
Flow-Sensitive Composition of Thread-Modular
Abstract Interpretation

Markus Kusano
Virginia Tech

Blacksburg, VA, USA

Chao Wang
University of Southern California

Los Angeles, CA, USA

ABSTRACT
We propose a constraint-based flow-sensitive static analysis for con-
current programs by iteratively composing thread-modular abstract
interpreters via the use of a system of lightweight constraints. Our
method is compositional in that it first applies sequential abstract
interpreters to individual threads and then composes their results.
It is flow-sensitive in that the causality ordering of interferences
(flow of data from global writes to reads) is modeled by a system of
constraints. These interference constraints are lightweight since they
only refer to the execution order of program statements as opposed
to their numerical properties: they can be decided efficiently using
an off-the-shelf Datalog engine. Our new method has the advantage
of being more accurate than existing, flow-insensitive, static analyz-
ers while remaining scalable and providing the expected soundness
and termination guarantees even for programs with unbounded data.
We implemented our method and evaluated it on a large number
of benchmarks, demonstrating its effectiveness at increasing the
accuracy of thread-modular abstract interpretation.

CCS Concepts
•Software and its engineering→ Automated static analysis; For-
mal software verification;

Keywords
Concurrency, Abstract interpretation, Invariant generation, Thread-
modular reasoning, Interference, Datalog

1. INTRODUCTION
Although abstract interpretation [2] has wide use in the analy-

sis and verification of sequential programs, designing a scalable
abstract-interpretation-based analysis for shared-memory concur-
rent programs remains a difficult task [5, 8, 20–22]. Due to the large
concurrent state space, directly applying techniques designed for
sequential abstract interpretation to interleaved executions of a con-
current program does not scale. In contrast, recent thread-modular
techniques [8, 20–22] drastically over-approximate the interactions
between threads, allowing a more tractable but less accurate analysis.
Their main advantage is that sequential abstract interpreters can be
lifted to concurrent ones with minimal effort. However, they con-
sider thread interactions in a flow-insensitive manner: given a system
of threads {A,B,C}, for instance, they assume A can observe all
combinations of memory modifications from B and C despite that
some of these combinations are infeasible, thereby leading to a large
number of false alarms even for simple programs.

In this paper, we propose the first constraint-based flow-sensitive
method for composing sequential abstract interpreters to form a
more accurate thread-modular analysis. Though desirable, no ex-
isting static method is able to maintain inter-thread flow sensitivity

Concurrent
Program

Thread-modular
Abstract Interpretation

Invariants

Query

µZ Solver
(Datalog)

Interference
Feasibility Checking

Figure 1: WATTS: Flow-sensitive thread-modular analysis.

with a reasonable cost. The main advantage of our method is that,
through the use of a lightweight system of constraints, it can achieve
a high degree of flow sensitivity with negligible runtime cost. Here,
our goal is to prove the correctness of reachability properties of a
program: the properties are embedded assertion statements whose
error conditions are relational expressions over program variables
at specific thread locations. Another advantage is that our method
can be implemented as a flexible composition of existing sequential
abstract-interpretation frameworks while retaining the well-known
benefits such as soundness and guaranteed termination as well as
the freedom to plug in a large number of abstract domains [2, 19].

Figure 1 shows an overview of our new method. Given a concur-
rent program, our method returns a set of relational and numerical
invariants statically computed at each thread location as output.
These invariants, in turn, can be used to prove the set of reachability
properties of the program. During the thread-modular analysis, we
first apply a sequential abstract interpreter to each individual thread
and then propagate their results across threads before applying these
sequential abstract interpreters again. The iterative process contin-
ues until a fix-point is reached over the set of invariants. During
each iteration, the abstract interpreter also communicates with a
Datalog engine to check if a thread interference, or set of interfer-
ences (data flow from global writes to reads), is feasible. If we can
statically prove that the interference is infeasible, i.e., it cannot occur
in any real execution of the program, we skip it, thereby reducing
the analysis time and increasing accuracy.

In contrast to existing methods in this domain, our analysis is flow-
sensitive for two reasons. First, we explore the memory interactions
between threads individually by propagating their memory-states
along data-flow edges without eagerly merging them through join
operations as in prior techniques [8,20–22]. Second, we identify and
remove the infeasible memory interactions by constructing and solv-
ing a system of lightweight happens-before constraints. These con-
straints (Horn clauses in finite domains) capture only the causality
ordering of the program’s statements as opposed to complex relation-
al/numerical properties. As such, they can be solved by a Datalog

ar
X

iv
:1

70
9.

10
11

6v
1 

 [
cs

.P
L

] 
 2

8 
Se

p 
20

17



1 bool flag = false;
2 int x = 0;
3 void thread1() {
4 x = 4;
5 x = 5;
6 flag = true;
7 }

8 void thread2() {
9 bool b1 = flag;

10 if (b1) {
11 int t1 = x;
12 if (t1 != 5)
13 ERROR!;
14 } }

Figure 2: Proving the ERROR! on l13 is not reachable.

engine in polynomial time. These two techniques, together, greatly
reduce the number of false alarms caused by over-approximating
the global memory state across threads, thereby allowing more prop-
erties to be verified compared to prior approaches.

Consider the program in Figure 2, which has two threads commu-
nicating through the shared variables x and flag. Initially flag is
false and x is 0. Thread 1 only performs shared memory writes by
setting x to 4, and then to 5, before setting flag to true. Thread 2
only performs shared memory reads: it reads the value of flag and
if the value is true, reads the value of x. Note that the ERROR! (at
l13) is unreachable since, for Thread 2 to reach l11, Thread 1 has to
set flag to true (at l6) before l9 is executed; but in such a case, l5
must have been executed, meaning x must have been set to 5.

Prior static analyzers such as Ferrara [8] and Miné [20–22] would
have difficulty because their treatment of inter-thread communica-
tion is flow-insensitive. That is, if one thread writes to a shared
variable at program location li and another thread reads the same
shared variable at lj , they model the interaction by adding a data-
flow edge from li to lj even if the edge is infeasible or is only
feasible in some program executions. For example, in Figure 2, no
concrete execution simultaneously allows the flow of x from l4 to
l11 and the flow of flag from l6 to l9. In such cases, these prior
methods would lose accuracy because their way of modeling the
inter-thread data flow cannot differentiate between the feasible and
infeasible data-flow combinations.

In contrast, our new method detects and eliminates such infeasible
data-flows. For now, it suffices to say that our method would report
that the flow of x from l4 to l11 cannot co-exist with the flow of
flag from l6 to l9. We will provide full details of our constraint-
based interference analysis in Section 5.

Our method for checking the feasibility of inter-thread data flows
is sound: when it declares a certain combination of interferences
as infeasible, the combination is guaranteed to be infeasible. How-
ever, for efficiency reasons, our method does not attempt to identify
every infeasible combination. This is consistent with the fact that
abstract interpretation, in the context of property verification, is
generally an over-approximation: it can prove the absence of errors
but does not aim to guarantee that all unverified properties have real
violations. As such, the additional effort we put into our constraint-
based interference analysis is a fair trade-off between lower runtime
overhead and improved accuracy. This puts our method in a nice
middle ground between the more heavyweight model checkers [1]
and the more scalable and yet less accurate static analysis tech-
niques [8, 20–22].

Another perhaps subtle benefit of our method is that the sequential
abstract interpreter only needs a lightweight constraint solver [11]
as a black-box to query the feasibility of a set of interferences. As
such, it provides a flexible and extensible framework, allowing ad-
ditional constraints, deduction rules, and decision procedures (e.g.,
solvers for symbolic-numerical domains) to be plugged in to further
reduce the number of false alarms. To make our method more ef-
ficient, we also propose several optimizations to our interference
feasibility analysis (Section 6): we leverage control and data de-
pendencies to group interferences before checking the feasibility

of their combinations, and leverage property-directed pruning to
reduce the program’s state space.

Our method differs from the DUET concurrent static analyzer
of Farzan and Kincaid [5, 6] despite that both methods employ
constraint-based analysis, since we aim at solving a different prob-
lem. First, our goal is to accurately analyze a concurrent program
with a fixed number of threads, whereas their goal is to soundly
approximate the behavior of a parameterized program with an un-
bounded number of thread instances. Second, our method is strictly
thread-modular: we iteratively apply a sequential abstract interpreter
to a set of control-flow graphs, one per thread, and one at a time.
In contrast, they analyze a single monolithic data-flow graph of the
entire concurrent program. As a result, their method is significantly
less accurate than ours on non-parameterized programs. We illus-
trate the main difference between these two computational models,
i.e., a set of per-thread control-flow graphs versus a monolithic
data-flow graph, in Section 2.3.

