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ABSTRACT
An important activity in systems engineering is analyzing
how a change in requirements will impact the design of a
system. Performing this analysis manually is expensive, par-
ticularly for complex systems. In this paper, we propose
an approach to automatically identify the impact of require-
ments changes on system design, when the requirements and
design elements are expressed using models. We ground our
approach on the Systems Modeling Language (SysML) due
to SysML’s increasing use in industrial applications.

Our approach has two steps: For a given change, we first
apply a static slicing algorithm to extract an estimated set of
impacted model elements. Next, we rank the elements of the
resulting set according to a quantitative measure designed
to predict how likely it is for each element to be impacted.
The measure is computed using Natural Language Process-
ing (NLP) applied to the textual content of the elements.
Engineers can then inspect the ranked list of elements and
identify those that are actually impacted. We evaluate our
approach on an industrial case study with 16 real-world re-
quirements changes. Our results suggest that, using our
approach, engineers need to inspect on average only 4.8% of
the entire design in order to identify the actually-impacted
elements. We further show that our results consistently im-
prove when our analysis takes into account both structural
and behavioral diagrams rather than only structural ones,
and the natural-language content of the diagrams in addi-
tion to only their structural and behavioral content.

CCS Concepts
•Software and its engineering → Software evolution;
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1. INTRODUCTION
Change impact analysis is an important activity in soft-

ware maintenance and evolution, both for properly imple-
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Figure 1: Requirements diagram fragment for CP.

menting a set of requested changes, and also for estimating
the risks and costs associated with the change implemen-
tation [1, 2]. In addition to being a general best practice,
change impact analysis is often mandatory for safety-critical
applications and meeting the compliance provisions of safety
standards such as IEC 61508 [3] and ISO 26262 [4].

In this paper, we concern ourselves with analyzing the im-
pact of requirements changes on system design. Changes in
requirements may occur due to a variety of reasons, includ-
ing, for example, evolving user needs and budget constraints.
Irrespective of the cause, it is important to be able to as-
sess how a requirements change affects the design. Doing so
requires engineers to identify, for each requirements change,
the system blocks and behaviors that will be impacted. If
done manually, this task can be extremely laborious for com-
plex systems, thus making it important to support the task
through automation.
Motivating Example. We motivate our work using a
cam phaser (CP) system, developed by Delphi Automotive.
This system, which includes mechanical, electronic and soft-
ware components, enables adjusting the timing of cam lobes
with respect to that of the crank shaft in an engine, while
the engine is running. CP is safety-critical and subject to
ISO 26262 – a functional safety standard for automobiles. To
protect confidentiality and facilitate illustration, we have, in
the description that follows, altered some of CP’s details
without affecting CP’s core architecture and behavior.

The system requirements and the design of CP are ex-
pressed using the Systems Modeling Language (SysML) [5].
Figure 1 shows a small requirements diagram adapted from
CP’s original SysML models. The requirement on the top,
Temperature Diagnostics (R1), is decomposed into two sub-
requirements: Over-Temperature Detection (R11) and Op-
erational Temperature Range (R12). The over-temperature
threshold specified by R11 and the operational temperature
range specified by R12 depend on the specific devices that
interact with CP and may vary from one engine configura-
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Figure 2: Fragment of CP’s block diagram.
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Figure 3: (Simplified) activity diagram for the
Diagnostics Manager block (B3) of Figure 2.

tion to another. Hence, it is common for systems engineers
to receive change requests regarding these requirements. Ex-
amples of change requests coming from customers (typically,
car manufacturers) and concerning these requirements are:
(1) Ch-R11: Over-temperature threshold shall change from
110 ◦C to 147 ◦C, and (2) Ch-R12: Temperature range shall
be extended to -40 – 150 ◦C from -20 – 120 ◦C.

Figures 2 and 3 present parts of CP’s design: Figure 2
shows a fragment of CP’s architecture expressed as a SysML
internal block diagram. In this diagram, there are two trace-
ability links to requirements, one from the Over-Temperature
Monitor block (labeled B2) to requirement R11, and the
other from the Temperature Processor block (B1) to require-
ment R12. Figure 3 shows an activity diagram describing
the behavior of the Diagnostics Manager block (B3). For suc-
cinctness, we take the term “block” to represent instances of
SysML block types. This choice does not cause ambiguity in
our presentation, as our motivating example does not have
multiple instances of the same block type.

A simple intuition that systems engineers apply for scop-
ing the impact of requirements changes is to follow the flow
of data between the design blocks, starting from the blocks
that are directly traceable to the changed requirements. For
example, for Ch-R11, one would start from block B2, which
is directly traced to R11, and mark as potentially-impacted
any block that is reachable from B2 via the inter-block con-
nectors. Using this kind of reasoning, we obtain the follow-
ing estimated impact sets for Ch-R11 and Ch-R12, respec-
tively: {B2, B3, B4, B5, B6} and {B1, B2, B3, B4, B5, B6}.

Estimating the impact sets in the manner described above,
i.e., by reachability analysis over the inter-block connectors,

often yields too many false positives, i.e., too many blocks
that are not actually impacted by the change under investi-
gation. For example, we know from a manual inspection con-
ducted by the systems engineers involved that the actual im-
pact sets for Ch-R11 and Ch-R12 are {B2} and {B1, B4, B6},
respectively. This means that B3, B4, B5 and B6 in the es-
timated impact set for Ch-R11, and B2, B3 and B5 in the
estimated impact set for Ch-R12 are false positives.

Some of these false positives can be pruned by considering
the block behaviors. To illustrate, consider the activity dia-
gram of Figure 3. By following the control and data flows in
this diagram, we can infer that (1) the Motor position input
may influence both the Error and Motor drive mode outputs,
and (2) the Over-Temperature input may influence only the
Motor drive mode output. We can therefore conclude that
B5 is unlikely to be impacted by Ch-R11 and Ch-R12, and
thus remove B5 from the estimated impact sets above.

Despite the analysis of block behaviors being helpful for
pruning the estimated impact sets, such analysis alone does
not adequately address imprecision, still leaving the engi-
neers with a large number of false positives and hence a large
amount of wasted inspection effort. To further improve pre-
cision, we recognize that there is a wealth of textual content
in the models, e.g., the labels of blocks, ports and actions.
This raises the possibility that text analysis can be a useful
aid for making change analysis more precise.

To this end, we use insights from our previous work on
the propagation of change in natural-language content [6].
In particular, we have observed that, alongside the change
description, one can further obtain cues from the engineers
about how they expect a given change to propagate. For
example, the engineers of CP could provide the following
intuition about the impact of Ch-R12 on the design, before
actually inspecting the design: “Temperature lookup tables
and voltage converters need to be adjusted”.

