αY (y) =
λ2(1− p1p2)X0(y) + yRY (X0(y))

y(µ2c2(1− p1p2)yX0(y) +RY (X0(y)))
,

where
(20)
RY (x) = p1µ1c1(1−p2)x2+(p1p2(µ1c1+µ2c2)−(1−p2)(λ2+λ1p1))x−p2(λ2+λ1p1).



OFFLOADING SCHEME FOR DATA CENTERS 13

Proof. We have for (x, y) such that y ∈ Cr2 and x = X0(y)

h3(x, ȳ)h2(x, y) = λ1λ2 (((1− p1)x− 1)((1− p2)x+ p2)yȳ

−((1− p1)x− 1)xȳ + p1x((1− p2)x+ p2)y − p1x2
)

By using the fact that yȳ = λ2/(µ2c2) and h1(x, y) = 0, we deduce that

h3(x, ȳ)h2(x, y) = −λ1λ2(x− 1)

µ2c2y
(λ2(1− p1p2)x+ yRY (x)) ,

where RY (x) is defined by Equation (20), and the result follows. �

Since the index of the Riemann-Hilbert (17) is null, the solution is as follows.

Lemma 4.2. The solution to the Riemann-Hilbert problem (17) exists and is unique
and given for y ∈ Dr2 by

(21) FY (y) =
λ1 + λ2p2
λ1(1− p1p2)

πc(0, 0)ϕY (y),

where

(22) ϕY (y) = exp

(
y

π

∫ x2

x1

(µ1c1x
2 − λ1)ΘY (x)

xh1(x, y)
dx

)
and

(23) ΘY (x) =

ArcTan

(
(1− p1p2)

√
−∆2(x)

(1− p1p2)(µ1c1x2 − (λ1 + λ2 + µ1c1 + µ2c2)x+ λ1)− 2RY (x)

)
.

Proof. Since the index of the Riemann-Hilbert (17) is null, the solution reads [6]

FY (y) = φY (y) exp

(
1

2iπ

∫
Cr2

logαY (z)

z − y
dz

)
where the function αY (y) is defined by Equation (19) and φY (y) is a polynomial.
Since we know that FY (y)→ πc(0, 0)(λ1 + λ2p2)/(λ1(1− p1p2)) as |y| → ∞, then

φY (y) =
λ1 + λ2p2
λ1(1− p1p2)

πc(0, 0).

Let for y ∈ Cr2 and y = Y0(x+ i0) for x ∈ [x1, x2]

ΘY (x) = arg (−µ2c2(1− p1p2)Y0(x+ 0i)x−RY (x))

By using the expression of Y0(x), Equation (23) follows. It is clear that

logαY (Y0(x+ 0i)) = −2iΘY (x).

Since Y0(x+ 0i) = Y0(x− 0i), we have

1

2iπ

∫
Cr2

logαY (z)

z − y
dz =

1

π

∫ x2

x1

=
(

logαY (Y0(x+ 0i))

Y0(x+ 0i)− y
dY0
dx

(x+ 0i)

)
dx

=
1

π

∫ x2

x1

=
(

−2i

Y0(x+ 0i)− y
dY0
dx

(x+ 0i)

)
ΘY (x) dx.

It is easily checked from the equation h1(x, Y0(x)) = 0 that

dY0
dx

=
−2µ1c1xY0(x)− µ2c2Y0(x)2 + (λ1 + λ2 + µ1c1 + µ2c2)Y0(x)− λ2

µ1c1x2 + 2µ2c2xY0(x)− (λ1 + λ2 + µ1c1 + µ2c2)x+ λ1
.
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For x ∈ [x1, x2], we have

µ1c1x
2 + 2µ2c2xY0(x+ 0i)− (λ1 + λ2 + µ1c1 + µ2c2)x+ λ1 = −i

√
−∆2(x)

By using once again h1(x, Y0(x+ 0i)) = 0, we obtain for x ∈ [x1, x2]

dY0
dx

(x+ 0i) =
(λ1 − µ1c1x

2)Y0(x+ 0i)

−ix
√
−∆2(x)

and then for real y

=
(

−2i

Y0(x+ 0i)− y
dY0
dx

(x+ 0i)

)
=

(µ1c1x
2 − λ1)y

xh1(x, y)
.

It follows that for real y

1

2iπ

∫
Cr2

logαY (z)

z − y
dz =

y

π

∫ x2

x1

(µ1c1x
2 − λ1)ΘY (x)

xh1(x, y)
dx

It is easily checked that the function on the right hand side of the above equation
can analytically be continued in the disk Dr2 and the result follows. �

In view of the above lemma, we can state the main result of this section.

Theorem 2. The function P (0, y) can be defined as a meromorphic function in
C \ [y3, y4] by setting
(24)

P (0,y)=


λ1 + λ2p2
λ1(1− p1p2)

πc(0, 0)ϕY (y)− p2(λ2 + λ1p1)

λ1(1− p1p2)
πc(0, 0), y ∈ Dr2 ,

λ1+λ2p2
λ1(1−p1p2)

πc(0,0)αY (y)ϕY (y)−p2(λ2+λ1p1)

λ1(1−p1p2)
πc(0,0), y ∈ C \Dr2 ,

where ϕY (y) is defined by Equation (22).