We implemented our method in a static analysis tool named
WATTS, for verifying reachability properties of multithreaded C/C++
programs written using the POSIX thread library. The tool builds
upon the LLVM compiler, using the µZ [11] fix-point engine in
Z3 [4] to solve Datalog constraints and the Apron library [13] to
implement the sequential abstract interpreter over numerical abstract
domains. We have evaluated our method on a set of benchmarks with
a total of 26,309 lines of code. Our experiments show that WATTS
can successfully prove 1,078 reachability properties, compared to
526 properties proved by DUET [5, 6] and 38 properties proved by
the prior, flow-insensitive methods [21,22]. Furthermore, WATTS
achieved a 28x increase in the number of verified properties with
only a 1.4x increase in the analysis time.

In summary, this paper makes the following contributions:
1. We propose a flow-sensitive method for composing thread-

modular abstract interpreters into a more accurate static anal-
ysis procedure.

2. We develop a lightweight constraint-based framework for
soundly checking the feasibility of inter-thread interferences
and combinations of interferences.

3. We develop optimization techniques to improve the efficiency
of our analysis by leveraging control and data dependencies
and property-directed pruning.

4. We implement and evaluate our method on a large set of
benchmarks and demonstrate its advantages over prior works.

2. MOTIVATING EXAMPLES
We present a series of examples showing applications of our new

method compared to existing approaches.

2.1 Thread-modular Abstract Interpretation
First, Figure 2 provides an overview of prior works on thread-

modular abstract interpretation [8, 20–22]. These methods all use
the same notion of interference between threads: an interference is a
value stored into shared memory at some point during the execution
of a thread. In Figure 2, there are three interferences, all from
Thread 1: the writes to x at l4 and l5 and the write to flag at l6.

These prior techniques analyze the program by statically comput-
ing the over-approximated set of interferences for each thread:

1. Initially, the set of interferences in each thread is empty.
2. Each thread is independently analyzed in the presence of

interferences from all other threads.
3. The set of interferences in each thread is recomputed based

on the results of the analysis in Step 2.
4. Steps 2–3 are repeated until the interferences stabilize.

During the thread-modular analysis (step 2), each thread keeps
track of its own memory environment at every thread location. The



Table 1: Running prior approaches [8, 20–22] on Figure 2.
Thread 1 Thread 2

Iteration Reachable Interference Reachable Interference

One 4,5,6 flag = {1}
x = {4, 5} 9,10 ∅

Two 4,5,6 flag = {1}
x = {4, 5}

9,10,11
12,13 ∅

memory environment is an abstract state mapping program variables
to their values. To incorporate inter-thread effects, when a thread
performs a shared memory read on some global variable q, it reads
either the values of q in its own memory environment, or the values
of q from the interferences of all other threads. These techniques
rely on a flow-insensitive analysis in that each read may see all
values ever written by any other thread, even if the flow of data is
not feasible in all, or any, of the concrete program executions.

Table 1 shows the results of analyzing Figure 2 with prior thread-
modular approaches [8, 20–22]. Column 1 shows the two iterations.
Columns 2 and 4 show the lines reachable after each iteration in the
two threads. Columns 3 and 5 show the interferences generated after
each iteration. In the second iteration, the interferences generated
during the first iteration are visible: Thread 2 is analyzed in the
presence of the interferences generated by Thread 1. After two
iterations, the interferences stabilize, which concludes the analysis.
Unfortunately, the result in Table 1 shows that Thread 2 can reach
l12, where it reads the value of x either from its own memory
environment (the initial value 0) or from the interference of Thread 1
(4), thereby allowing the ERROR! to be reached. This is a false
alarm: the property violation is generated because the inter-thread
interferences are handled in a flow-insensitive manner.

In this example, to eliminate the false alarm one has to maintain a
complex invariant such as (flag = true)→ (x = 5) which cannot
be expressed precisely as a relational invariant even in expensive nu-
merical domains such as convex polyhedra. Additionally, in order to
propagate such a relational invariant across threads, as in [22], they
need to hold over all states within a thread. Otherwise, interference
propagation is inherently non-relational. Specifically, propagating
the interferences on a variable x first requires a projection on x, thus
forgetting all relational invariants.

In contrast, our method can eliminate the false alarm even while
staying in inexpensive abstract domains such as intervals. In particu-
lar, our work shows that eagerly joining over all interference across
threads is inaccurate and should be avoided as much as possible.

2.2 Iterative Flow-sensitive Analysis
We propose, instead, to partition the set of interferences from

other threads into clusters and then consider combinations of in-
terferences only within these clusters. In this way, we effectively
delay the join of interferences and avoid the inaccuracies caused
by eagerly joining in existing methods. For example, if we assume
the three interferences in Figure 2 fall into one cluster (worst for
efficiency but best for accuracy), our analysis of the program would
be as follows: in the first iteration, we apply per thread abstract
interpretation and then compute the interferences for each thread;
these computations remain the same as in the first iteration of Ta-
ble 1. In the second iteration, however, when analyzing Thread 2 at
the point of reading flag, there will be six possible cases, due to
the Cartesian product of x = {0, 4, 5} and flag = {0, 1}.

Unlike prior approaches, which eagerly join these cases to form
x = {0, 4, 5} ∧ flag = {1, 0}, we analyze the impact of each case
ρ1–ρ6 individually as follows:

• ρ1, corresponding to (x = 4 ∧ flag = 0);
• ρ2, corresponding to (x = 5 ∧ flag = 0);
• ρ3, corresponding to (x = 0 ∧ flag = 0);
• ρ4, corresponding to (x = 5 ∧ flag = 1);
• ρ5, corresponding to (x = 4 ∧ flag = 1); and
• ρ6, corresponding to (x = 0 ∧ flag = 1).

This leads to enough accuracy to prove the ERROR! is not reachable.
First, when flag = 0 (ρ1, ρ2, and ρ3) the ERROR! cannot be
reached since the branch at l10 will not be taken (b1 is false).
Second, in the case of ρ4, the first branch at l10 will be taken but the
branch guarding ERROR! will not, since x = 5, meaning t1 is also
5. For the two remaining cases (ρ5 and ρ6) our constraint-based
interference analysis (Section 5) would show it is impossible to have
both x = 4 ∧ flag = 1, or x = 0 ∧ flag = 1.

The intuition behind the analysis is that infeasible data flows
cause a contradiction between program-order constraints and data-
flow edges. Specifically, examining ρ5, if Line 9 reads flag as 1
and Line 11 reads x as 4, then:
• Line 6 is executed before Line 9 (b1==true),
• Line 9 is executed before Line 11 (program order),
• Line 11 is executed before Line 5 (t1==4), and
• Line 5 is executed before Line 6 (program order).

This leads to a contradiction since the above must-happen-before
relationship forms a cycle, meaning the combination cannot happen.
Similarly, ρ6 is infeasible since the write of 1 to flag implies the
updates to x have already occurred, meaning x’s initial value, 0, is
not visible to Thread 2. At this point, the only feasible interferences
do not cause an ERROR! — the program is verified.

To obtain the aforementioned accuracy, we leverage the statically
computed control and data dependencies to partition the set of inter-
ferences into clusters. This can significantly reduce the number of
cases considered during our thread-modular analysis. For example,
when a load of y is independent of the subsequent load of x, e.g.,
the value loaded from y has no effect on the load of x, the thread
would have two unconnected subgraphs in its program dependence
graph [7]. Unconnected subgraphs create a natural partition of loads
into clusters, thereby significantly reducing the complexity of our
interference-feasibility checking. This is because we only need to
consider combinations of interferences within each subgraph. We
will show details of this optimization in Section 6.

2.3 Control-flow versus Data-flow Graphs
Our method also differs from DUET, a concurrent static analyzer

for parametric programs [5, 6]. Although DUET also employs a
constraint-based analysis, its verification problem is significantly
different. First, it is designed for soundly analyzing parameterized
concurrent programs, where each thread routine may have an un-
bounded number of instances. In contrast, our method is designed
to analyze programs with a fixed number of threads with the goal of
obtaining more accurate analysis results.