From the description of Ch-R12 and the intuition above
given by the engineers, it is reasonable to expect that a
block containing one or more of the keyphrases“temperature
range”, “temperature lookup table”, and “voltage converter”
(or similar phrases) should have a higher likelihood of being
impacted by Ch-R12 than a block that contains none of these
keyphrases. Indeed, the keyphrase “temperature lookup ta-
ble”appears in the action nodes of the activity diagrams that
describe the block behaviors of B1 and B4 (not shown), thus
making B1 and B4 more likely to be impacted than other
blocks, say B2 and B3, whose activity diagrams do not con-
tain this keyphrase. In a similar vein, the keyphrase“voltage
converter” mentioned by the engineers will increase the like-
lihood of impact on B6 as compared to B2 and B3.

Contributions. We propose an automated approach for
identifying the impact of requirement changes on system
design. Our approach takes into account all the intuitions
illustrated on the motivating example described above, uti-
lizing the inter-block connectors, the block behaviors, and
the textual content of the models for increasing the precision
of change impact analysis. Our approach has two steps: For
a given change, we first compute an estimated impact set by
identifying the design elements that are reachable from the
changed requirement. The basis for this step are the inter-
block connectors and block behaviors. The main novelty of
this step is in providing a rigorous adaptation of dependency
graphs – commonly used in program slicing [7] – for reach-
ability analysis over the activity diagrams that describe the



block behaviors. In the second step, we automatically rank
the elements of the estimated impact set. The ranking is
aimed at predicting how likely it is for each element in this
set to be affected by the given change. The basis for the
ranking is a quantitative measure computed using Natural
Language Processing (NLP) [8]. Specifically, the measure
reflects the similarity between the textual content of the el-
ements in the estimated impact set and the keyphrases in the
engineers’ statement about the change. We provide guide-
lines for deciding about the cutoff point in the ranked list;
this is the point beyond which the elements in the list would
not be worthwhile inspecting because their likelihood of be-
ing impacted is low. The novelty of the second step of our
approach is in applying NLP for change analysis between
modeling artifacts (as opposed to textual artifacts).

While the ideas behind our work are general, we ground
our approach on SysML. This choice is motivated primarily
by two factors: First, SysML is representing a significant
and increasing segment of the embedded software industry,
particularly in safety-critical domains. Given the impor-
tance of change impact analysis for complying with safety
standards, we believe that building on SysML is advanta-
geous as a way to facilitate the integration of our approach
into safety certification activities. Second, SysML provides a
built-in mechanism, via requirements diagrams, for connect-
ing design models to natural-language requirements. This
allows us to capitalize as much as possible on the standard
requirements-to-design trace link in SysML.

We implement our approach as a plugin for Enterprise Ar-
chitect [9]. We report on an industrial case study conducted
in collaboration with Delphi Automotive, which is an in-
ternational supplier of vehicle technology. The case study
includes 16 real-world requirements changes.

Our results indicate that the number of elements engineers
need to inspect decreases as we combine different sources
of information. In particular, on average, this number is
21.6% of the entire design (80 / 370 design elements) when
we consider only inter-block connectors. This average re-
duces to 9.7% (36 / 370) when we consider both inter-block
connectors and block behaviors. The average further re-
duces to 4.8% (18 / 370) when we also take into account
the natural-language information in the models and the en-
gineers’ change statements. The precision of our approach
when all the above three sources of information are used is
29.4%. That is, on average, 29.4% of a set consisting of
18 elements is actually impacted. Given that the approach
narrows potentially-impacted elements to a small set (4.8%
of the design), excluding false positives from the results can
be done without substantial effort. Our analysis misses one
impacted element for only one out of the total of 16 changes.
The recall is 85% for that particular change and 100% for
the other 15 changes, giving an average recall of 99%.
Structure. Section 2 describes our approach. Section 3
presents our empirical evaluation. Section 4 compares with
related strands of work. Section 5 concludes the paper.

2. APPROACH
Figure 4 shows an overview of our change impact analysis

approach. In this section, we first describe the modeling
prerequisites for our approach. We then elaborate the steps
of our approach, marked 1 and 2 in Figure 4.
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Figure 4: Approach overview.

2.1 Building SysML Models
Our approach concentrates on models built along three

dimensions: (1) requirements, (2) structure (architecture),
and (3) behavior. We use SysML requirements diagrams, il-
lustrated in Figure 1, for expressing requirements. We model
the system structure using SysML internal block diagrams,
illustrated in Figure 2. Finally, we use SysML activity dia-
grams, illustrated in Figure 3, for capturing behaviors. Our
focus on these three model types is in line with SysML’s
core modeling practices [10, 11] and further with the mod-
eling choices made by Delphi Automotive.

Our change impact analysis approach is agnostic to the
particular modeling methodology used to build the above
model types, as long as the methodology provides the trace-
ability information required by our approach. We character-
ize the required traceability information via the traceability
information model (TIM) of Figure 5. TIMs are a common
way of specifying how different development artifacts (and
the elements thereof) should be traced to one another in
order to support specific analytical tasks [12, 13, 14].

Our TIM is organized into three packages, representing
the three modeling dimensions covered. This TIM is consis-
tent with both the existing literature on systems engineer-
ing modeling [15], and also the SysML/UML metamodel [10,
11]. We note that providing the information envisaged by
our TIM does not require significant additional manual work.
Specifically, all the elements and associations in our TIM, ex-
cept for the satisfy association from blocks to requirements,
are implied by the natural process of model construction in
SysML. As for the links between requirements and system
blocks prescribed by our TIM, establishing these links, irre-
spective of whether our change impact analysis technique is
used or not, is one of the most basic best practices in SysML
and, in the case of safety-critical applications, an essential
prerequisite for complying with safety standards [16, 17, 18].

The requirements package in Figure 5 defines the require-
ments types, namely, software and hardware. Due to lack
of space, Figure 5 does not show all the possible relations
between the requirements (e.g., decomposition and deriva-
tion). Requirements may be connected to blocks via the
satisfy relation. A satisfy link between a block B and a re-
quirement R indicates that the function implemented by B
contributes to the satisfaction of R. Blocks belong to the
structure package, and can be either software or hardware.
Each block, irrespective of its type, contains a number of
ports. Ports are connected via the connector relation.
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Blocks can be associated with multiple behaviors (use
cases). Each behavior is specified using one activity dia-
gram. The behavior relation links blocks to their correspond-
ing behaviors. Activity diagrams include nodes and transi-
tions. Nodes can be either objects or actions; transitions
may be of either the object or control kinds. Object transi-
tions represent data flows (data dependencies), and control
transitions represent control flows (control dependencies).
Action nodes may be of one of the following three kinds:
(1) assignment statements defined over parameters or lo-
cal variables, (2) decision statements (if-statements) defined
over parameters or local variables, and (3) call statements
providing the behavior of function calls.