Proof. Since the solution to the Riemann-Hilbert problem (14) is unique, the func-
tion P (0, y) coincides with the function

FY (y) +
p2(λ2 + λ1p1)

λ1(1− p1p2)
πc(0, 0)

in Dr2 . We can extend this function as follows. Noting that the function logαY (y)
is analytic in a neighborhood of the circle Cr2 , the function

y 7→ exp

(
1

2iπ

∫
Cr2

logαY (z)

z − y
dz

)
defined for y ∈ Dr2 can be continued as a meromorphic function in C \ [x3, x4] by
considering the function defined for y ∈ C \Dr2 , by

αY (y) exp

(
1

2iπ

∫
Cr2

logαY (z)

z − y
dz

)
= αY (y) exp

(
y

π

∫ x2

x1

(µ1c1x
2 − λ1)ΘY (x)

xh1(x, y)
dx

)
,

where the last equality is obtained by using the same arguments as above (consider
first real y and then extend the function by analytic continuation). �
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For the system under consideration, let us recall that the performance of the
system is characterized by the blocking probabilities of the two classes of customers.
The following theorem summarizes the main results of the paper for Condition (E).
Proposition 3 covers the other cases.

Theorem 3. Under Condition (E), as N goes to infinity, the probability that at
equilibrium a job of facility #i, i ∈ {1, 2} is rejected converges to βi with

β1 =
(λ1−µ1c1+p2(λ2−µ2c2)−p2(λ2+λ1p1)πc(0, 0))(1−p1)

λ1(1−p1p2)
+p1πc(0, 0)

β2 =
(λ2−µ2c2+p1(λ1−µ1c1)−p1(λ1+λ2p2)πc(0, 0))(1−p2)

λ2(1−p1p2)
+p2πc(0, 0)

and the quantity πc(0, 0) is given by

(25) πc(0, 0) =


λ1 + λ2p2 − (µ1c1 + µ2c2p2)

(λ1 + λ2p2)ϕY (1)
if λ2 > µ2c2,

λ2 + λ1p1 − µ1c1p1 − µ2c2
p1(λ1 + λ2p2)ϕY (1)

if λ2 < µ2c2,

where ϕY (y) is defined by Equation (22).

Proof. In the case λ2 > µ2c2, the result easily follows by using Equation (24) for
y = 1 and Equation (10).

In the case λ2 < µ2c2 (and then λ1 > µ1c1 by Condition (E)), we have X0(1) = 1
and then, by Relation (19), one gets the expression for αY (1),

αY (1) = p1
λ1 + λ2p2 − µ1c1 − µ2c2p2
λ2 + λ1p1 − µ1c1p1 − µ2c2

.

Equation (25) then easily follows. The formulas for the blocking probabilities are
obtained by using Relations (8) and (9) for β1 and β2 and the expressions (10)
and (11) for P (0, 1) and P (1, 0). �

To conclude this section, it is worth noting that the computation of the function
ϕY (y) in the quantity πc(0, 0) involves elliptic integrals. In addition, a similar
result holds for the function P (x, 0). This enables us to completely compute the
generating function P (x, y).

5. Numerical results: Offloading small data centers

In this section, we illustrate the results obtained in the previous sections (in
particular Theorem 3) in order to estimate the gain achieved by the offloading
scheme. We assume that the service rate at both facilities is the same and taken
equal to unity (µ1 = µ2 = 1). Assume in addition that the first data center has a
capacity much smaller than the second one, e.g., c1 = 1 and c2 = 10.

We consider the case when all the requests blocked at the first data center are
forwarded to the second one (p1 = 1) and none blocked at the second data center
is forwarded to the first one (p2 = 0).

In Figures 4 and 5, when the arrival rate λ1 at the first data center increases,
the loss rate β1 goes from 0 if (A) or (B1) holds to a positive value if (B2) or
(E) holds. For example in Figure 4, for p1 = 1, we can see the transition from
(B2) to (E) when λ1 = 3, and for p1 = 0.7, the transition from (B2) to (E) when
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λ1 = 1+2/0.7 ' 3.85. We can checked that β1 is a continuous and not differentiable
function of λ1 at 1 + 2/0.7. If p1 = 0.35 or p1 = 0, (E) holds for the range of values
[1, 5] considered here for λ1. In Figure 4, λ2 = 12 thus (E) holds for λ1 ∈ [1, 5], as
λ1 > µ1c1 and λ2 > µ2c2.

In conclusion, Figures 4 and 5 show that the offloading mechanism improves a lot
the loss rate β1 of the requests of class 1 and does not significantly deteriorate the
corresponding performances at facility #2 in the case of systematic rerouting (p1 =
1), even when this data center is already significantly loaded as in Figure 5 (B).
This means that offloading small date centers with a big back-up data center is a
good strategy to reduce blocking in fog computing.
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(b) Loss probability of class 2

Figure 4. Loss probabilities as a function of λ1 with λ2=8, c1=1,
c2=10, µ1=1, µ2=1, p2=0. The crosses represent simulation points
while solid curves are plotted from analytical results.
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Figure 5. Loss probabilities as a function of λ1 with λ2=12, c1=1,
c2=10, µ1=1, µ2=1, p2=0. The crosses represent simulation points
while solid curves are plotted from analytical results.
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Figure 6. Loss probabilities as a function of p1 with c1=1, c2=10,
λ1=1.2, µ1=1, µ2=1, p2=0.

Figures 6 illustrate the impact of the choice of p1 when facility #2 is almost
overloaded, λ2 = 9.9 so that λ2 < c2µ2, and with a high load λ2 = 11.1. As it
can be seen, even when p1 = 1, the performances of class 2 requests are not really
impacted by the offloading scheme, whereas the loss rate of class 1 is significantly
changed. This confirms the benefit of the offloading strategy.

6. Conclusion

We have proposed in this paper an analytical model to study a simple offloading
strategy for data centers in the framework of fog computing under heavy loads.
The strategy considered consists of forwarding with a certain probability requests
blocked at a small data center to a big back-up data center. The model considered
could also be used to study the offload of requests blocked at the big data center
onto a small data center but this case has not been considered in the numerical ap-
plications. The key finding is that the proposed strategy can significantly improves
blocking at a small data center without affecting too much blocking at the big data
center.
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