Second, DUET relies on running an abstract interpreter over a sin-
gle data-flow graph of the entire program, whereas our method relies
on running abstract interpreters over a set of thread-local control-
flow graphs. The difference between using a set of thread-local
control-flow graphs and a single monolithic data-flow graph can be
illustrated by the following two-threaded program: {x++;} ||
{tmp=x;}. In the monolithic data-flow graph representation [5, 6],
there would be cyclic data-flow edges between the read and write of
x across threads as well as an edge from the write of x to itself. As
a result, applying a standard abstract interpretation based analysis
would lead to the inclusion of tmp =∞ as a possible value, despite
that in any concrete execution of the program, the end result is either
tmp = 1 or tmp = 0 (assume that x = 0 initially). Our method, in
contrast, can correctly handle this program.



3. BACKGROUND
We provide a brief review of abstract interpretation based static

analysis for sequential and concurrent programs. For a thorough
treatment, refer to Nielson and Nielson [23] and Miné [20–22].

3.1 Sequential Abstract Interpretation
An abstract interpretation based static analysis is a fix-point com-

putation in some abstract domain over a program’s control-flow
graph (CFG). The CFG consists of nodes representing program
statements and edges indicating transfer of control between nodes.
Due to their one-to-one mapping we interchangeably use the term
statement and node. We assume the graph has a unique entry.

The analysis is parameterized by an abstract domain defining the
representation of environments in the program. An environment is an
abstract memory state. The purpose of restricting the representation
of memory states to an abstract domain is to reduce computational
overhead and guarantee termination. For example, in the interval
domain [2], each variable has an upper and lower bound. For a
program with two variables x and y, an example environment is
x = [0, 5] ∧ y = [10, 20]. With properly defined meet (u) and
join (t) operators, a partial order (w), as well as the top (>) and
bottom (⊥) elements, the set of all possible environments in the
program forms a lattice. In the interval domain, for example, we
have [0, 5] t [10, 20] = [0, 20] and [0, 5] w [0, 2].

Each statement in the program is associated with a transfer func-
tion, taking an environment as input and returning a new environ-
ment as output. The transfer function of statement st for some input
environment e returns a new environment e′, which is the result of
applying st in e. Consider the above example of interval domain
for x and y again. The result of executing the statement x=x+y
in the above example environment would be the new environment
x = [10, 25] ∧ y = [10, 20].

For brevity, we will not define all the transfer functions for a
programming language explicitly since the main contributions of
this work are language-agnostic. As an example, however, consider
the statement t=load x, which copies a value from memory to
a variable. Its transfer function can be represented as λe.e[t =
x], where e[st] is the result of evaluating st in the environment
e. Conceptually, it takes an input environment and returns a new
environment where t is assigned the current value of x.

Algorithm 1 Sequential abstract interpretation.
1: function SEQABSINT( G : the control-flow graph )
2: Env(n) is initialized to > if n ∈ ENTRY(G), else to ⊥
3: WL← ENTRY(G)
4: while ∃n ∈WL
5: WL←WL \ {n}
6: e← TRANSFER(n,Env(n))
7: for all n′ ∈ SUCCS(G,n) such that e 6v Env(n′)
8: Env(n′)← Env(n′) t e
9: WL←WL ∪ {n′}

10: return Env

The standard work-list implementation of an abstract-interpretation
based analysis [23] is shown in Algorithm 1. The input is a control-
flow graph G, where ENTRY(G) is the entry node and SUCCS(G,n)
is the set of successors of node n. Env is a function mapping each
node n to an environment immediately before n is executed. The
initial environment > associated with the entry node means that all
program variables can take arbitrary values, e.g., x = y = · · · =
[−∞,∞] for integer variables. The initial environments for all other
nodes are set to ⊥ (the absence of values).

The work-list, WL, is initially populated only with the entry node
of the control-flow graph. The fix-point computation in Algorithm 1

is performed in the while-loop: a node n ∈ WL is removed and
has its transfer function executed, resulting in the new environment
e. The function TRANSFER takes a node n and the environment
Env(n) as input and returns the new environment e (result of exe-
cuting n in Env(n)) as output. If a successor of the node n has a
current environment with less information than e (as determined by
6v), then it is added to the work-list and its environment is expanded
to include the new information (Lines 7-9). The process proceeds
until the work-list is empty, i.e., all the environments have stabi-
lized. Standard widening and narrowing operators [2] may be used
at Line 8 to guarantee termination and ensure speedy convergence.

3.2 Thread-modular Abstract Interpretation
Next, we review thread-modular abstract interpretation: an itera-

tive application of a sequential abstract interpreter on each thread in
the presence of a joined set of interferences from all other threads.
Since a thread-modular analysis never constructs the product graph
of all threads in the program, it avoids the state space explosion
encountered by non-thread-modular methods [12].

First, we make a slight modification to the previously described
sequential abstract interpretation (Algorithm 1); the per-thread ab-
stract interpretation must consider both the thread-local environment
and the interferences from other threads. Here, an interference is an
environment resulting from executing a shared memory write. Let
SEQABSINT-MODIFIED(G, i) be the modified abstract analyzer,
which takes an additional environment i as input. The environment
i represents a joined set of interferences from all the other threads.
We also modify the transfer function TRANSFER(n,Env(n)) of
shared memory read as follows: for t=load x, where x is a shared
variable, we allow t to read either from the thread-local environ-
ment Env(n) or from i, the interference parameter. For example,
if the thread-local environment before the load statement contains
x = [10, 15] and the interference parameter contains x = [50, 60],
we would have t = [10, 15] t [50, 60] = [10, 60].

Algorithm 2 Thread-modular abstract interpretation.
1: function THREADMODABSINT( Gs : the set of CFGs )
2: TE ← ∅
3: I ← ∅
4: repeat
5: I ′ ← I
6: for all g ∈ Gs
7: i←

⊔
{e | e ∈ I(g′), g′ ∈ Gs, and g′ 6= g} . Sec. 3.2

8: Env ← SEQABSINT-MODIFIED(g, i)
9: TE ← TE ] Env

10: for all (n, e) ∈ TE
11: if n is a shared memory write in g ∈ Gs
12: I(g)← I(g) t TRANSFER(n, e)
13: until I = I ′

14: return TE

Algorithm 2 shows the thread-modular analysis procedure. The
input is the set Gs of control-flow graphs, one per thread. The output,
TE , is a function mapping the thread nodes (nodes in all threads)
to environments. During the analysis, each thread-local CFG g has
an associated interference environment I(g): the environment is
the join of all environments produced by shared memory writes in
the thread g. Due to their one-to-one correspondence, we will use
thread and its (control-flow) graph interchangeably.

Inside the thread-modular analysis procedure, both TE and I are
initially empty. Then, the sequential abstract interpretation proce-
dure is invoked to analyze each thread g ∈ Gs. The environment i
(Line 7) is the join of all interfering environments from other threads.
The sequential analysis result, Env , is a function mapping nodes
in g to their corresponding environments. With a slight change of



notation, we use TE ] Env (Line 9) to denote the join of environ-
ments from TE and Env on their matching nodes. Let A and B be
sets of pairs of the form {(n, e), . . .}; then A ]B denotes the join
of environments on the matching nodes.

After analyzing all the threads (Lines 6–9), we take the results
(TE ) and compute the new interferences: for each thread g, the new
environment I(g) is the join of all environments produced by the
shared memory writes (Lines 10–12). The analysis repeats until the
interferences stabilize (I = I ′), meaning that environments in all
node (TE ) also stabilize. Again, standard widening and narrowing
operators [2] may be used to ensure speedy convergence. Overall,
the thread-modular analysis is an additional fix-point computation
on the set of interferences relative to sequential analysis, with the
same termination and soundness guarantees [22].

4. FLOW-SENSITIVE THREAD-MODULAR
ANALYSIS

In this section, we present our new method for flow-sensitive
thread-modular analysis. For ease of comprehension, we shall post-
pone the presentation of the constraint-based feasibility checking
until Section 5, while focusing on explaining our method for main-
taining inter-thread flow-sensitivity during thread-modular analysis.

4.1 The New Algorithm
Before diving into the new algorithm, notice that the reason why

Algorithm 2 is flow-insensitive is because all environments from
interfering stores of other threads are joined (Line 7) prior to the
thread-modular analysis. Furthermore, within the thread-modular
analysis routine, SEQABSINT-MODIFIED, the combined interfer-
ing environment, i, is joined again with the thread-local environ-
ment during the application of the transfer function at each CFG
node. Such eager join operations are the main sources of inaccu-
racy in existing methods. First, inaccuracy arises from the join
operation itself: it tends to introduce additional behaviors, e.g.,
[0, 0] t [10, 10] = [0, 10]. Second, a thread is allowed to see any
combination of interfering stores even if some of them are obviously
infeasible (e.g., Section 2, Figure 2).

