
Efficient Generation of Inductive Validity Cores for Safety
Properties

Elaheh Ghassabani
Department of Computer
Science and Engineering
University of Minnesota

200 Union Street
Minneapolis, MN, 55455, USA

ghass013@umn.edu

Andrew Gacek
Rockwell Collins

Advanced Technology Center
400 Collins Rd. NE

Cedar Rapids, IA, 52498, USA
andrew.gacek@rockwellcollins.com

Michael W. Whalen
Department of Computer
Science and Engineering
University of Minnesota

200 Union Street
Minneapolis, MN, 55455, USA

whalen@cs.umn.edu

ABSTRACT
Symbolic model checkers can construct proofs of properties over
very complex models. However, the results reported by the tool
when a proof succeeds do not generally provide much insight to
the user. It is often useful for users to have traceability information
related to the proof: which portions of the model were necessary to
construct it. This traceability information can be used to diagnose a
variety of modeling problems such as overconstrained axioms and
underconstrained properties, and can also be used to measure com-
pleteness of a set of requirements over a model. In this paper, we
present a new algorithm to efficiently compute the inductive va-
lidity core (IVC) within a model necessary for inductive proofs of
safety properties for sequential systems. The algorithm is based
on the UNSAT core support built into current SMT solvers and a
novel encoding of the inductive problem to try to generate a mini-
mal inductive validity core. We prove our algorithm is correct, and
describe its implementation in the JKind model checker for Lustre
models. We then present an experiment in which we benchmark
the algorithm in terms of speed, diversity of produced cores, and
minimality, with promising results.

CCS Concepts
•Theory of computation → Verification by model checking;
Automated reasoning; •Software and its engineering → Re-
quirements analysis; Formal software verification;

Keywords
Traceability, Requirements Completeness, k-Induction, IC3/PDR

1. INTRODUCTION
Symbolic model checking using induction-based techniques

such as IC3/PDR [17] and k-induction [44] can often determine
whether safety properties hold of complex finite or infinite-state
systems. Model checking tools are attractive both because they are
automated, requiring little or no interaction with the user, and if the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FSE’16, November 13-19, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4218-6/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2950290.2950346

answer to a correctness query is negative, they provide a counterex-
ample to the satisfaction of the property. These counterexamples
can be used both to illustrate subtle errors in complex hardware and
software designs [33,35,38] and to support automated test case gen-
eration [48, 49]. In the event that a property is proved, however, it
is not always clear what level of assurance should be invested in the
result. Given that these kinds of analyses are performed for safety-
and security-critical software, this can lead to overconfidence in
the behavior of the fielded system. It is well known that issues such
as vacuity [28] can cause verification to succeed despite errors in
a property specification or in the model. Even for non-vacuous
specifications, it is possible to over-constrain the specification of
the environment in the model such that the implementation will not
work in the actual operating environment.

At issue is the level of feedback provided by the tool to the user.
In most tools, when the answer to a correctness query is positive,
no further information is provided. What we would like to pro-
vide is traceability information, an inductive validity core (IVC),
that explains the proof, in much the same way that a counterex-
ample explains the negative result. This is not a new idea: UN-
SAT cores [50] provide the same kind of information for individual
SAT or SMT queries, and this approach has been lifted to bounded
analysis for Alloy in [46]. What we propose is a generic and ef-
ficient mechanism for extracting supporting information, similar
to an UNSAT core, from the proofs of safety properties using in-
ductive techniques such as PDR and k-induction. Because many
properties are not themselves inductive, these proof techniques in-
troduce lemmas as part of the solving process in order to strengthen
the properties and make them inductive. Our technique allows ef-
ficient, accurate, and precise extraction of inductive validity cores
even in the presence of such auxiliary lemmas.

Once generated, the IVC can be used for many purposes in the
software verification process, including at least the following:

Vacuity detection: The idea of syntactic vacuity detection (check-
ing whether all subformulae within a property are necessary
for its satisfaction) has been well studied [28]. However,
even if a property is not syntactically vacuous, it may not
require substantial portions of the model. This in turn may
indicate that either a.) the model is incorrectly constructed
or b.) the property is weaker than expected. We have seen
several examples of this mis-specification in our verification
work, especially when variables computed by the model are
used as part of antecedents to implications.

Completeness checking: Closely related to vacuity detection is
the idea of completeness checking, e.g., are all atoms in the
model necessary for at least one of the properties proven

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2950346

314

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2950290.2950346&domain=pdf&date_stamp=2016-11-01

node filter(x : real) returns (a, b, y : real);
let
a = f(x, 0.0 -> pre y);
b = if a >= 0.0 then a else -a;
y = b + (0.0 -> pre y);

tel;

Figure 1: Model with property y ≥ 0, before IVC analysis

about the model? Several different notions of completeness
checking have been proposed [9, 27], but these are very ex-
pensive to compute, and in some cases, provide an overly
strict answer (e.g., checking can only be performed on non-
vacuous models for [27]).

Traceability: Certification standards for safety-critical systems
(e.g., [36, 41]) usually require traceability matrices that
map high-level requirements to lower-level requirements and
(eventually) leaf-level requirements to code or models. Cur-
rent traceability approaches involve either manual mappings
between requirements and code/models [32] or a heuristic
approach involving natural language processing [25]. Both
of these approaches tend to be inaccurate. For functional
properties that can be proven with inductive model check-
ers, inductive validity cores can provide accurate traceability
matrices with no user effort.