Object nodes can be designated as either parameter or
local. Parameters represent the input/output variables of
activity diagrams and may be of type control or data. Local
nodes are used to store local variables. Control input/output
variables and call action nodes are used for modeling the
sending and receiving of events between blocks with concur-
rent behaviors. Finally, the correspond relation in Figure 5
indicates that each block port has some corresponding pa-
rameter in some activity diagram related to that block. Each
activity diagram parameter has to correspond to one port
of the block related to that activity diagram.

The diagrams in our motivating example of Section 1 con-
form to the TIM of Figure 5. Specifically, the internal block
diagram of Figure 2 specifies the satisfy relations between
the requirements of Figure 1 and blocks B1 and B2. The
activity diagram of Figure 3 captures one possible behavior
for block B3. This activity diagram contains two input and
two output parameters, all of type data, as well as a local
variable, Limit. The input/output parameter nodes of the
diagram correspond to the input and output ports of B3.

There are six action nodes in the activity diagram of Fig-
ure 3: four assignments and two decisions. The call action
node is illustrated in the activity diagram of Figure 6. In this
figure, the control input Sensor interrupt models interrupt

Algorithm Computeimpact [using only inter-block structural relations].

Input: - A set R of requirements modified in response to a change request.
- Sets B (blocks), P (ports) and AD (activity diagrams), together with
relations satisfy , connect , in, out , and behavior .

Output: - A set EIS of blocks, ports and activity diagrams impacted by R.

1. iB =
⋃

r∈R satisfy(r)
2. iP =

⋃
b∈iB out(b)

3. iAD =
⋃

b∈iB behavior(b)
4. do
5. iP = iP ∪

⋃
p∈iP connect(p)

6. iB = iB ∪
⋃

p∈iP in−1(p)
7. iAD = iAD ∪

⋃
b∈iB behavior(b)

8. iP = iP ∪
⋃

b∈iB out(b)
9. until iB ∪ iP ∪ iAD reaches a fixed point
10. return EIS = iB ∪ iP ∪ iAD

Figure 7: Algorithm for computing an estimated im-
pact set (EIS) using inter-block structural relations.

calls that can be periodic or aperiodic. The call action node
call Position-Correction() produces a control output value,
which is in turn used as a control input by another block.

2.2 Computing Potentially Impacted Elements
In this section, we describe the first step of our change

impact analysis approach (marked 1 in Figure 4). This step
includes two algorithms: (1) computing reachability over
inter-block structural relations, and (2) slicing activity dia-
grams based on intra-block behavioral relations.

Reachability over inter-block structural relations. We
denote the sets of all requirements, blocks, ports and activ-
ity diagrams by R, B, P, and AD, respectively. Let r ∈ R,
b ∈ B, and p ∈ P. We write satisfy(r) ⊆ B to denote the
set of blocks related to r by a satisfy relation. We denote
the input ports of b by in(b) ⊆ P, and its output ports by
out(b). We write connect(p) ⊆ P to indicate the set of ports
related to p by connector links emanating from p. Finally,
we denote by behavior(b) ⊆ AD the set of activity diagrams
that specify the behaviors of b.

Figure 7 shows the algorithm for computing reachability
over inter-block connectors (structural relations). The algo-
rithm receives as input the set R of requirements modified
in response to a change request. It then computes the initial
sets iB of impacted blocks, iP of impacted ports, and iAD of
impacted activity diagrams (lines 1–3). The initial set iB is
obtained by following the satisfy links from the requirements
in R. The set of output ports of the impacted blocks in iB
are then stored in iP , and the activity diagrams related to
the blocks in iB are stored in the initial set iAD .

After obtaining the initial sets, a transitive closure is com-
puted over these sets (lines 4–9). In particular, by following
the connector links originating from ports in iP , new input
ports belonging to new blocks are identified. The new in-
put ports are added to iP (line 5), and the new blocks are
added to iB (line 6). We then identify the activity diagrams
related by the behavior links to the newly added blocks, and
add them to iAD (line 7). We further add the output ports
of the newly added blocks to iP (line 9). Lines 5–8 are exe-
cuted until we reach a fixed point. The result is an estimated
impact set EIS . Note that for any activity diagram in EIS ,
we consider all the activity and object nodes in that diagram
to be impacted.

Given the example diagrams in Figures 1–3, if we ex-
ecute the algorithm of Figure 7 for change requests Ch-
R11 and Ch-R12 (i.e., by setting the input set R to {R11}
and {R12} respectively), the algorithm will respectively re-
turn {B2, B3, B4, B5, B6} and {B1, B2, B3, B4, B5, B6} for
iB . Further, the algorithm returns the set of all the ports



Algorithm Computeimpact [using both inter-block structural and intra-block
behavioral relations].
Input: - A set R of requirements modified in response to a change request.

- Sets B (blocks), P (ports), and AD (activity diagrams) together with
the relations satisfy , connect , in, out , and behavior .

Output: - A set EIS of blocks, ports and activity diagrams impacted by R.

1. iB =
⋃

r∈R satisfy(r)
2. iP =

⋃
b∈iB out(b)

3. iAD =
⋃

b∈iB behavior(b)
4. do
5. iP = iP ∪

⋃
p∈iP connect(p)

6. for b ∈
⋃

p∈iP in−1(p) do
7. iB = iB ∪ {b}
8. for ad ∈ behavior(b) do
9. iAD ′, iOut = ForwardSlice(ad , correspond−1(iP ∩ in(b)))
10. iAD = iAD ∪ iAD ′

11. iP = iP ∪ correspond(iOut)
12. until iB ∪ iP ∪ iAD reaches a fixed point
13. return EIS = iB ∪ iP ∪ iAD

Figure 8: Algorithm for computing EIS using both
structural and behavioral relations.

of the blocks in iB for iP and the activity and object nodes
in Figure 3 for iAD .
Slicing activity diagrams based on intra-block be-
havioral relations. Our slicing algorithm operates on data
and control flow dependencies among object and action nodes
of activity diagrams. We first provide a formalization of ac-
tivity diagrams’ syntax and specify the notions of data and
control dependency in our formalization. We then present
our slicing technique for activity diagrams. An activity dia-
gram ad is a tuple 〈AN , V,ON , G,TC ,TO〉 where:

- AN is a set of action nodes, partitioned into three sub-
sets AN a, AN c, and AN d representing assignment, call, and
decision action nodes, respectively.