To avoid such drastic losses in accuracy, we need to make funda-
mental changes to the thread-modular analysis procedure.
• For each thread g ∈ Gs , instead of defining its interference as

a single environment, we use a set of pairs (n, e) where n is a CFG
node of a shared memory write and e is the environment after n.
• For each shared variable read, instead of it reading from the

eagerly joined set of environments, we maintain a set, LIs(l) =
{(n, e), . . .}, where each (n, e) represents an interfering store and
the store’s interfering environment.
• For each thread g ∈ Gs, instead of representing the inter-

ferences from all other threads as the join of the interfering envi-
ronments (Line 7, Algorithm 2), we represent them as a set Ic of
interference combinations: each ic ∈ Ic is a distinct combination of
the store-to-load flows for all l ∈ LOADS(g).

Algorithm 3 shows our new analysis: in the remainder of this
section, we shall compare it with Algorithm 2 and highlight their dif-
ferences. There are two main differences. First, the interferences are
represented as a set of pairs of store statements and their associated
environment (Line 13). We modify ] to be the join of environments
of pairs with matching nodes across two sets. Recall that if A and
B are sets of pairs of the form {(n, e), . . .}, then A]B denotes the
join of environments on the matching nodes. Second, we compute
the set Ic of feasible and non-redundant interference combinations
(store-to-load flows) for a thread (Line 7) and analyze a thread in
the presence of each combination individually (Lines 8–10). That
is, for each call to the sequential abstract interpreter SEQABSINT-
MODIFIED2, as the second parameter, instead of passing the join of

Algorithm 3 Flow-sensitive thread-modular analysis.
1: function THREADMODABSINT-FLOW(Gs: the set of CFGs)
2: TE ← ∅
3: I ← ∅
4: repeat
5: I ′ ← I
6: for all g ∈ Gs
7: Ic ← INTERFERENCECOMBOFEASIBLE(g, I )
8: for all ic ∈ Ic . Sec. 4
9: Env ← SEQABSINT-MODIFIED2(g, ic)

10: TE ← TE ] Env
11: for all (n, e) ∈ TE
12: if n is a shared memory write in g ∈ Gs
13: I(g)← I(g) ] {TRANSFER(n, e)}
14: until I = I ′

15: return TE
16:
17: function INTERFERENCECOMBOFEASIBLE(g, I)
18: Ic ← ∅
19: VEs ← {(n, e) | (n, e) ∈ I(g′), g′ ∈ Gs, and g′ 6= g}
20: for all l ∈ LOADS(g)
21: LIs(l)← {(sdummy , eself )}
22: if l is not self-reachable
23: for all (n, e) ∈ VEs
24: if LOADVAR(l) = STOREVAR(n)
25: LIs(l)← LIs(l) ∪ {(n, e)}
26: else . Handling loads in loops
27: for all (n, e) ∈ VEs
28: if (LOADVAR(l) = STOREVAR(n))

∧ ¬MUSTHAPPENBEFORE(l, n)
29: LIs(l)← LIs(l) ] {(sdummy , e)}
30: Es ← CARTESIANPRODUCT(LIs) . Sec. 6
31: for all ic ∈ Es
32: if QUERY.ISFEASIBLE(ic) . Sec. 5
33: Ic ← Ic ∪ {ic}
34: return Ic

interferences from all other threads, we pass each ic ∈ Ic to map
every load to an interfering store individually.

4.2 The Interference Combinations
Inside INTERFERENCECOMBOFEASIBLE(g, I), we compute the

set Ic of feasible interference combinations. Here, LOADS(g) is the
set of shared variable reads in thread g, LOADVAR(l) is the variable
used in the load instruction l, and STOREVAR(s) is the variable
stored-to in the store instruction s.

We first compute the set VEs of interferences from other threads
(Line 19); each pair (n, e) ∈ V Es is a store and environment from
a thread other than g. Then, we pair each load l ∈ LOADS(g)
with any corresponding store in VEs (Lines 20–29); the result is
stored in LIs which maps each load instruction l to a set of stores in
the form of (n, e) pairs. The special pair (sdummy , eself ) indicates
the thread should read from its intra-thread environment. For now,
ignore Lines 26–29 since they are related to the handling of loops
— we discuss how loops are handled during the computation of
interference combinations in the next subsection.

Next, the function CARTESIANPRODUCT takes LIs as input
and returns the complete set of interference combinations from
LIs(l1)× · · · × LIs(lk). To make what we have explained so far
clearer, consider an example program with two threads: g1 and
g2. Thread g1 has two loads, LOADS(g1) = {l1, l2} such that
LOADVAR(l1) = x and LOADVAR(l2) = y. Thread g2 has three
interfering environments: two on x, s1 and s2, with associated
environments e1 and e2, respectively; and another, s3, on y, with en-
vironment e3. Assume we are currently analyzing g1 in the presence
of interferences from g2.



We first use the set I of interferences to collect the interferences
from g2 in VEs: {(s1, e1), (s2, e2), (s3, e3)}. Next, we compute
LIs for the two loads {l1, l2} in thread g1. We pair l1 with the two
interferences on x from s1 and s2, and pair l2 with the single inter-
ference on y from s3. Using [· · · ] to denote a list of items, we repre-
sent the result as LIs(l1) = [(s1, e1), (s2, e2), (sdummy , eself )] and
LIs(l2) = [(s3, e3), (sdummy , eself )]. Without any optimizations,
the resulting Cartesian product Es = LIs(l1) × LIs(l2) would
contain the following items:

ic1 = {〈l1, (s1, e1)〉, 〈l2, (s3, e3)〉},
ic2 = {〈l1, (s2, e2)〉, 〈l2, (s3, e3)〉},
ic3 = {〈l1, (sdummy , eself )〉, 〈l2, (s3, e3)〉},
ic4 = {〈l1, (s1, e1)〉, 〈l2, (sdummy , eself )〉},
ic5 = {〈l1, (s2, e2)〉, 〈l2, (sdummy , eself )〉},
ic6 = {〈l1, (sdummy , eself )〉, 〈l2, (sdummy , eself )〉}.

For each combination ic ∈ Es , we check if it is feasible (Lines 31–
33): the infeasible combinations will be filtered out, and the result,
Ic, is returned. We discuss how we determine the feasibility of an
interference (Line 32) in Section 5.

Continuing with the algorithm’s description, on Line 9 the sequen-
tial abstract interpretation, SEQABSINT-MODIFIED2, takes g and
each ic ∈ Ic as input and returns a node-to-environment map, Env ,
as output. During this per-thread analysis, the transfer function of
a load uses only ic to determine the environment to use. When a
load l1 is being executed, if the special item 〈l1, (sdummy , eself )〉 is
in ic, the load reads from its own thread-local environment at l1; if
the remote store environment 〈l1, (s, e)〉 is in ic, the load also reads
from the remote environment e.

At this point, we have improved the prior work (Algorithm 2) to
avoid inaccuracies from over-approximations caused by the eager
join over all interferences. The cost for this accuracy is explicitly
testing each of the combinations of potential interferences. How-
ever, we have not presented our methods for clustering and pruning
(Section 6) as well as checking if any of the combinations are in-
feasible (Section 5). By applying such optimization techniques, we
cannot only drastically reduce the overhead of running the abstract
interpretation subroutine but also increase the accuracy.

4.3 Handling Loops
Since a load within a loop may execute many times, the number of

stores it could read from may be infinite. To guarantee termination,
we join all the interfering stores that may affect a load in a loop
with the environment within the thread at the time of the load. By
doing this, we conservatively treat all these feasible interferences in
a flow-insensitive manner for loads within loops.

Specifically, Lines 26–29 perform the join of interferences for
loads within a loop. For a given load, all stores on the same variable
that must-not-happen after the load are considered (we will further
discuss the happens-before constraints in Section 5). For these
conflicting stores, all of the environments are joined together on
a single dummy node (sdummy ). In the end, each self-reachable
load has a single (joined) environment. Consequently, during the
Cartesian product computation, it will have a single interference.
Within the sequential abstract interpreter, the load merges the thread-
local environment and this single interfering environment.