Symbolic Simulation / Test Case Generation: Model checkers
are now often used for symbolic simulation and structural-
coverage-based test case generation [31, 48]. For either of
these purposes, the model checker is supposed to produce a
witness trace for a given coverage obligation using a “trap
property” which is expected to be falsifiable. In systems
of sufficient size, there is often “dead code” that cannot
ever be reached. In this case, a proof of non-reachability is
produced, and the IVC provides the reason why this code is
unreachable.

Nevertheless, to be useful for these tasks, the generation process
must be efficient and the generated IVC must be accurate and pre-
cise (that is, sound and close to minimal). The requirement for ac-
curacy is obvious; otherwise the “minimal” set of model elements
is no longer sufficient to produce a proof, so it no longer meets our
IVC definition. Minimality is important because (for traceability)
we do not want unnecessary model elements in the trace matrix,
and (for completeness) it may give us a false level of confidence
that we have enough requirements.

In addition, we are also interested in diversity: how many dif-
ferent IVCs can be computed for a given property and model? Re-
quirements engineers often talk about “the traceability matrix” or
“the satisfaction argument”. If proofs are regularly diverse, then
there are potentially many equally valid traceability matrices, and
this may lead to changes in traceability research.

In the remainder of this paper, we present an algorithm for effi-
cient generation of IVCs for induction-based model checkers. Our
contributions, as detailed in the remainder of the paper, are as fol-
lows:

node filter(x, a : real) returns (b, y : real);
let
b = if a >= 0.0 then a else -a;
y = b + (0.0 -> pre y);

tel;

Figure 2: Model with property y ≥ 0, after IVC analysis

• We present a technique for extracting inductive validity cores
from an inductive verification of a safety property over a se-
quential model involving lemmas.

• We formalize this technique and present an implementation
of it in the JKind model checker [1].

• We present an experiment over our implementation and mea-
sure the efficiency, minimality, and robustness of the IVC
generation process.

The rest of this article is organized as follows. In Section 2,
we present a motivating example. In Section 3, we present the
required background for our approach. In Sections 4 and 5, we
present our approach and our implementation in JKind. Sections 6
and 7 present an evaluation of our approach on a set of benchmark
examples. Finally, Section 8 discusses related work and Section 9
concludes.

2. MOTIVATING EXAMPLE
Consider the model shown both graphically and textually in Fig-

ure 1. This model takes an input, combines it with the previous
output in some way, takes the absolute value, and then adds this to
an accumulating value. This model has the property that the output
is always non-negative, i.e., y ≥ 0. Moreover, it happens that this
property holds regardless of the way the input is combined with the
previous output, i.e., the function f in the model. Formally, we say
that the minimal inductive validity core (IVC) does not contain that
part of the model. The model reduced to a minimal IVC is shown
in Figure 2. Note that traditional static dependency analysis (i.e.,
a backward static slice) would not be able to remove f from the
original model. In our experiments in Section 7, we demonstrate
that IVCs are much smaller and more precise than static slices.

3. PRELIMINARIES
Given a state space S, a transition system (I, T) consists of an

initial state predicate I : S → bool and a transition step predi-
cate T : S × S → bool . We define the notion of reachability for
(I, T) as the smallest predicate R : S → bool which satisfies the
following formulas:

∀s. I(s)⇒ R(s)

∀s, s′. R(s) ∧ T (s, s′)⇒ R(s′)

A safety property P : S → bool is a state predicate. A safety
property P holds on a transition system (I, T) if it holds on all
reachable states, i.e., ∀s. R(s) ⇒ P (s), written as R ⇒ P for
short. When this is the case, we write (I, T) ` P .

315

I(s0)⇒ P (s0)

...

I(s0) ∧ T (s0, s1) ∧ · · · ∧ T (sk−2, sk−1)⇒ P (sk−1)

P (s0) ∧ T (s0, s1) ∧ · · · ∧ P (sk−1) ∧ T (sk−1, sk)⇒ P (sk)

Figure 3: k-induction formulas: k base cases and one inductive
step

For an arbitrary transition system (I, T), computing reachability
can be very expensive or even impossible. Thus, we need a more
effective way of checking if a safety property P is satisfied by the
system. The key idea is to over-approximate reachability. If we can
find an over-approximation that implies the property, then the prop-
erty must hold. Otherwise, the approximation needs to be refined.

A good first approximation for reachability is the property itself.
That is, we can check if the following formulas hold:

∀s. I(s)⇒ P (s) (1)

∀s, s′. P (s) ∧ T (s, s′)⇒ P (s′) (2)

If both formulas hold then P is inductive and holds over the sys-
tem. If (1) fails to hold, then P is violated by an initial state of
the system. If (2) fails to hold, then P is too much of an over-
approximation and needs to be refined.

One way to refine our over-approximation is to add additional
lemmas to the property of interest. For example, given another
property L : S → bool we can consider the extended property
P ′(s) = P (s) ∧ L(s), written as P ′ = P ∧ L for short. If P ′

holds on the system, then P must hold as well. The hope is that the
addition of Lmakes formula (2) provable because the antecedent is
more constrained. However, the consequent of (2) is also more con-
strained, so the lemma Lmay require additional lemmas of its own.
Finding and proving these lemmas is the means by which property
directed reachability (PDR) strengthens and proves a safety prop-
erty.