- V is a set of variable names, partitioned into V io and V l

indicating input/output and local variable names, respec-
tively.

- ON is a set of object nodes, partitioned into two subsets
ON p and ON l indicating parameter and local object nodes,
respectively. The set ON p of parameter nodes is partitioned
into ON p,c and ON p,d indicating call and data object nodes,
respectively. The set ON p is also partitioned into ON p,i and
ON p,o denoting input and output object nodes, respectively.
We thus have: ON p = ON p,i ∪ ON p,o = ON p,c ∪ ON p,d.
Each object node in ON l (resp. ON p) is labeled with a
variable name in V l (resp. V io).

- G is a set of Boolean expressions over the variables in
V . These expressions capture transition guards.

- TC is a set of control transitions defined as follows:
TC ⊆ ((ON p,c∩ON p,i)×AN )∪(AN c×(ON p,c∩ON p,o))∪
((AN a ∪AN c)×AN ) ∪ (AN d ×G×AN ). That is, control
transitions connect (1) input control parameter nodes to ac-
tion nodes, (2) call action nodes to output control parameter
nodes, (3) assignment and call action nodes to action nodes,
and (4) decision action nodes to action nodes. The transi-
tions between decision action nodes and action nodes (the
fourth item) are guarded by Boolean expressions in G.

- TO is a set of object transitions, defined as follows:
TO ⊆ (ON l × (AN d ∪ AN a)) ∪ (AN a × ON l) ∪ ((ON p,d ∩
ON p,i)×(AN d∪AN a))∪(AN a×(ON p,d∩ON p,o)). That is,
object transitions connect (1) local object nodes to decision
and assignment action nodes, (2) assignment action nodes
to local object nodes, (3) input data parameter nodes to
decision and assignment action nodes, and (4) assignment
action nodes to output data parameter nodes.

In our formalization of activity diagrams, we have ex-
cluded pseudo-nodes, namely the initial, final, fork, join,
and merge nodes. Since the activity nodes in our formaliza-

tion can have multiple incoming and outgoing transitions,
pseudo-nodes do not lead to additional semantics. The se-
mantics of our activity diagrams is identical to that de-
scribed in [19]. Action nodes are the basic building blocks
receiving inputs and producing outputs, called tokens. To-
kens correspond to anything that flows through transitions.
Tokens can be either data or control. Data tokens tran-
sit through object transitions (TO) and carry (partial) re-
sult values. Control tokens, however, transit through control
transitions (TC ) and carry null values.

Control tokens are meant to be used as triggers (events).
Data tokens are associated with data parameter nodes and
local object nodes, while control tokens are associated with
control parameter nodes. An action node can start its exe-
cution only when all its input tokens via its incoming control
or object transitions are provided. Upon its completion, an
action node produces appropriate data and control tokens
on its outgoing control and object transitions.

Assignment action nodes receive both control and data
tokens as input and generate both data and control tokens
as output (e.g., see Figure 3). Values are passed from one
assignment action node to another via local object or param-
eter nodes. In other words, an assignment action node sends
its output to a local object or a parameter node that is con-
nected to the input of another action node. Call action nodes
receive control tokens as input and produce control tokens
as output (e.g., see Figure 6). Function calls are modeled by
a call action node generating a token on an output control
parameter node of the caller that is linked to some input
control parameter node of the callee. Decision action nodes
receive both control and data tokens as input, but generate
only control tokens as output (e.g., see Figure 3).

Having described our formalization of activity diagrams,
we now explain, using this formalization, how we account
for block behaviors in the computation of estimated impact
sets. The drawback of the algorithm presented earlier in
Figure 7 is that it naively identifies all the output ports of
any impacted block as impacted without regard to the intra-
block dependencies between the impacted input ports and
the output ports of that block. To address this drawback,
we improve our algorithm as shown in Figure 8.

The modified algorithm of Figure 8 forward slices the ac-
tivity diagrams related to the impacted blocks, starting from
their impacted input ports. Recall from Figure 5 that each
activity parameter node corresponds to some input port of a
block related to that activity diagram. Our slicing criterion
(i.e., the starting point) is described in terms of impacted
input parameter nodes. In Figure 8, we use correspond(n)
to denote the block ports related to an activity parameter
node n, and use correspond−1(iP) to denote the set of ac-
tivity parameter nodes related to the ports in iP .

Our forward static slicing algorithm, shown in Figure 9, is
similar to existing forward program slicing approaches where
slices are computed over program dependency graphs [7]. In
these graphs, nodes correspond to program statements and
are connected by edges representing control and data de-
pendencies. The object transitions TO in our activity dia-
grams correspond to program def-use chains, specifying data
dependencies [20]. The control transitions TC capture con-
trol dependencies from decision nodes to sequences of action
nodes in the if-then-else branches as well as control depen-
dencies between call action nodes and input/output control
parameter nodes. The algorithm in Figure 9 computes, for



Algorithm. ForwardSlice.

Input: An activity diagram ad = 〈AN , V,ON , G,TC ,TO〉.
A set in of impacted input parameter nodes of ad (slicing criterion).

Output: A set iOut of impacted output parameter nodes of ad .
A set iAD of impacted object and action nodes of ad .

1. iOut = ∅; iAD = ∅;
2. R = TC ∪ TO
2. for n ∈ in ∩ON p,i do
3. X = {n}
4. do
5. X = X ∪ {n′ | ∃q ∈ X ·R(q, n′) ∨ ∃g ∈ G ·R(q, g, n′)}
6. until X reaches a fixed point
7. iAD = iAD ∪X
8. iOut = iOut ∪ (X ∩ON p,o)
9. return iN , iOut

Figure 9: Algorithm for activity diagram slicing
(used by the algorithm of Figure 8).

any input parameter node n in the slicing criterion set (in),
all the action and object nodes reachable from n via se-
quences of object and control transitions (TC ∪ TO). The
algorithm then returns all the reachable nodes (iAD) and
all the reachable output parameter nodes (iOut).

For example, suppose that the slicing algorithm is called
with ad set to the activity diagram of Figure 3, and in set
to the Over-Temperature input parameter node. The algo-
rithm computes for this activity diagram a forward slice such
that: (1) the set iAD contains the decision node Tempera-
ture check, the assignment nodes Motor drive mode = OFF
and Motor drive mode= ON, and the Motor drive mode out-
put parameter node. And, (2) the set iOut contains the
Motor drive mode output parameter node which corresponds
to an output port of block B3 with the same label. Hence,
the Motor drive mode output port of B3 is the only output
port that is likely to be impacted if a change is made to the
Over-Temperature input port of B3. Therefore, using the
modified algorithm of Figure 8, we prune B5, its ports, and
its related behaviors from the EISs computed for change
requests Ch-R11 and Ch-R12.