However, even in such case, our new method is more accurate
than the prior work. Consider the example in Figure 3. Thread
1 executes a load in a while-loop running an arbitrary number of
times concurrently with thread 2 before creating thread 3. Because
of the thread creation, there is a must-happen-before edge between
the load in thread 1 (Line 5) and the write in thread 3 to x. When
constructing the interference combinations for the load in thread 1
(l), there are three potential stores: s10, s11, and s14 for the writes
to x on Lines 10, 11, and 14, respectively.

1 int x = 0;
2 void thread1() {
3 create(thread2);
4 while (*) {
5 int t1 = x;
6 }
7 create(thread3);
8 }

9 void thread2() {
10 x = 1;
11 x = 2;
12 }
13
14 void thread3() {
15 x = 10;
16 }

Figure 3: Example: handling loops in thread-modular analysis.

When considering s10, the condition on Line 28 of our new
algorithm is true since s10 does not always happen after l (and
similarly for s11). Therefore, LIs(l) is assigned {sdummy , e10} ini-
tially, where e10 is the environment at s10. Next, LIs(l) is assigned
{sdummy , e10 t e11}. Finally, for s14, since it must happen after l,
it is not added to LIs . When computing the Cartesian product, there
is only a single load with a single location-store pair, so there is only
one interference combination.

For this example, the analysis results in t1 being 0, 1, or 2.
The value of 10 written by thread 3 is excluded using the must-
happen-before constraint. So, although multiple interfering stores
are merged for the single load within the loop, the accuracy of the
analysis is still higher than prior flow-insensitive analyses.

4.4 Correctness
Our method in Algorithm 3 is a form of semantic reduction [3,25]

of the interferences allowed by the prior flow-insensitive approach
in Algorithm 2. Specifically, the input environment to a load instruc-
tion in Algorithm 2 is the join of the set S = {ρ, ρ1, . . . , ρn} where
ρ is the intra-thread environment and ρ1, . . . , ρn are environments
from interfering stores. The semantic-reduction operator we use
in Algorithm 3 is to apply the transfer function of the load to each
element of S individually relative to all other loads (i.e., the Carte-
sian product). Therefore, the correctness of our algorithm directly
follows the correctness argument in [3,25]. Additionally, we remove
infeasible interferences combinations (Lines 31-33), which does not
affect the soundness of the algorithm.

In the case of loops, the transfer function of a load can be exe-
cuted more than once: each execution of the transfer function may
use a different interference, so, using the same semantic-reduction
operator would have resulted in a potentially infinite number of
interference combinations. In this case, we conservatively merge
all the feasible interferences into a single value. Correctness of this
treatment directly follows the correctness of Algorithm 2.

In the case of aliasing, our algorithm can be lifted to use the
output of any (sound) alias analysis by considering each alias-set as
a single variable – it is a standard technique to handle aliasing in
static analysis. In such case, our algorithm would operate on these
alias-sets instead of on the individual program variables.

5. CONSTRAINT-BASED FEASIBILITY
We now present our procedure for eliminating infeasible combina-

tions of interferences. We revisit Algorithm 3 to show its integration
with our new thread-modular analysis procedure.

Removing infeasible interferences from the thread-modular anal-
ysis significantly reduces computational overhead and increases
accuracy. However, the main problem is that the feasibility checking
has to be conducted efficiently for such an optimization to be useful.
Therefore, our goal is to make the checking both sound and efficient.
By sound, we mean that if the procedure determines a combina-
tion is infeasible then it is truly infeasible. By efficient, we mean
that the procedure relies on constructing and solving a system of
lightweight constraints, i.e., Horn clauses in finite domains, which



can be decided using a Datalog engine in polynomial time.

Algorithm 4 Constraint-based feasibility checking.
1: POs ← PROGRAMORDER-CONSTRAINTS(Gs)
2: QUERY.ADD(POs)
3: function QUERY.ISFEASIBLE(ic: permutation of interferences)
4: Cs ← READSFROM-CONSTRAINTS(ic)
5: QUERY.ADD(Cs)
6: res ← QUERY.SATISFIABLE()
7: QUERY.REMOVE(Cs)
8: return res

Algorithm 4 shows the high-level flow of our feasibility analysis
procedure. Initially, we traverse the set Gs of control-flow graphs
to compute a set POs of constraints representing the order between
statements which must hold on all possible executions of the pro-
gram. We initialize the constraint system with these orderings by
calling QUERY.ADD(POs).

During the execution of Algorithm 3 (Lines 31–33), for each
ic ∈ Ic, we compute a set Cs of reads-from constraints, which must
be enforced in order to realize the interference combination ic. We
add them to the system as well by calling QUERY.ADD(Cs).

Our constraint analysis then, using a set of deduction rules, ex-
pands upon these input constraints to generate more constraints. We
invoke QUERY.SATISFIABLE to check if the constraint system is
satisfiable. The deduction rules are designed such that, if the sys-
tem is not satisfiable, then ic is guaranteed to be infeasible. In the
remainder of this section, we go into each of these steps in detail.

5.1 The Program-order and the Reads-from
Constraints

To check the simultaneous feasibility of POs and Cs , we first
compute the dominators on a thread’s CFG. Given two nodes m and
n in a graph g, m dominates n if all paths from the entry of g to n
go through m. Then, we define the following relations:
• DOMINATES is the dominance relation on a thread’s CFG:

(m,n) ∈ DOMINATES means m dominates n.
• NOTREACHABLEFROM is reachability on a thread’s CFG:

(m,n) ∈ NOTREACHABLEFROM means nodem can not be reached
from node n.
• THCREATES is a parent–child relation over threads: (p, nsta) ∈

THCREATES if p is thread creation point and nsta is the child
thread’s start node.
• THJOINS is a parent–child relation over threads: (p, nend) ∈

THJOINS means p is a thread join on a child thread with node nend

as exit.
• (l, v) ∈ ISLOAD means l is a load of variable v.
• (s, v) ∈ ISSTORE means s is a store to variable v.
• READSFROM is obtained from the combination ic under test:

(l, s) ∈ READSFROM if the load l is reading from the store s.
All these relations can be computed from the given set Gs of control-
flow graphs efficiently [18]. Furthermore, they are defined over finite
domains (sets of nodes or variables), which means constraints built
upon these relations are efficiently decidable.

5.2 Deduction Rules for Checking Feasibility
Figure 4 shows the deduction rules underlying our feasibility

analysis. If a contradiction is reached after applying the rules to the
input constraints, the interference combination is guaranteed to be
infeasible. For brevity, we only present the intuition behind these
rules. Detailed proofs can be found in our supplementary material.

Rules 1, 2, and 3 create the must-happen-before relation, MHB,
where (m,n) ∈ MHB means node m must happen before node n
under the current interference combination ic. Rule 4 is simply the
transitive property for the must-happen-before relation.

(m,n) ∈ DOMINATES ∧ (m,n) ∈ NOTREACHABLEFROM

(m,n) ∈ MHB
(1)

(m,nsta) ∈ THCREATES

(m,nsta) ∈ MHB

(m,nend ) ∈ THJOINS

(nend ,m) ∈ MHB
(2)

∧ (s2, v) ∈ ISSTORE

∧ (l, v) ∈ ISLOAD ∧ (s1, v) ∈ ISSTORE

(l, s1) ∈ READSFROM ∧ (s1, s2) ∈ MHB

(l, s2) ∈ MHB

(3)

(a, b) ∈ MHB ∧ (b, c) ∈ MHB

(a, c) ∈ MHB
(4)

(a, b) ∈ MHB

(a, b) ∈ MUSTNOTREADFROM
(5)

∧ (l1, v) ∈ ISLOAD ∧ (l2, v) ∈ ISLOAD ∧ (s2, v) ∈ ISSTORE

(l1, s1) ∈ READSFROM ∧ (l1, s2) ∈ MHB ∧ (s2, l2) ∈ MHB

(l2, s1) ∈ MUSTNOTREADFROM

(6)

Figure 4: Rules used by our interference feasibility analysis.

s1: v = 5

s2: v = 6 l: l = v

Figure 5: Example: application of Rule 3.

First, if m dominates n in a CFG, since m occurs before n on
all program paths, m must happen before n (Rule 1). We check if
n can reach m to ensure that even if m dominates n, m can never
subsequently occur after n (e.g., if n is in a loop). Similarly, since
a thread cannot execute before it is created, or after it terminates,
THCREATES and THJOINS also map directly to MHB (Rule 2).