Another way to refine our over-approximation is to use use k-
induction which unrolls the property over k steps of the transition
system. For example, 1-induction consists of formulas (1) and (2)
above, whereas 2-induction consists of the following formulas:

∀s. I(s)⇒ P (s)

∀s, s′. I(s) ∧ T (s, s′)⇒ P (s′)

∀s, s′, s′′. P (s) ∧ T (s, s′) ∧ P (s′) ∧ T (s′, s′′)⇒ P (s′′)

That is, there are two base step checks and one inductive step check.
In general, for an arbitrary k, k-induction consists of k base step
checks and one inductive step check as shown in Figure 3 (the uni-
versal quantifiers on si have been elided for space). We say that a
property is k-inductive if it satisfies the k-induction constraints for
the given value of k. The hope is that the additional formulas in the
antecedent of the inductive step make it provable.

In practice, inductive model checkers often use a combination of
the above techniques. Thus, a typical conclusion is of the form “P
with lemmas L1, . . . , Ln is k-inductive”.

4. INDUCTIVE VALIDITY CORES
Given a transition system which satisfies a safety property P , we

want to know which parts of the system are necessary for satisfying
the safety property. One possible way of asking this is, “What is

Algorithm 1: IVC_BF: Brute-force algorithm for computing a
minimal IVC

input : (I, T) ` P
output: Minimal inductive validity core for (I, T) ` P

1 S ← T
2 for x ∈ S do
3 if (I, S \ {x}) ` P then
4 S ← S \ {x}

5 return S

the most general version of this transition system that still satisfies
the property?” The answer is disappointing. The most general sys-
tem is I(s) = P (s) and T (s, s′) = P (s′), i.e., you start in any
state satisfying the property and can transition to any state that still
satisfies the property. This answer gives no insight into the orig-
inal system because it has no connection to the original system.
In this section we introduce the notion of inductive validity cores
(IVC) which looks at generalizing the original transition system
while preserving a safety property.

In order to talk about generalizing a transition system, we as-
sume the transition relation of the system has the structure of a top-
level conjunction. This assumption gives us a structure that we can
easily manipulate as we generalize the system. Given T (s, s′) =
T1(s, s

′) ∧ · · · ∧ Tn(s, s
′) we will write T = T1 ∧ · · · ∧ Tn for

short. By further abuse of notation we will identify T with the set
of its top-level conjuncts. Thus we will write x ∈ T to mean that x
is a top-level conjunct of T . We will write S ⊆ T to mean that all
top-level conjuncts of S are top-level conjuncts of T . We will write
T \ {x} to mean T with the top-level conjunct x removed. We will
use the same notation when working with sets of invariants.

Definition 1. Inductive Validity Core: Let (I, T) be a transition
system and let P be a safety property with (I, T) ` P . We say
S ⊆ T is an inductive validity core for (I, T) ` P iff (I, S) ` P .
When I , T , and P can be inferred from context we will simply say
S is an inductive validity core.

Definition 2. Minimal Inductive Validity Core: An inductive va-
lidity core S for (I, T) ` P is minimal iff there does not exist
M ⊂ S such that M is an inductive validity core for (I, T) ` P .

Note that minimal inductive validity cores are not necessarily
unique. For example, take I = a ∧ b, T = a′ ∧ b′, and P =
a ∨ b. Then both {a′} and {b′} are minimal inductive validity
cores for (I, T) ` P . However, inductive validity cores do have
the following monotonicity property.

Lemma 1. Let (I, T) be a transition system and let P be a safety
property with (I, T) ` P . Let S1 ⊆ S2 ⊆ T . If S1 is an inductive
validity core for (I, T) ` P then S2 is an inductive validity core
for (I, T) ` P .

PROOF. From S1 ⊆ S2 we have S2 ⇒ S1. Thus the reachable
states of (I, S2) are a subset of the reachable states of (I, S1).

This lemma gives us a simple, brute-force algorithm for com-
puting a minimal inductive validity core, Algorithm IVC_BF (1).
The resulting set of this algorithm is obviously an inductive valid-
ity core for (I, T) ` P . The following lemma shows that it is also
minimal.

Lemma 2. The result of Algorithm 1 is a minimal inductive va-
lidity core for (I, T) ` P .

316

Algorithm 2: IVC_UC: Efficient algorithm for computing a
nearly minimal inductive validity core from UNSAT cores

input : P with invariants Q is k-inductive for (I, T)
output: Inductive validity core for (I, T) ` P

1 k ← MINIMIZEK(T, P ∧Q)
2 R← REDUCEINVARIANTSk(T,Q, P)
3 return MINIMIZEIVCk(I, T,R)

BASEQUERY1(I, T, P) ≡ ∀s0. I(s0)⇒ P (s0)

BASEQUERYk+1(I, T, P) ≡ BASEQUERYk(I, T, P) ∧
(∀s0, . . . , sk. I(s0) ∧ T (s0, s1) ∧ · · · ∧ T (sk−1, sk)⇒ P (sk))

INDQUERYk(T,Q, P) ≡ (∀s0, . . . , sk.
Q(s0) ∧ T (s0, s1) ∧ · · · ∧Q(sk−1) ∧ T (sk−1, sk)⇒ P (sk))

FULLQUERYk(I, T, P) ≡
BASEQUERYk(I, T, P) ∧ INDQUERYk(T, P, P)

Figure 4: k-induction queries

PROOF. Let the result beR. Suppose towards contradiction that
R is not minimal. Then there is an inductive validity core M with
M ⊂ R. Take x ∈ R \M . Since x ∈ R it must be that during
the algorithm (I, S \ {x}) ` P is not true for some set S where
R ⊆ S. We have M ⊂ R ⊆ S and x 6∈ M , thus M ⊆ S \ {x}.
Since M is an inductive validity core, Lemma 1 says that S \ {x}
is an inductive validity core, and so (I, S \ {x}) ` P . This is a
contradiction, thus R must be minimal.