An important remark about the computation of EISs in
our approach is that this process is meant to be intertwined
with the implementation of a given change request. This in-
tertwining provides a human feedback loop where the changes
made to the models by the engineers at any given step is used
for improving the accuracy of the EIS computed in the next
steps. In particular, if the engineers modify the inter-block
or intra-block dependencies in the SysML models during the
implementation of a change request, the EIS needs to be
recomputed. If no changes are made to the inter-block or
intra-block paths, e.g., as is the case for Ch-R11 and Ch-R12
in our motivating example, the EIS will remain unaffected.

2.3 Ranking Potentially Impacted Elements
In the second step of our approach (marked 2 in Figure 4),

we rank the elements of the EIS computed by the previ-
ous step. In addition to the EIS , this second step requires
one or more natural-language statements from the engineers.
These statements, which we call change statements, include
the change description as well as any intuition that the en-
gineers may have, based on their domain knowledge, about
how a certain requirements change would propagate to the
design. We denote the set of change statements by chStat .

Our ranking of the elements in the EIS is based on match-
ing the natural-language labels of these elements against the
keyphrases that appear in the statements of chStat . The
keyphrases are extracted automatically using a keyphrase
extractor. We use a tailored extractor that we developed in

our previous work [6] for supporting requirements tasks. For
example, applying the extractor over the statement “Tem-
perature lookup tables and voltage converters need to be
adjusted.” given by the engineers for Ch-R11 (as discussed
in Section 1) would identify the following keyphrases: “tem-
perature lookup table” and “voltage converter”.

With the keyphrases extracted, we use similarity measures
to quantify how closely the text labels of the EIS elements
match the keyphrases. Similarity measures can be syntac-
tic or semantic. Syntactic measures are based on the string
content of text segments (sometimes combined with frequen-
cies). An example syntactic measure is Levenshtein [21],
which computes a similarity score between two strings based
on the minimum number of character edits required to trans-
form one string into the other. Semantic measures are cal-
culated based on relations between the meanings of words.
An example semantic measure is Path [22], which computes
a similarity score between two words based on the shortest
path between them in an is-a hierarchy (e.g., an “automo-
bile” is-a “vehicle” and so is a “train”).

Similarity measures, both syntactic and semantic, are typ-
ically normalized to a value between 0 and 1, with 0 sig-
nifying no similarity and 1 signifying a perfect match. In
line with common practice [22], we zero-out similarity scores
below a certain threshold, in this paper 0.05, to minimize
noise. In addition to individual similarity measures, we fur-
ther consider pairwise combinations of syntactic and seman-
tic measures due to these measures having a complimentary
nature [16]. For the combination, we take the maximum of
the two computed scores. Since there are several similarity
measures to choose from, it is important to empirically in-
vestigate which measures are most suited to a specific task.
Finding the best measures for our application context is ad-
dressed in our empirical evaluation (see Section 3).

Given an individual or a combined similarity measure, we
compute for every e ∈ EIS the similarity between the text
label of e and the keyphrases obtained from chStat . The
score we assign to e is the largest similarity score between e
and any of the keyphrases. We then sort the elements of EIS
in descending order of the scores assigned to the elements.
The assumption here is that these scores are correlated with
the likelihood of the elements being actually impacted by
the change under analysis. In other words, we take the el-
ements ranked higher in the sorted EIS to be more likely
to be impacted. For example, for Ch-R12, we would obtain
high scores for any block, port, activity node, or activity
transition in the EIS that has a high degree of similarity to
either “temperature lookup table” or “voltage converter”.

3. EMPIRICAL EVALUATION
In this section, we investigate through an industrial case

study the following Research Questions (RQs):

RQ1. (Usefulness of Slicing) How much reduction in the
size of EIS does our slicing technique bring about? Does slic-
ing remove any actually-impacted elements (true positives)
from the EIS computed by inter-block structural analysis?
With RQ1, we study the usefulness of our behavioral analy-
sis by comparing the EISs obtained from structural analysis
only (i.e., the algorithm of Figure 7) versus those obtained
from both structural and behavioral analysis (i.e., the al-
gorithm of Figure 8). In particular, we are interested in
the magnitude of reductions in the EIS size that our behav-



ioral analysis provides without compromising the recall, i.e.,
without removing actually-impacted elements from the EIS.

RQ2. (Choice of Similarity Measures) Which simi-
larity measures are best suited to our approach? There are
several syntactic and semantic similarity measures for tex-
tual content. The choice of similarity measures used for cal-
culating impact rankings directly affects the quality of our
results. With RQ2, we identify the syntactic and semantic
similarity measures that lead to the most accurate results.

RQ3. (Usability) How should engineers use the ranked
EIS lists produced by our approach? For our approach to be
useful, engineers need to determine how much of a ranked
EIS list is worth inspecting. In other words, they need to
determine a point in the list beyond which the remainder
of the list is unlikely to contain impacted elements. With
RQ3, we aim to develop systematic guidelines for inspecting
the ranked EIS lists.

RQ4. (Effectiveness) How effective is our automated ap-
proach when compared to a manual analysis performed by an
engineer? Assuming that the guidelines resulting from RQ3
are followed, RQ4 aims to determine whether our approach
can reliably identify the set of actually impacted elements,
and at the same time, save substantial inspection effort.

RQ5. (Scalability) Does our approach have an acceptable
execution time? With RQ5, we study whether the execution
time of our approach is practical.

Industrial Subject. Our case study is the cam phaser
(CP) system introduced in Section 1. A SysML model for
CP had been developed by the Delphi engineers in the En-
terprise Architect tool [9]. This case study model consists
of seven requirements diagrams containing 34 requirements,
nine internal block diagrams with 48 blocks, 19 activity dia-
grams, and 56 traceability links, all of type satisfy. In total,
the entire CP model contains 370 blocks, ports, and activity
and object nodes. We chose CP as our case study model
since it is an industrial system. The SysML model of CP
contains a reasonable number of requirements and traceabil-
ity links from requirements to blocks.