Rule 3 captures the scenario of two stores overwriting each other
as shown in Figure 5. Here, one thread has stores s1 and s2, and
a second thread has one load l. READSFROM(l, s1) is represented
by the dashed edge (flow of data) from s1 to l. MHB(s1, s2) is
represented by the solid edge from s1 to s2. Given the two previous
relations, the rule deduces the relation MHB(l, s2), represented by
the red dotted edge. The implication is that for load l to read from
the first store s1, l must happen before the second store s2.

The intuition behind this rule is that if s2 executes before l, then
s2 would overwrite the value of s1, making it impossible for l to
read the value of s1. Note that this must-happen-before constraint is
only considered for ic, the current combination of interferences: it
does not hold globally across all executions of the program.

Rule 5 introduces the MUSTNOTREADFROM relation. For a
load store pair (l, s) ∈ MUSTNOTREADFROM if in the current
interference combination l cannot read from s.

Rule 6 prevents a thread from reading an interference after it has
been over-written, shown in Figure 6. The first thread has a store s1,
and the second thread has load l1, store s2, and then load l2. Again,
MHB relations are represented by solid edges, READSFROM(l1, s1)
is represented by the dashed edge, and MUSTNOTREADFROM(l2, s1)
is represented by the red dotted edge.

Conceptually, the rule captures the situation when a value is read
from an interference (l1: L1=s), followed by a modification of the
same memory location that was loaded (s2: s=L1+5), followed



s1: s = 10 l1: L1 = s

s2: s = L1 + 5

l2: L2 = s

Figure 6: Example: application of Rule 6.

l4: x = 4 l9: b1 = flag

l5: x = 5 l11: t1 = x

l6: flag = true

Figure 7: Input and implied constraints for Figure 2.

by a load of the same location (l2: L2=s). Intuitively, since the
interfering value was just overwritten, it cannot be loaded again.
Therefore, the pair (l2, s1) is added to MUSTNOTREADFROM.

Finally, our constraint analysis does not try to identify all infeasi-
ble combinations for efficiency reasons. However, the framework
is generic enough to allow new rules and other types of constraint
solvers to be plugged in easily to refine the approximation.

5.3 The Running Example
We revisit the example in Figure 2 to illustrate our feasibility

checking for one interference combination (Figure 7). Our goal
is to decide if READSFROM(l9, l6) and READSFROM(l11, l4) can
co-exist. Initially, our constraint system would have the solid edges
from the MHB relations, which represent the program-order con-
straints, and the dashed edges from the READSFROM relations,
which represent the current interference combination ic.

First, we can deduce MHB(l11, l5) by applying Rule 3: if l11
does not happen before l5, l5 would overwrite the value of x, pre-
venting l11 from reading from l4. This deduced MHB relation is
represented by the red dotted edge in the figure.

Next, we can deduce a must-happen-before relation between
l9 and l6 by applying Rule 4 twice. That is, MHB(l9, l11) ∧
MHB(l11, l5) implies MHB(l9, l5), followed by MHB(l9, l5) ∧
MHB(l5, l6) implies MHB(l9, l6). The result is represented by the
red dotted edge from l9 to l6.

At this point, we have a contradiction: since b1=flag must-
happen-before flag=true, b1 cannot read the value of true
(Rule 5). So, this interference combination is proved to be infeasible.
(There are more implied edges in Figure 7; for clarity, we show only
those relevant to the check.)

6. OPTIMIZATIONS WITH CLUSTERING
AND PRUNING

To reduce the number of interference combinations, we apply
dependency-based clustering analysis and property-directed pruning.
Consider the program in Figure 8: the main thread creates two
children in the function thr with arguments 5 and 10, respectively.
The thr function performs a store to x (Line 5) based on the value
passed as an argument (v). At the load of x in the thr function,
the value may come from the initial value 0, from the main thread
(Line 12), or from the other thread thr (Line 5). This results in
three combinations of loads in thr to be tested on every iteration.

However, the reachability of ERROR! does not depend on the
value loaded from x, since the error condition (t1 < 0) only de-

1 int x = 0;
2 void thr(int v) {
3 int t1 = 5 * v;
4 int t2 = x;
5 x = t1 + t2;
6 if (t1 < 0)
7 ERROR!;
8 }

9 int main() {
10 thread_create(thr,5);
11 thread_create(thr,10);
12 x = 1;
13 thread_exit(0);
14 }

Figure 8: Example: property directed redundancy pruning.

thread()

int t1=5*v; int t2=x;

x=t1+t2;if(t1<0)

main()

thrd_create(thr,5); thrd_create(thr,10); x=1;thrd_exit(0)

ERROR!

Figure 9: The program dependence graph for Figure 8.

pends on the argument passed to thr. As such, the load of x is
immaterial to the property. We can formally capture this notion of
immateriality using control and data dependencies [7].

Intuitively, a statement s is data dependent on t if the value
of t may affect the computation of s. For example, in Figure 8,
the statement t1=5*v is data dependent on the input parameter
v. On the other hand, a statement l is control dependent on m
if the execution of m affects the reachability of l. For example,
the ERROR! statement in Figure 8 is control-dependent on the
evaluation of the predicate t1<0.

The composition of the control- and data-dependency relations
is the program dependence graph [7]. Note that in concurrent
programs, the dependency graph may span across multiple threads,
due to the flow of data from shared memory writes to reads.

Next, we show two applications of the program dependence graph
for optimizing our overall algorithm.

6.1 Property-guided Pruning
First, we create the backward slice on every property in the pro-

gram. The backward slice with respect to a property s contains
all the statements involved in the computation of s (Theorem 2.2
[15]). As an example, the program dependence graph for Figure 8 is
shown in Figure 9. Dashed edges are control dependencies and solid
edges are data dependencies. The backward slice on the ERROR!
statement is also shown: the dotted nodes are nodes not contained
in the slice. All computations involving x can be ignored, since the
slice shows that they are irrelevant to the property being verified.

During our analysis, the transfer function of a statement not on
the backward slice is the identity. And any load not on the backward
slice is ignored when computing interference combinations.

6.2 Dependency-guided Clustering
Second, during the generation of combinations of interferences,

we do not always consider the Cartesian product across all sets of
loads. Instead, we group loads together to form cluster and only
generate interference combinations within each cluster.

Consider the program in Figure 10. Initially, x and y are zero;
the first thread sets them to one, and the second thread checks
the property that they are both greater than or equal to zero. The
backward slice on assert(x>=0) contains lines 4, 8, and 10.
The backward slice on assert(y>=0) contains lines 5, 9, and



1 int x = 0;
2 int y = 0;
3 void thread1() {
4 x = 1;
5 y = 1;
6 }

7 void thread2() {
8 int t1 = x;
9 int t2 = y;

10 assert(x >= 0);
11 assert(y >= 0);
12 }

Figure 10: Example: dependency guided clustering.

11. Without optimization, in Algorithm 3, the loads on x and y both
have two potential environments to read from: the interfering store
and the environment within the thread. In total, there are 2 ∗ 2 = 4
combinations leading to four abstract interpreter executions.

The backward slices on properties in the program form disjoint
subgraphs; e.g., a graph with the operations on x and those on y.
The interference combinations in the subgraphs can be considered
independently requiring only max (2, 2) = 2 interpreter executions.

7. EXPERIMENTS
We implemented our method in a software tool named WATTS,

designed for verifying multithreaded programs represented in the
LLVM intermediate language. All experiments were performed
on C programs written using POSIX threads. We used the Apron
library [13] for implementing the sequential analyzer over interval
and octagon abstract domains, and the Datalog solver in Z3 (µZ [11])
for solving the causality constraints.

We evaluated WATTS on two sets of benchmark programs. The
first set consists of some multithreaded programs from SVCOMP [28].
The second set consists of Linux device drivers from [29] and [5]. In
all benchmark programs, the reachability properties are expressed in
the form of embedded assertions. Table 2 shows the characteristics
of these programs, including the name, the number of lines of code
(LoC), the number of threads, and the number of assertions. In total,
our benchmarks have 26,309 lines of code and 10,078 assertions.
For the device driver benchmarks, in particular, since assertions are
not included in the original source code, we manually added these
assertions. We performed all experiments on a computer with 8 GB
RAM and a 2.60 GHz CPU.

Although we used the benchmarks from [5], the verification prob-
lem targeted by our method is significantly different. DUET assumes
each device driver is a parametric program, whereas our method
analyzes programs with a finite number of threads. As shown in
Section 2, our method, using a set of control-flow graphs as opposed
to a monolithic data-flow graph, is often more accurate. During
experiments, we ran both WATTS and DUET on all benchmarks with
our assertions. WATTS verified 548 more properties than DUET,
whereas DUET did not verify any property not verified by WATTS.
The result shows that DUET’s abstraction for infinite threads leads
to loss of precision. Therefore, in the remainder of this section, we
do not directly compare WATTS with DUET.