This algorithm has two problems. First, checking if a safety
property holds is undecidable in general thus the algorithm may
never terminate even when the safety property is easily provable
over the original transition system. Second, this algorithm is very
inefficient since it tries to re-prove the property multiple times.

The key to a more efficient algorithm is to make better use of
the information that comes out of model checking. In addition to
knowing that P holds on a system (I, T), suppose we also know
something stronger: P with the invariant set Q is k-inductive for
(I, T). This gives us the broad structure of a proof for P which
allows us to reconstruct the proof over a modified transition system.
However, we must be careful since this proof structure may be more
than is actually needed to establish P . In particular, Qmay contain
unneeded invariants which could cause the inductive validity core
for P ∧Q to be larger than the inductive validity core for P . Thus
before computing the inductive validity core we first try to reduce
the set of invariants to be as small as possible. This operation is
expensive when k is large so as a first step we minimize k. This is
the motivation behind Algorithm IVC_UC (2).

To describe the details of Algorithm 2 we define queries for
the base and inductive steps of k-induction (Figure 4). Note, in
INDQUERY(T,Q, P) we separate the assumptions made on each
step, Q, from the property we try to show on the last step, P . We
use this separation when reducing the set of invariants.

We assume that our queries are checked by an SMT solver. That
is, we assume we have a function CHECKSAT(F) which deter-
mines if F , an existentially quantified formula, is satisfiable or not.
In order to efficiently manipulate our queries, we assume the ability
to create activation literals which are simply distinguished Boolean
variables. The call CHECKSAT(A,F) holds the activation literals

Algorithm 3: MINIMIZEK(T, P)

1 k′ ← 1
2 while CHECKSAT(¬INDQUERYk′(T, P, P)) = SAT do
3 k′ ← k′ + 1

4 return k′

Algorithm 4: REDUCEINVARIANTSk(T, {Q1, . . . , Qn}, P)

1 R← {P}
2 Create activation literals A = {a1, . . . , an}
3 C ← (a1 ⇒ Q1) ∧ · · · ∧ (an ⇒ Qn)
4 while true do
5 CHECKSAT(A,¬INDQUERYk(T,C,R))
6 if UNSATCORE() = ∅ then
7 return R

8 for ai ∈ UNSATCORE() do
9 R← R ∪ {Qi}

10 C ← C \ {ai ⇒ Qi}

in A true while checking F . When F is unsatisfiable, we assume
we have a function UNSATCORE() which returns a minimal sub-
set of the activation literals such that the formula is unsatisfiable
with those activation literals held true. In practice, SMT solvers
often return a non-minimal set, but we can minimize the set via
repeated calls to CHECKSAT. We assume both CHECKSAT and
UNSATCORE are always terminating.

The function MINIMIZEK(T, P) is defined in Algorithm 3. This
function assumes that P is k-inductive for (I, T). It returns the
smallest k′ such that P is k′-inductive for (I, T). We start checking
at k′ = 1 since smaller values of k′ are much quicker to check than
larger ones. The checking must eventually terminate since P is k-
inductive. We also only check the inductive query since we know
the base query will be true for all k′ ≤ k. Although we describe
each query in Algorithm 3 separately, in practice they can be done
incrementally to improve efficiency.

The function REDUCEINVARIANTSk(T, {Q1, . . . , Qn}, P) is
defined in Algorithm 4. This function assumes that P ∧Q1 ∧ · · · ∧
Qn is k-inductive for (I, T). It returns a setR ⊆ {P,Q1, . . . , Qn}
such that R is k-inductive for (I, T) and P ∈ R. Like MINI-
MIZEK, this function only checks the inductive query since each
element of R is an invariant and therefore will always pass the
base query. A significant complication for reducing invariants is
that some invariants may mutually need each other, even though
none of them are needed to prove P . Thus in Algorithm 4 we
find a minimal set of invariants needed to prove P , then we find a
minimal set of invariants to prove those invariants, and so on. We
terminate when no more invariants are needed to prove the prop-
erties in R. Algorithm 4 is guaranteed to terminate since R gets
larger in every iteration of the outer loop and it is bounded above by
{P,Q1, . . . , Qn}. As with Algorithm 3, we describe each query in
Algorithm 4 separately, though in practice large parts of the queries
can be re-used to improve efficiency.

This iterative lemma determination does not guarantee a min-
imal result. For example, we may find P requires just Q1, that
Q1 requires just Q2, and that Q2 does not require any other in-
variants. This gives the result {P,Q1, Q2}, but it may be that Q2

alone is enough to prove P thus the original result is not minimal.
Also note, we do not care about the result of CHECKSAT, only the
UNSATCORE that comes out of it. Since P ∧ Q1 ∧ · · · ∧ Qn is

317

Algorithm 5: MINIMIZEIVCk(I, {T1, . . . , Tn}, P)

1 Create activation literals A = {a1, . . . , an}
2 T ← (a1 ⇒ T1) ∧ · · · ∧ (an ⇒ Tn)
3 CHECKSAT(A,¬FULLQUERYk(I, T, P))
4 R← ∅
5 for ai ∈ UNSATCORE() do
6 R← R ∪ {Ti}
7 return R

k-inductive, we know the CHECKSAT call will always return UN-
SAT.