We were provided with 16 requirements change scenarios
for CP. These scenarios are real and drawn from change re-
quests originating from the customers of CP. In each case,
a high-level natural-language statement was available which
described the change as well as how the engineers expected
the change to affect the design. One of these statements,
referred to in our approach as a change statement, was illus-
trated in the motivating example of Section 1 (for Ch-R12).
Five additional examples of change statements are provided
in Table 1. As seen from the table, the statements are ab-
stract and do not exactly pinpoint the impact of a change.
Nevertheless, the keyphrases in the statements provide a
mechanism for ranking the estimated impact sets computed
by our approach. The actual impact set for each of the 16
change scenarios was further provided by the engineers in-
volved in the case study.

Implementation. We have implemented our approach as a
plugin for the Enterprise Architect modeling environment [9].
Our implementation enables users to automatically gener-
ate EISs using the algorithms of Section 2.2, and compute
ranked EISs based on NLP similarity measures as discussed
in Section 2.3. Our plugin is available at:

https://bitbucket.org/carora03/cia addin

Table 1: Additional examples of change statements
id Change Statements
1 Resolution of the battery voltage shall change from 0.1v to 0.01v. Bat-

tery voltage variables should be checked.
2 Input voltage divider of the battery voltage reading shall change from

0.2v to 0.3v. Measurement routines should be adjusted.
3 The motor control routine shall be executed in the 1ms task instead of

the 2ms task. Slow regulator tasks should be revised.
4 Motor current shall increase from 45A to 50A. Shunt values and resolu-

tion of variables measuring the current should be revised.
5 The current mirror for the motor current measurement shall be replaced

by a differential amplifier. Resolution settings should be revised.

Metrics. We use two well-known metrics, precision and
recall, in our evaluation. Precision measures quality (i.e.,
low number of false positives) and is the ratio of actually-
impacted elements found in an EIS to the size of the EIS. Re-
call measures coverage (i.e., low number of false negatives)
and is the ratio of the actually-impacted elements found in
an EIS to the number of all actually-impacted elements.

Results. Next, we discuss our RQs:

RQ1. (Usefulness of Behavioral Analysis) To answer
this RQ, we compare the EISs generated by the two algo-
rithms in Figures 7 and 8, using the CP SysML model and
the 16 given change scenarios. Recall that the algorithm
in Figure 7 relies on structural inter-block relations only,
and the one in Figure 8 uses both structural inter-block and
behavioral intra-block relations. We obtained 16 EISs via
structural analysis and 16 other EISs via combined struc-
tural and behavioral analysis. We compared the sizes of the
EISs, and their recall and precision values. The recall for all
the 16 changes and for both the structural and the combined
structural and behavioral approaches were 100%.

Figure 10 compares the EIS size and the EIS precision
distributions for the 16 changes obtained by structural anal-
ysis and by the combined structural and behavioral analysis.
The average EIS size and EIS precision based on structural
analysis are, respectively, 80 and 8%, and based on the com-
bined analysis are 38 and 16%, respectively. That is, after
applying the forward slicing used in our behavioral analysis,
on average, the EIS size is reduced by around 42 elements
and the precision increases by 8%. We note that the to-
tal number of elements in the entire SysML model is 370.
Hence, the EIS size generated by the structural analysis con-
tains 21.6%, and the EIS size obtained by the combined anal-
ysis contains 9.7% of all the design elements. In summary,
our results show that applying the combined structural and
behavioral analysis significantly reduces the EIS size and
increases precision without a negative effect on recall.
RQ2. (Choice of Similarity Measures for Ranking)
To answer this RQ, we define a notion of accuracy for the
ranked EISs (obtained from the ranking step in Section 2.3).
We conceptualize accuracy using charts that show the per-
centage of actually-impacted elements identified (Y -axis)
against the percentage of EIS elements traversed in the ranked
list (X-axis). Figure 11 shows charts for an EIS, computed
for one of the CP change scenarios, and ranked by two al-
ternative applications of similarity measures.

A simple way to compare the alternatives would be the
following: A similarity measure A (potentially, the combi-
nation of a syntactic and a semantic measure) is better than
a measure B if the engineers are able to identify all the im-
pacted elements by inspecting fewer elements when they use
the list ranked by A than when they use the list ranked by B.
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Figure 10: Impact of behavioral analysis: Compar-
ing (a) the size of EISs and (b) the precision of EISs
obtained by structural analysis alone and by com-
bined behavioral and structural analysis.

0 25 50 75 100
0

25

50

75

100

% elements traversed in ranked list

%
 im

pa
cte

d e
lem

en
ts 

ide
nt

ifi
ed

Alternative 1
Alternative 2

87.7

28.3 54.6 61.9

Figure 11: Two alternative applications of similarity
measures for ranking the same EIS.

This intuition however, cannot distinguish the two alterna-
tives in Figure 11, as both identify all the actually-impacted
elements after traversing 61.9% of the elements.

Despite the above, Alternative 1 is better than Alterna-
tive 2 because it produces better results earlier. Specifically,
if the engineers choose to stop, say after inspecting 30%
of the list, with Alternative 1, they will find 87.7% of the
actually-impacted elements. Identifying the same percent-
age of actually-impacted elements with Alternative 2 would
require the inspection of ≈ 55% of the list. To reward earlier
identification of impacted elements, we use the Area Under
the Curve (AUC) for evaluating accuracy. AUC can tell
apart the two alternatives in Figure 11, as the metric is
larger for Alternative 1.

We considered pairwise combinations of three syntactic
measures, SoftTFIDF, Monge Elkan and Levenshtein, from
the SimPack library [23] and four semantic measures, LIN,
PATH, RES and JCN, from the SEMILAR library [22]. We
further considered alternatives where only a syntactic or
only a semantic measure is applied. Specifically, we con-
sidered 19, i.e., (4 + 1) × (3 + 1) − 1, alternatives. We ran
these alternatives on our 16 changes, and obtained an AUC
for each alternative.

To identify the best alternative for similarity measures, we
need to determine which alternatives consistently result in
the highest accuracy (i.e., AUC) when applied to the change
scenarios. This analysis is often done using a regression
tree [24], which is a hierarchical partitioning of a set of data
points aimed at minimizing, with respect to a given metric,
variations across partitions. In our context, each data point
is a similarity measure alternative applied to an individual
change scenario. We therefore have a total of 19 * 16 = 304
data points. The metric of interest here is AUC.