Instead, we focus on comparing our method with the prior thread-
modular approaches [8, 20–22]. For evaluation purposes, we imple-
mented both methods in WATTS: the flow-insensitive analysis of
Algorithm 3 and the flow-insensitive analysis of Algorithm 2.

Table 3 shows the results of comparing Algorithm 3 and Algo-
rithm 2 in the interval abstract domain. Column 1 shows the name
of each benchmark. Columns 2–3 show the result of running Al-
gorithm 2. Columns 4–5 show the result of running Algorithm 3
without using the feasibility checking. Columns 6–7 show the result
with the feasibility checking. Columns 8–9 show the result with
clustering/pruning optimizations. For each test case, Tm. is the run
time in seconds and Verif. is the number of verified properties. The
last row shows the sum of all columns.

Compared to the flow-insensitive approach (Columns 2–3), our

Table 2: Statistics of the benchmarks in our experiments.
Name LoC Threads Properties Source

thread01 29 3 1 created
create01 24 2 1 created
create02 28 2 1 created
sync01 38 3 1 [28]
sync02 36 3 1 [28]
intra01 41 3 1 created
dekker1 65 3 1 [28]
fk2012 88 3 1 [5], added asserts

keybISR 62 3 2 [29]
ib700_01 346 3 1 [5], added asserts
ib700_02 466 23 1 [5], added asserts
ib700_03 587 41 81 [5], added asserts
i8xxtco_01 735 3 1 [5], added asserts
i8xxtco_02 901 22 1 [5], added asserts
i8xxtco_03 1027 42 103 [5], added asserts
machz_01 667 8 1 [5], added asserts
machz_02 795 29 1 [5], added asserts
machz_03 881 41 83 [5], added asserts
mix_01 457 12 1 [5], added asserts
mix_02 580 31 62 [5], added asserts
pcwd_01 1197 8 1 [5], added asserts
pcwd_02 1405 41 81 [5], added asserts
sbc_01 686 24 1 [5], added asserts
sc1200_01 715 24 1 [5], added asserts
sc1200_02 768 31 93 [5], added asserts
smsc_01 904 12 1 [5], added asserts
smsc_02 931 12 24 [5], added asserts
sc520_01 806 4 1 [5], added asserts
sc520_02 880 41 81 [5], added asserts
wfwdt_01 777 4 1 [5], added asserts
wfwdt_02 907 51 101 [5], added asserts
wdt 1023 31 1 [5], added asserts
wdt977_01 867 16 1 [5], added asserts
wdt977_02 877 31 92 [5], added asserts
wdt_pci 1133 31 1 [5], added asserts
wdt_pci02 1165 31 122 [5], added asserts
pcwdpci_01 1363 64 128 [5], added asserts

baseline flow-sensitive method (Columns 4–5) can already achieve
a 12x increase in the number of verified properties (from 38 to
452) without employing the lightweight constraint-based feasibil-
ity checking. This demonstrates the benefits of delaying the join
operation across threads. Furthermore, the significant increase in
accuracy comes at the modest 1.5x increase in run time.

With the constraint-based feasibility checking, a more significant
improvement can be observed (Columns 6–7): there is a 28x increase
in the number of verified properties (from 38 to 1,078) compared to
the prior flow-insensitive approach. Furthermore, the large increase
in accuracy comes with only an 1.6x increase in run time.

Finally, with the optimizations from Section 6, our method im-
proves further (Columns 8–9). Compared to the prior flow-insensitive
approach (Columns 2–3), our method only has a 1.4x increase in the
runtime overhead but with a 28x increase in number of verified prop-
erties. Compared to the version of our method without optimizations
(Columns 6–7), the version with optimization finishes the entire anal-
ysis 1.4x faster. Additionally, the optimized version finishes slightly
faster than the non-constraint based approach (Columns 4–5) while
able to verify 2.4x as many properties.

Note that across all experiments, the number of verified properties
are strictly increasing: e.g., the flow-sensitive approach with opti-
mizations verifies all the properties of the flow-insensitive approach
and more. At most we were able to verify 1,078 properties. Those
we missed largely were due to cross-thread synchronization which
was not captured by our constraint analysis.

In addition to the results in Table 3, we also performed experi-
ments using the octagon abstract domain. We observed little increase
in accuracy as a result of this change, indicating that the properties



Table 3: Experimental results in the interval domain.
Flow-insensitive Flow-sensitive F.-s. + Const. F.-s. + Opt.

Name Tm. (s) Verif. Tm. (s) Verif. Tm. (s) Verif. Tm. (s) Verif.

thread01 0.03 0 0.05 0 0.05 1 0.09 1
create01 0.02 0 0.03 0 0.04 1 0.07 1
create02 0.03 0 0.03 0 0.03 1 0.07 1
sync01 0.04 0 0.05 1 0.06 1 0.07 1
sync02 0.04 0 0.06 0 0.07 1 0.07 1
intra01 0.03 0 0.03 0 0.03 1 0.08 1
dekker1 0.14 0 9.81 0 2.10 1 0.75 1
fk2012 0.10 0 0.25 0 0.25 1 0.18 1

keybISR 0.05 0 0.15 0 0.14 2 0.12 2
ib700_01 0.09 0 0.10 0 0.10 1 0.13 1
ib700_02 1.17 0 0.88 0 0.95 1 1.03 1
ib700_03 33.46 0 40.95 40 36.95 81 37.81 81
i8xxtco_01 0.15 0 0.13 0 0.13 1 0.22 1
i8xxtco_02 1.34 0 0.96 0 1.02 1 1.24 1
i8xxtco_03 38.07 18 50.78 61 47.90 103 55.24 103
machz_01 0.21 0 0.18 0 0.18 1 0.29 1
machz_02 0.97 0 0.69 0 0.76 1 0.94 1
machz_03 41.30 0 74.32 42 153.50 83 118.25 83
mix_01 0.24 0 0.19 0 0.20 1 0.29 1
mix_02 12.42 1 15.22 31 13.24 62 15.28 62
pcwd_01 0.25 0 0.21 0 0.21 1 0.32 1
pcwd_02 33.12 0 41.57 40 33.77 81 38.23 81
sbc_01 0.60 0 0.73 0 1.09 1 0.57 1
sc1200_01 0.53 0 0.62 0 0.47 1 0.54 1
sc1200_02 70.46 0 119.24 62 161.00 93 122.48 93
smsc_01 0.35 0 0.32 0 0.40 1 0.51 1
smsc_02 3.73 0 7.27 1 15.39 24 6.12 24
sc520_01 0.64 0 1.23 0 0.73 1 0.72 1
sc520_02 50.87 0 81.27 39 65.95 81 46.95 81
wfwdt_01 0.61 0 1.20 0 0.71 1 0.70 1
wfwdt_02 94.54 0 148.32 0 118.39 101 83.91 101
wdt 0.71 0 0.49 0 0.55 1 0.69 1
wdt977_01 0.57 0 0.44 0 0.49 1 0.65 1
wdt977_02 51.86 0 58.92 32 86.16 93 92.01 93
wdt_pci 0.79 0 0.55 0 0.61 1 0.77 1
wdt_pci02 75.14 1 114.55 31 100.12 122 110.33 122
pcwdpci_01 91.10 18 115.82 72 136.13 128 109.02 128

Total 605.77 38 887.61 452 979.87 1,078 846.74 1,078

being verified are mostly on inter-thread concurrency control behav-
ior, and therefore a more sophisticated representation of numerical
relations over the program variables does not offer more advantages.
For brevity, we omit the result table for the octagon domain.

In the past, introducing flow-sensitivity to static analysis often
results in scalability issues (e.g., [12]); however, this is not the case
for our method. Figure 11 shows our experiments on a parametrized
program named i8xx_tco, where the run time of our method grows
only moderately with the increase in program size. Here, the x-axis
is the number of threads of the program and the y-axis is the run
time. The optimized method has slightly lower runtime than the
least accurate flow-insensitive approach. Furthermore, our method
enjoys an almost linear growth in the execution time, indicating it is
more scalable than the other methods.