The function MINIMIZEIVCk(I, {T1, . . . , Tn}, P) is defined
in Algorithm 5. This function assumes that P is k-inductive
for (I, T). It returns a minimal inductive validity core R ⊆
{T1, . . . , Tn} such that P is k-inductive for (I, R). It is trivially
terminating. Since Algorithms 3, 4, and 5 are terminating, Algo-
rithm 2 is always terminating.

Our full inductive validity core algorithm in Algorithm 2 does
not guarantee a minimal inductive validity core. One reason is that
REDUCEINVARIANTS does not guarantee a minimal set of invari-
ants. A larger reason is that we only consider the invariants that the
algorithm is given at the outset. It is possible that there are other
invariants which could lead to a smaller inductive validity core, but
we do not search for them. In Sections 6 and 7, we show that in
practice our algorithm is nearly minimal and much more efficient
than the naive algorithm. The following theorem shows that mini-
mality checking is at least as hard as model checking and therefore
undecidable in many settings.

Theorem 1. Determining if an IVC is minimal is as hard as
model checking.

PROOF. Consider an arbitrary model checking problem
(I, T) `? P where P is not a tautology. We will construct an IVC
for a related model checking problem which will be minimal if and
only if (I, T) 0 P . Let x and y be fresh variables. Construct a tran-
sition system with initial predicate I ∧ ¬x and transition predicate
(x′ ⇒ y′)∧ ((y′ ⇒ P ′)∧T). The constructed system clearly sat-
isfies the property x ⇒ P . Thus S = {x′ ⇒ y′, (y′ ⇒ P ′) ∧ T}
is an IVC. S is minimal if and only if neither {x′ ⇒ y′} nor
{(y′ ⇒ P ′) ∧ T} is an IVC. Since x and y are fresh and P is
not a tautology, {x′ ⇒ y′} is not an IVC. Since x and y are fresh,
{(y′ ⇒ P ′) ∧ T} is an IVC for the property x⇒ P if and only if
(I, T) ` P . Therefore, S is minimal if and only if (I, T) 0 P .

When minimality is a necessity, we can combine IVC_BF and
IVC_UC into a single algorithm which aims to efficiently guar-
antee minimality. The hybrid algorithm, IVC_UCBF, consists of
running IVC_UC to generate an initial nearly minimal IVC which
is then run through IVC_BF to guarantee minimality. The result-
ing algorithm is not guaranteed to terminate since IVC_BF is not
guaranteed to terminate.

5. IMPLEMENTATION
We have implemented the inductive validity core algorithms

in the previous section in two tools: JKind, which performs the
IVC_UC algorithm, and JSupport, which can compute either the
IVC_BF or the IVC_UCBF algorithm (using JKind as a subpro-
cess). Moreover, our implementation of IVC_UCBF uses an ad-
ditional feature of JKind to store and re-use discovered invariants
between separate runs. This reduces some of the cost of attempting

to re-prove a property multiple times. These tools operate over the
Lustre language [22], which we briefly illustrate below.

5.1 Lustre and IVCs
Lustre [22] is a synchronous dataflow language used as an input

language for various model checkers. The textual models in Fig-
ures 1 and 2 are written in Lustre. We will use model in Figure 1
as a running example in this section. For our purposes, a Lustre
program consists of 1) input variables, x in the example, 2) output
variables, a, b, and y in the example, and 3) an equation for each
output variable. A Lustre program runs over discrete time steps.
On each step, the input variables take on some values and are used
to compute values for the output variables on the same step. In
addition, equations may refer to the previous value of a variable
using the pre operator. This operator is underspecified in the first
step, so the arrow operator, ->, is used to guard the pre operator.
In the first step the expression e1 -> e2 evaluates to e1, and it
evaluates to e2 in all other steps.

We interpret a Lustre program as a model specification by con-
sidering the behavior of the program under all possible input traces.
Safety properties over Lustre can then be expressed as Boolean ex-
pressions in Lustre. A safety property holds if the corresponding
expression is always true for all input traces. For example, the
property for Figure 1 is y >= 0, which is a valid property.

It is straightforward to translate this interpretation of Lustre into
the traditional initial and transition relations. We will show this
by continuing with the example in Figure 1. First we introduce
a new Boolean variable init into the state space to denote when
the system is in its initial state, the state of the system prior to ini-
tialization. In the initial state, all other variables are completely
unconstrained which models the underspecification of the pre op-
erator during the first step. Then we define,

I((x, a, b, y, init)) = init

T ((x, a, b, y, init), (x′, a′, b′, y′, init ′)) =

(a′ = f(x′, if init then 0 else y)) ∧
(b′ = if a′ ≥ 0 then a′ else −a′) ∧
(y′ = b′ + (if init then 0 else y)) ∧
¬init ′

Note that f is unspecified in Figure 1 and so also in T . In a real
system, f would be defined in the Lustre model and expanded in T .
A safety property such as y >= 0 is translated into init∨(y ≥ 0).
Nested uses of arrow and pre operators are handled by introducing
new output variables for nested expressions, though such details are
unimportant for our purposes.