All Rows
Count
Mean

304
0.784

Std Dev
Difference

0.100
0.032

Syntactic Measure 
(Monge_Elkan, Levenshtein)

Count
Mean

160
0.768 0.097   Std Dev Count

Mean
144

0.800

Syntactic Measure
 (NONE, SoftTFIDF)

Std Dev
Difference

0.101
0.011

Count
Mean

64
0.794

Syntactic Measure
 (NONE)

Std Dev 0.107

Syntactic Measure
 (SoftTFIDF)

Count
Mean

80
0.805

0.096
0.024

Std Dev
Difference

Count
Mean

48
0.796

Semantic Measure 
(NONE, LIN, PATH)

Std Dev 0.100
Count
Mean

32
0.820

Semantic Measure (RES, JCN)

Std Dev 0.087

Figure 12: Regression tree for identifying the best
similarity measure alternatives.

In Figure 12, we show the regression tree for our case
study. In each node of the tree, we show the count (number
of AUC values), the mean and standard deviation for the
AUC values, the similarity measures generating the AUC
values in that partition, and, for every non-leaf node, the
difference between the mean AUC values of its right and
left children. At each level, the factor (either syntactic mea-
sure or semantic measure) that best explains the variation
in AUC values is selected. The partitioning at the first level
of the tree signifies the most influential factor explaining the
variation observed across the data points. In Figure 12, the
most influential factor is the choice of syntactic measure.

The nodes on the right are of particular interest, as they
signify the alternatives that result in higher AUC values on
average than the alternatives of the left node. We iteratively
partition the right-most nodes until the difference between
the mean AUC values in the resulting branches is insignif-
icant. We deem differences below 0.01 to be insignificant.
At the first level, NONE and SoftTFIDF perform better
than Monge Elkan and Levenshtein. Depending on whether
NONE appears in a syntactic or a semantic measure node,
it indicates the stand-alone application of measures of the
other type. For example, the NONE appearing alongside
SoftTFIDF at the first level indicates stand-alone applica-
tion of semantic measures. At the second level, the syntac-
tic alternatives are further split suggesting that SoftTFIDF
produces better results on average than NONE (i.e., stand-
alone application of any semantic measure). The right-most
node at the last level of the tree contains the most robust
alternatives that yield the highest AUC values. The rea-
son why SoftTFIDF performs best is because it filters noise:
the measure assigns a zero (or very low) score to phrase
pairs when their constituent tokens are not closely match-
ing (lower than a certain threshold), or when the matching
tokens are very common (e.g., stopwords).

In summary, and as suggested by the right-most leaf node
in the tree of Figure 12, SoftTFIDF (syntactic measure)
combined with either RES or JCN (semantic measures) would
be the most suitable alternative. We use these two alterna-
tives to answer RQ3 and RQ4.
RQ3. (Usability) To answer RQ3, we aim to find the best
trade-off between the number of elements to inspect and the
number of impacted elements found. We define a notion of
cutoff indicating the percentage of a ranked list which is
worthwhile inspecting, and hence, should be recommended
to engineers. To define a cutoff, we use delta charts, as il-
lustrated in Figure 13 for one of the change scenarios in CP.
In the chart, at any position i on the X-axis, the Y -axis
is the difference between the similarity scores at positions i
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Figure 13: Ranked similarity scores and delta chart
for an example change scenario from CP. The delta
chart is used for computing the cutoff (r).

and i−1. For easier understanding, in Figure 13, we further
show the ranked similarity scores on the top of the delta
chart. These similarity scores were computed using Soft-
TFIDF (syntactic measure) and JCN (semantic measure).
As described in Section 2.3, the label of each EIS element
e is compared against all keyphrases in the change state-
ment using both SoftTFIDF and JCN. The maximum value
obtained from all these comparisons is assigned to e as its
similarity score. The chart on the top of Figure 13 plots the
EIS elements in descending order of the similarity scores.

For the cutoff, we pick the point on the X-axis after which
there are no significant peaks in the delta chart. Intuitively,
the cutoff is the point beyond which the similarity scores can
no longer adequately tell apart the elements in terms of be-
ing impacted. What is a significant peak is relative. Based
on our experiments, a peak is significant if it is larger than
one-tenth of the highest peak in the delta chart, denoted
hmax in Figure 13. The only exception is the peak caused
by zeroing out similarity scores smaller than 0.05 (see Sec-
tion 2.3). This peak, if it exists, is always the last one and
hence denoted hlast . Since hlast is artificial in the sense that
it is caused by zeroing out negligible similarity values, we
ignore hlast when deciding about the cutoff.

More precisely, we define the cutoff r to be at the end of
the right slope of the last significant peak (excluding hlast).
In the example of Figure 13, hmax = 0.26. Hence, r is at
the end of the last peak with a height > hmax/10 = 0.026.
We recommend that engineers should inspect the EIS ele-
ments up to the cutoff and no further. In the example of
Figure 13, the cutoff is at 49% of the ranked list. We note
that the cutoff can be computed automatically and with-
out user involvement. Therefore, the delta charts and their
interpretation are transparent to the users of our approach.

In summary, for each change scenario, we automatically
recommend, through the analysis of the corresponding delta
chart as explained above, the fraction of the ranked EIS
that the engineers should manually inspect for identifying
actually-impacted elements.
RQ4. (Effectiveness) To answer RQ4, we report the re-
sults of applying the best similarity measure alternatives
from RQ2 for ranking the EISs computed by the algorithm of
Figure 8 (i.e., combined structural and behavioral analysis),
and then considering only the ranked EIS fractions recom-
mended by the guidelines of RQ3. Note that in this RQ, by
EIS we mean the fraction obtained after applying the guide-
lines of RQ3. In Figure 14, we show for our 16 changes the
size and precision distributions of the recommended EISs.
These distributions are provided separately for the best simi-
larity alternatives from RQ2, i.e., SoftTFIDF combined with
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Figure 14: Size and precision of EISs that result
from the application of the guidelines of RQ3 to the
EISs computed by the algorithm of Figure 8.

RES (denoted Soft.RES) and SoftTFIDF combined with
JCN (denoted Soft.JCN).

The average EIS size is 30.2 for Soft.RES and 18.5 for
Soft.JCN. The average precision for Soft.RES and Soft.JCN
are 19.5% and 29.4% respectively. As for recall, Soft.RES
yields a recall of 100% for all 16 changes, while Soft.JCN
misses one element for one change. That is, using Soft.JCN,
we have a recall of 100% for 15 changes, and a recall of 85%
for one change (i.e., an average recall of 99%). The results
clearly show that Soft.JCN yields better overall accuracy.