8. RELATED WORK
There is a large body of work on the static analysis and formal

verification of multithreaded programs, but none of these existing
methods can obtain flow sensitivity in thread-modular analysis with
a reasonable run-time cost. For brevity, we discuss only those that
are most relevant to our new method. The interested reader can see
Rinard [24] for a survey of early work.

Thread-modular abstract interpretation was introduced by Fer-
rara [8] and Miné [20, 21]. As shown, their approaches eagerly
joined interferences and considered them flow-insensitively, thus

30 40 50 60 70

100

200

300

400

Number of Threads

R
un

tim
e

(s
)

Flow-insensitive
Flow-sensitive

F.s.+Constr.
F.s.+Constr.+Opt.

Figure 11: Runtime overhead versus number of threads.

introducing inaccuracies. Our method avoids such drawbacks. Fer-
rara [8] also introduced models designed specific for the Java mem-
ory model to remove certain types of infeasible interferences in
an ad hoc fashion. Our constraint-based feasibility checking, in
contrast, is more general and systematic, and can handle transitive
must-happen-before constraints as well as other constraints both
within and across threads.

Miné [22] introduced an extension to their prior thread-modular
analysis to compute relational interferences. This allows for rela-
tions between variables to be maintained across threads, thereby
bringing more accuracy than using non-relational interferences.
However, as we have explained earlier, this technique is orthogonal
and complementary to our new method.

Farzan and Kincaid [5] introduced a method to iteratively con-
struct a monolithic data-flow graph for a concurrent program. How-
ever, their technique, as well as similar methods designed for para-
metric programs [14,17], targets the problem of verifying properties
in a concurrent program with an unbounded number of threads. As
we have shown earlier, our new method is often significantly more
accurate than these existing methods.

Thread-modular approaches have been applied to model check-
ing [9, 10] and symbolic analysis [26, 27]. There are also works
on verifying concurrent software using abstraction and stateless
model checking [16, 30–32]. However, these approaches in general
are either heavyweight or under-approximative, and therefore are
complementary to our abstract-interpretation based approach.

9. CONCLUSIONS
We have presented a flow-sensitive method for composing stan-

dard abstract interpreters to form a more accurate thread-modular
analysis procedure for concurrent programs. Our method relies on
constructing and solving a system of happens-before constraints
to decide the feasibility of inter-thread interference combinations.
We also use clustering and pruning to reduce the run-time overhead
of our analysis. We have implemented our method in a software
tool and evaluated it on a large set of multithreaded C programs.
Our experimental results show that the new method can signifi-
cantly increase the accuracy of the thread-modular analysis while
maintaining a modest run-time overhead.

10. ACKNOWLEDGMENTS
This work was primarily supported by the NSF under grants CCF-

1149454, CCF-1405697, and CCF-1500024. Partial support was
provided by the ONR under grant N00014-13-1-0527.



11. REFERENCES
[1] E. Clarke, D. Kroening, and F. Lerda. A tool for checking

ANSI-C programs. In International Conference on Tools and
Algorithms for Construction and Analysis of Systems, pages
168–176, 2004.

[2] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages
238–252, 1977.

[3] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, pages 269–282,
1979.

[4] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In
International Conference on Tools and Algorithms for
Construction and Analysis of Systems, pages 337–340, 2008.

[5] A. Farzan and Z. Kincaid. Verification of parameterized
concurrent programs by modular reasoning about data and
control. In ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, pages 297–308, 2012.

[6] A. Farzan and Z. Kincaid. Duet: Static analysis for unbounded
parallelism. In International Conference on Computer Aided
Verification, pages 191–196, 2013.

[7] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans.
Program. Lang. Syst., 9(3):319–349, July 1987.

[8] P. Ferrara. Static analysis via abstract interpretation of the
happens-before memory model. In Tests and Proofs, pages
116–133. 2008.

[9] C. Flanagan and S. Qadeer. Thread-modular model checking.
In Proceedings of the 10th International Conference on Model
Checking Software, pages 213–224, Berlin, Heidelberg, 2003.
Springer-Verlag.

[10] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer.
Thread-modular abstraction refinement. In International
Conference on Computer Aided Verification, pages 262–274,
2003.

[11] K. Hoder, N. Bjørner, and L. de Moura. muZ - an efficient
engine for fixed points with constraints. In International
Conference on Computer Aided Verification, pages 457–462,
2011.

[12] B. Jeannet. Relational interprocedural verification of
concurrent programs. Software and Systems Modeling,
12(2):285–306, 2013.

[13] B. Jeannet and A. Miné. Apron: A library of numerical
abstract domains for static analysis. In A. Bouajjani and
O. Maler, editors, International Conference on Computer
Aided Verification, pages 661–667. 2009.

[14] A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff
detection in parameterized concurrent programs. In
International Conference on Computer Aided Verification,
pages 645–659, 2010.

[15] K. Kennedy and J. R. Allen. Optimizing Compilers for
Modern Architectures: A Dependence-based Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

[16] M. Kusano and C. Wang. Assertion guided abstraction: a
cooperative optimization for dynamic partial order reduction.
In IEEE/ACM International Conference On Automated
Software Engineering, pages 175–186, 2014.

[17] S. La Torre, P. Madhusudan, and G. Parlato. Model-checking
parameterized concurrent programs using linear interfaces. In
International Conference on Computer Aided Verification,
pages 629–644, 2010.

[18] T. Lengauer and R. E. Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Trans. Program. Lang. Syst.,
1(1):121–141, Jan. 1979.

[19] A. Miné. The octagon abstract domain. Higher Order Symbol.
Comput., 19(1):31–100, Mar. 2006.

[20] A. Miné. Static analysis of run-time errors in embedded
critical parallel c programs. In G. Barthe, editor,
Programming Languages and Systems, pages 398–418. 2011.

[21] A. Miné. Static analysis by abstract interpretation of
sequential and multi-thread programs. In Proc. of the 10th
School of Modelling and Verifying Parallel Processes
(MOVEP 2012), pages 35–48, 3–7 Dec. 2012.

[22] A. Miné. Relational thread-modular static value analysis by
abstract interpretation. In International Conference on
Verification, Model Checking, and Abstract Interpretation,
pages 39–58, 2014.

[23] F. Nielson, H. R. Nielson, and C. Hankin. Principles of
Program Analysis. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1999.

[24] M. Rinard. Analysis of multithreaded programs. In Static
Analysis, pages 1–19. 2001.

[25] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis
via 3-valued logic. In ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pages 105–118, 1999.

[26] N. Sinha and C. Wang. Staged concurrent program analysis.
In ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 47–56, 2010.

[27] N. Sinha and C. Wang. On interference abstractions. In ACM
SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pages 423–434, 2011.

[28] SVCOMP. International competition on software verification.
http://sv-comp.sosy-lab.org/2015/benchmarks.php,
Accessed: 2015-05-06.

[29] TLDP. Interrupt handlers: Linux kernel module programming
guide. http://www.tldp.org/LDP/lkmpg/2.6/html/x1256.
html, Accessed: 2015-05-06.

[30] C. Wang, M. Said, and A. Gupta. Coverage guided systematic
concurrency testing. In International Conference on Software
Engineering, pages 221–230, 2011.

[31] C. Wang, Y. Yang, A. Gupta, and G. Gopalakrishnan.
Dynamic model checking with property driven pruning to
detect race conditions. In International Symposium on
Automated Technology for Verification and Analysis, pages
126–140, 2008.

[32] Y. Yang, X. Chen, G. Gopalakrishnan, and C. Wang.
Automatic discovery of transition symmetry in multithreaded
programs using dynamic analysis. In International SPIN
workshop on Model Checking Software, pages 279–295, 2009.


	1 Introduction
	2 Motivating Examples
	2.1 Thread-modular Abstract Interpretation
	2.2 Iterative Flow-sensitive Analysis
	2.3 Control-flow versus Data-flow Graphs

	3 Background
	3.1 Sequential Abstract Interpretation
	3.2 Thread-modular Abstract Interpretation

	4 Flow-sensitive Thread-modular Analysis
	4.1 The New Algorithm
	4.2 The Interference Combinations
	4.3 Handling Loops
	4.4 Correctness

	5 Constraint-based Feasibility
	5.1 The Program-order and the Reads-from Constraints
	5.2 Deduction Rules for Checking Feasibility
	5.3 The Running Example

	6 Optimizations with Clustering and Pruning
	6.1 Property-guided Pruning
	6.2 Dependency-guided Clustering

	7 Experiments
	8 Related Work
	9 Conclusions
	10 Acknowledgments
	11 References