Each equation in the Lustre program is translated into a single
top-level conjunct in the transition relation. This is very convenient
as the IVC of a Lustre property can be reported in terms of the
output variables whose equations are part of the IVC. Equivalently,
the interpretation of an IVC for a Lustre property is that any output
variable that is not part of the IVC can be turned into an input vari-
able, its equation thrown away, while preserving the validity of the
property. Thus the granularity of the IVC analysis is determined
by the granularity of the Lustre equations and can be adjusted by
introducing auxiliary variables for subexpressions if desired.

5.2 JKind
JKind [1] is an infinite-state model checker for safety properties.

JKind proves safety properties using multiple cooperative engines
in parallel including k-induction [44], property directed reachabil-

318

ity [17], and template-based lemma generation [24]. JKind accepts
Lustre programs written over the theory of linear integer and real
arithmetic. In the back-end, JKind uses an SMT solver such as
Z3 [15], Yices [16], MathSAT [13], or SMTInterpol [12].

JKind works on multiple properties simultaneously. When a
property is proven and IVC generation is enabled, an additional
parallel engine executes Algorithm 2 to generate a nearly minimal
IVC.

JKind accepts an annotation on its input Lustre program indicat-
ing which outputs variables to consider for IVC generation. Output
variables not mentioned in the annotation are implicitly included in
all IVCs. This allows the implementation to focus on the variables
important to the user and ignore, for example, administrative equa-
tions. This is even more important for tools which generate Lustre
as they often create many such administrative equations which sim-
ply wire together more interesting expressions.

6. EXPERIMENT
We would like to investigate both the efficiency and mini-

mality of our three algorithms: the naive brute-force algorithm
(IVC_BF), the UNSAT core-based algorithm (IVC_UC), and the
combined UNSAT core followed by brute-force minimization algo-
rithm (IVC_UCBF). Efficiency is computed in terms of wall-clock
time: how much overhead does the IVC algorithm introduce? Min-
imality is determined by the size of the IVC: cores with a smaller
number of variables are preferred to cores with a larger number of
variables. Finally, we are interested in the diversity of solutions:
how often do different tools/algorithms generate different minimal
IVCs?

The use of JKind allows additional dimensions to our investi-
gation: it supports two different inductive algorithms: k-induction
and PDR, and a “fastest” mode, that runs both algorithms in paral-
lel. In addition, JKind supports multiple back-end SMT solvers in-
cluding Z3 [15], Yices [16], MathSAT [13], and SMTInterpol [12].
We would like to determine whether the choice of inductive algo-
rithm affects the size of the IVC, whether different solvers are more
or less efficient at producing IVCs, and whether running different
solvers/algorithms leads to diversity of IVC solutions.

Therefore, we investigate the following research questions:

• RQ1: How expensive is it to compute inductive validity
cores using the IVC_BF, IVC_UC, and IVC_UCBF algo-
rithms?

• RQ2: How close to minimal are the IVC sets com-
puted by IVC_UC as opposed to the (guaranteed minimal)
IVC_UCBF? How do the sizes of IVCs compare to static
slices of the model?

• RQ3: How much diversity exists in the solutions produced
by different solver/induction algorithm configurations?

6.1 Experimental Setup
In this study, we started from a suite of 700 Lustre models de-

veloped as a benchmark suite for [21]. We augmented this suite
with 81 additional models from recent verification projects includ-
ing avionics and medical devices [4, 38]. Most of the benchmark
models from [21] are small (10kB or less, with 6-40 equations) and
contain a range of hardware benchmarks and software problems in-
volving counters. The additional models are much larger: around
80kB with over 300 equations. We added the new benchmarks to
better check the scalability for the tools, especially with respect
to the brute force algorithm. Each benchmark model has a sin-
gle property to analyze. For our purposes, we are only interested in

models with a valid property (though it is perhaps worth noting that
there is no additional computation—and thus no overhead—using
the JKind IVC options for invalid properties). In our benchmark
set, 295 models yield counterexamples, and 10 additional models
are neither provable nor yield counterexamples in our test config-
uration (see next paragraph for configuration information). The
benchmark suite therefore contains 476 models with valid proper-
ties, which we use as our test subjects.

For each test model, we computed IVC_UC in 12+1 configu-
rations: the twelve configurations were the cross product of all
solvers {Z3, Yices, MathSAT, SMTInterpol} and inductive algo-
rithms {k-induction, PDR, fastest}, and the remaining (+1) config-
uration was an instance of IVC_BF run on Yices, which is the de-
fault solver in JKind. In addition, for each of the 12 configurations,
we ran an instance of JKind without IVC to examine overhead.
The experiments were run on an Intel(R) i5-2430M, 2.40GHz, 4GB
memory machine, with a 1 hour timeout for each analysis on any
model. The data gathered for each configuration of each model
included the time required to check the model without IVC, with
IVC, and also the set of elements in the computed IVC.1

Note that not all analysis problems were solvable with all algo-
rithms: for all solvers, k-induction (without IVC) was unable to
solve 172 of the examples. When comparing minimality of differ-
ent solving algorithms, we only considered cases where both algo-
rithms provided a solution (as will be discussed in more detail in
Section 7.2).

7. RESULTS
In this section, we examine our experimental results from three

perspectives: performance, minimality of IVC_UC results, and di-
versity.

7.1 Performance
In this subsection, we examine the performance of our inductive

validity core algorithms (research question RQ1). First we examine
the performance overhead of the IVC_UC algorithm over the time
necessary to find a proof using inductive model checking. To exam-
ine this question, we use the default fastest option of JKind which
terminates when either the k-induction or PDR algorithm finds a
proof. To measure the performance overhead of the IVC_UC algo-
rithm, we execute it over the proof generated by the fastest option.