In summary, after applying our best NLP-based similarity
measure, Soft.JCN, the average precision of our analysis in-
creases to 29.4% compared to 16% obtained by the combined
behavioral and structural analysis (discussed in RQ1). The
average recall reduces to 99% compared to 100% obtained
by the combined analysis. Finally, using NLP, the average
number of elements to be inspected by the engineers reduces
to 18.5 (just 4.8% of the entire design model) compared to
38 (9.7% of the design model) before applying NLP.
RQ5. (Execution Time) The execution time for both
steps of our approach, i.e., computing the EISs and ranking
the EISs, was in the order of seconds for the 16 changes.
Given the small execution times, we expect our approach to
scale to larger systems. Execution times were measured on
a laptop with a 2.3 GHz CPU and 8GB of memory.

Validity considerations and threats. Internal and ex-
ternal validity are the most relevant dimensions of validity
for our case study. With regard to internal validity, an im-
portant consideration is that the change statements must
represent the understanding of the engineers about a change
before the engineers have determined the impact of that
change; otherwise, the engineers may learn from the anal-
ysis they have performed and provide more precise change
statements than when they have not examined the design
yet. If this occurs, the accuracy results would not faithfully
represent what one can achieve in a non-evaluation setting.
In our case study, the change statements were pre-existing
and written at the time that the change requests had been
filed, i.e., before the impact of the changes had been exam-
ined. The engineers in our case study were therefore required
only to inspect the design and provide the actual impact sets
(gold standard). Consequently, learning is not a significant
threat to internal validity. A potential threat to internal va-
lidity is that one of the engineers involved in our case study
is a co-author. To minimize potential bias, the engineers
involved neither used our tool nor saw the results generated
by the tool until they had specified the actual impact sets.
With regard to external validity, while our case study is in-



dustrial and we anticipate it to be representative of many
embedded systems, particularly in safety-critical domains,
additional case studies will be essential in the future.

4. RELATED WORK
There is a wide range of techniques for change impact

analysis covering various development artifacts, including
requirements, design and code [25]. Our work is concerned
with analyzing how changes made to requirements will im-
pact system design, in a context where the requirements are
expressed using natural language, and the design using mod-
els. This situation is common and particularly relevant for
embedded systems development. Below, we compare with
the existing work that is most pertinent to the context in
which we studied change impact analysis in this paper.

Any change impact analysis technique for requirements
and design artifacts has to account for the dependencies be-
tween requirements and design elements to properly prop-
agate changes. Aryani et al. [26] use logical relationships
between domain concepts described in terms of weighted
dependency graphs. van den Berg [27] augments traceabil-
ity links with dependency type information between soft-
ware artifacts. Goknil et al. [28] extend the approach of van
den Berg [27] with formal semantics and apply it for impact
analysis over requirements. When the requirements are ex-
pressed as models, more specialized dependency types may
be defined. For example, Cleland-Huang et al. [29] use soft
goal dependencies to analyze how changes in functional re-
quirements propagate to non-functional requirements.
Tang et. al. [30] capture dependencies using a special model,
called an architectural rationale and linkage model, and use
this model alongside probabilistic expert estimates for change
impact analysis over system architectures.

Our work differs from the above in that we do not re-
quire dependency types, logical relationships between do-
main elements, architectural rationale, or probabilistic data
for inferring or estimating impact likelihoods. Instead, we
utilize the textual content of the design models and sim-
ple natural-language statements from engineers for impact
likelihood prediction. The high expressiveness and implicit
semantics of textual data make it difficult to come up with a
crisp classification of dependencies or to obtain precise log-
ical relations between the requirements and design. This is
why we use (quantitative) similarity measures for predicting
impact likelihoods.

A number of approaches rely on pre-defined rules for change
propagation. Briand et al. [31] propose a taxonomy of model
changes based on the UML metamodel, and use this taxon-
omy in order to specify rules for identifying which parts of
a UML model need to be updated after each change so that
the model will remain consistent with the UML metamodel.
Müller and Rumpe [32] propose a domain-specific language
for the specification of impact rules. These rules capture
what kind of changes to models lead to what kind of impact.
The main goal of these rule-based approaches is to maintain
the consistency of models after changes; these approaches
are not targeted at analyzing the impact of requirements
changes. Our work has a different focus, as it aims at an-
alyzing the impact of requirements changes on design. We
do not use pre-defined impact rules in our approach.

Furthermore, there are approaches that rely on historical
information obtained from software repositories for change
propagation. For example, Wong and Cai [33] combine logi-

cal relationships between UML class diagrams and historical
information obtained from software repositories to predict
the scope of the impact of a given change. This approach
relies on the existence of complete and consistent version
histories. Such versioning is typically used for keeping track
of changes in implementation-level artifacts, e.g., code. Our
approach does not rely on historical data and can be used
effectively in situations where no historical data is available,
notably in early stages of development, or where detailed
versioning of models is not practiced.

Control flow analysis techniques (e.g., software method
call dependencies) have been used before to automatically
identify traceability links [34], and further to facilitate code-
level change impact analysis [35]. Kuang et al. [36] demon-
strate that combining control flow and data dependencies
improves automated retrieval of traceability links from re-
quirements to code. Our results in this paper lead to a sim-
ilar conclusion in the context of model-based development,
that is, leveraging both inter-block data flow dependencies
and intra-block control and data flow dependencies improves
the accuracy of change impact analysis.

In our previous work [6], we already used similarity mea-
sures as change impact predictors. Nevertheless, this earlier
work was focused on inter-requirement change impact anal-
ysis, i.e., identifying the impact of requirements changes on
other requirements, rather than on the design. This ear-
lier work focused exclusively on natural-language content.
In our current work, we generalize our previous work to a
model-based development setting, where we exploit not only
the natural-language content of the development artifacts
but also the structure and semantics of the design models.

5. CONCLUSION
We presented an approach to automatically identify the

impact of requirements changes on system design. Our ap-
proach has two main steps: First, for a given change, we ob-
tain a set of estimated impacted model elements by comput-
ing reachability over inter-block data flow and intra-block
control and data flow dependencies. Next, we rank the re-
sulting set of elements according to a quantitative measure
obtained using NLP techniques. The measure reflects the
similarity between the textual content of the elements in the
estimated impact set and the keyphrases in the engineers’
statements about the change.

Our evaluation on an industrial system shows that the ac-
curacy of our approach consistently improves when we con-
sider both inter-block and intra-block dependencies rather
than only the inter-block ones, and the textual content of
the diagrams in addition to only the elements’ dependen-
cies. Although not included in this paper, we note that
eliminating the analysis in the first step of our approach
and only applying the NLP technique in the second step
reduces the accuracy considerably. This is because many el-
ements in parts of the design unreachable for a given change
have some degree of textual similarity with the change state-
ments. In the future, we intend to make the change state-
ments more structured, e.g., by introducing a controlled nat-
ural language. This can make change impact analysis more
targeted and deal with more complex situations.
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