Since the IVC_UC algorithm uses the UNSAT core facilities of
the underlying SMT solver, the performance is dependent on the
efficiency of this part of the solver. Looking at Tables 1 and 2,
it is possible to examine both the computation time for analysis
using the four solvers under evaluation and the overhead imposed
by the IVC_UC algorithm. Figure 7.1 allows a visualization of the
runtime for the IVC_UC algorithm running different solvers. The
data suggests that Yices (the default solver in JKind) and Z3 are
the most performant solvers both in terms of computation time and
overhead.

The IVC_UC algorithm using the Z3 and Yices SMT solvers adds
a modest performance penalty to the time required for inductive
proofs.

Next, we consider the overhead of IVC_UC vs. IVC_BF. Re-
call from Section 4 that IVC_BF requires n model checking runs,
where n is the number of conjuncts in the transition relation. As
expected, the performance is approximately a linear multiple of the

1The benchmarks, all raw experimental results, and computed data
are available on [2].

319

Table 1: IVC_UC runtime with different solvers
runtime (sec) min max mean stdev

Z3 0.005 2.335 0.192 0.355
Yices 0.014 13.297 0.589 1.473

SMTInterpol 0.029 19.254 1.396 2.991
MathSAT 0.011 86.421 3.071 10.403

Table 2: Overhead of IVC_UC computations using different
solvers

solver min max mean stdev
Z3 0.73% 84.13% 17.38% 16.92%

Yices 0.17% 351.47% 52.20% 54.50%
SMTInterpol 1.46% 175.75% 46.81% 37.35%

MathSAT 0.78% 955.52% 80.21% 112.92%

size of the model, so larger models yield substantially lower per-
formance.2 We run the brute-force algorithm using Yices as it is
the default solver for JKind and is close to Z3 in terms of computa-
tion time. For 19 models, IVC_BF times out after 1 hour. Figure 6
shows the overhead of IVC_BF in comparison to IVC_UC with
multiple solvers.

The brute-force algorithm IVC_BF adds a substantial perfor-
mance penalty to inductive proofs in all cases and is not scalable
enough to compute a minimal core for large analysis problems.

Finally, we consider the combined IVC_UCBF algorithm, in
which we first run the IVC_UC to determine a close-to-minimal
IVC, then run IVC_BF on the remaining set. The overhead of
this algorithm is considered in Tables 3 and 4. While considerably
slower than IVC_UC, this approach can still be used for reasonably
sized models.

7.2 Minimality
In this section, we examine the minimality of the cores com-

puted by the IVC_UC and IVC_UCBF algorithms using different
inductive proof methods, and we compare both algorithms against
a backward static slice [45] of the Lustre program starting with the
property of interest. There are three interesting aspects to be ex-
amined related to this research question. First (RQ2.1), does the
choice of SMT solver or algorithm used to produce a proof (k-
induction or PDR) matter in terms of the minimality of the induc-
tive core? As mentioned in Section 4, the IVC_UC algorithm is
not guaranteed to produce a minimal core due in part to the role of
invariants used in producing a proof; as k-induction and PDR use
substantially different invariant generation algorithms, it is likely
that the set of necessary invariants for proofs are dissimilar, and
that this would in turn affect the number of model elements re-
quired for the proof. It is possible that one or the other algorithm is

2for Lustre models, the number of conjuncts is equivalent to the
number of equations in the Lustre model.

Table 3: IVC_UCBF runtime
runtime (sec) min max mean stdev

Yices 0.68 3600.0 91.59 490.01
Z3 0.66 3600.0 93.01 490.27

Table 4: Overhead of IVC_UCBF algorithm
solver min max mean stdev
Yices 122.50% 30092.78% 3195.90% 3896.05%

Z3 101.70% 28114.07% 3190.18% 4119.14%

Table 5: Aggregate IVC sizes produced by IVC_UC using dif-
ferent inductive algorithms and solvers

solver PDR k-induction total
Z3 2378 2379 4757

Yices 2384 2376 4760
MathSAT 2375 2369 4744

SMTInterpol 2378 2368 4746
total 9515 9492

more likely to yield smaller invariant sets. In addition, differences
in the choice of the UNSAT core algorithms in the different solvers
could affect the size of the generated core. However, our algorithm
already performs a minimization step on UNSAT cores, and thus
the only differences would be due to one algorithm leading to a
different minimal core than another.

As discussed in Section 6, k-induction is unable to solve all of
the analysis problems; therefore we include only models that are
solvable using both k-induction and PDR by all solvers, 304 mod-
els in all. Examining the aggregate data in Table 5, we can see the
sizes of cores produced by different algorithms and solvers.

Neither PDR nor k-induction yields a smaller inductive validity
core in general. The choice of underlying SMT solver does not
substantially affect the size of the inductive validity cores.

The next question (RQ2.2) asks how close to minimal are the
cores produced by IVC_UC vs. the (guaranteed minimal) cores
produced by the IVC_UCBF algorithm? Note that we cannot mea-
sure the distance on all models because the combined algorithm
times out on 9 of the larger models. We therefore examine the dis-
tance from minimal cores produced by the combined algorithm for
models in which it completes within the one hour timeout. For
comparison, we run the IVC_UC algorithm using Z3 and Yices
with JKind’s default fastest algorithm, which will use the result of
either k-induction or PDR. A graph showing the size of the IVCs
for each model produced using the Yices solver is shown in Fig-
ure 7. In the figure, the models are ranked along the x-axis by the
size of the core produced by IVC_UCBF. The figure demonstrates
that while on average there is a modest change in minimality, there
can be substantial variance on the sizes of the cores produced by
the IVC_UC algorithm. Summary statistics are shown in Table 6.

The IVC_UC algorithm computes cores that are on average 21%
larger than those produced by IVC_UCBF, with substantial vari-
ance in some cases.

The final question (RQ2.3) asks how well the approach com-
pares to backwards static slicing [45], since slicing also reduces

Table 6: Increase in IVC Size for IVC_UC vs. IVC_UCBF
solver min max mean stdev
Yices 0.0% 725.0% 20.54% 50.47%

Z3 0.0% 725.0% 20.81% 50.34%

320

Figure 5: IVC_UC performance on different solvers

Figure 6: Runtime of IVC_BF, IVC_UCBF, IVC_UC algorithms for Yices

Figure 7: IVC sizes produced by IVC_UC, IVC_UCBF for Yices vs. static slices

321

Table 7: Pairwise Jaccard distances among all models
min max mean stdev
0.0 0.878 0.026 0.059

the set of model elements necessary to construct a proof. We start
the slice from the equation defining the property of interest, and
use the usual approach [18] that performs an iterative backward
traversal from the variables used within an equation to their defin-
ing equations. We expect the IVC mechanism to be more precise,
because the slice overapproximates of the set of equations neces-
sary for any proof. This claim is demonstrated in Figure 7; slices
are (mean) 406% larger than the IVCs produced by our IVC_UC
algorithm and 465% larger than those produced by IVC_UCBF al-
gorithm.

Both IVC algorithms compute cores that are usually much smaller
than backwards static slices.

Comparing the sizes of the IVC_UC IVCs to the original models,
the original 395 benchmark models from [21] already had applied
slicing, so there is no difference between the sliced size and the
original model size. For the remaining 81 benchmarks, the number
of equations is (mean) 2500% larger than the IVC_UC IVCs. We
note, however, that comparison of IVC size against the original
model size can be misleading, as the improvement can easily be
“gamed” by adding equations that are irrelevant to the property.

7.3 Diversity
Recall from Section 4 that a minimal IVC set is any set leading

to a proof such that if you remove any of its elements, it no longer
produces a proof. For certain models and properties, it is possible
that there are many minimal cores that will lead to a proof. In this
section, we examine the issue of diversity: do different solvers and
algorithms lead to different minimal cores? This is both a function
of the models and the solution algorithms: for certain models, there
is only one possible minimal IVC set, whereas other models might
have many. Given that there are multiple solutions, the interesting
question is whether using different solvers and algorithms will lead
to different solutions. The reason diversity is considered is that it
has substantial relevance to some of the uses of the tool, e.g., for
constructing multiple traceability matrices from proofs (see Sec-
tion 9). Note that our exploration in this experiment is not exhaus-
tive, but only exploratory, based on the IVCs returned by different
algorithms and tools; we leave exhaustive exploration of IVCs for
future work.

To measure diversity of IVCs, we use Jaccard distance:

Definition 3. Jaccard distance: dJ(A,B) = 1− |A∩B||A∪B| ,

0 ≤ dJ(A,B) ≤ 1

Jaccard distance is a standard metric for comparing finite sets (as-
suming that both sets are non-empty) by comparing the size of
the intersection of two sets over its union. For each model in
the benchmark, the experiments generated 13 potentially different
IVCs. Therefore, we obtained

(
13
2

)
= 78 combinations of pair-

wise distances per model. Then, minimum, maximum, average,
and standard deviation of the distances were calculated (Figure 8),
by which, again, we calculated these four measures among all mod-
els. As seen in Table 7, on average, the Jaccard distance between
different solutions is small, but the maximum is close to 1, which
indicates that even for our exploratory analysis, there are models
for which the tools yield substantially diverse solutions. The diver-

sity between solutions is represented graphically in Figure 8, where
for each model, we present the min, max, and mean pairwise Jac-
card distance of the solutions produced by algorithm IVC_UC for
each model, ranked by the mean distance.

7.4 Discussion
In the previous section, we presented three algorithms for deter-

mining inductive validity cores. The brute-force algorithm is guar-
anteed minimal, but is often very slow. The other two algorithms,
the UNSAT core algorithm IVC_UC and the combined algorithm
IVC_UCBF, represent interesting trade-offs. The IVC_UC algo-
rithm is much faster, but is not guaranteed to be minimal; the result
of this algorithm can be further, and sometimes quickly, refined by
the combined algorithm. Thus, we can choose to trade off speed
for guaranteed minimality using these two algorithms; the com-
bined algorithm can be viewed as a refinement algorithm that we
can terminate either at completion or after a fixed time bound.

Although our experiment does not ask statistical questions, it
is still worth examining threats towards generalizing our results.
First, are the models and properties that we chose representa-
tive? We started from an existing benchmark from another research
group suite to try to assuage this concern, but most of these models
were small, so we extended the benchmark suite with 81 of our own
models. It is possible that our additions skew the results, though
these models are immediately derived from previously published
work and not modified for our analysis here. Second, our models
and tools use the Lustre language, which is equational, rather than
conjuncted transition systems; it is possible (though, in our opinion,
unlikely) that arbitrary conjuncts rather than equations will yield
different performance or minimality characteristics.

Our approach is limited by the capabilities of the SMT solvers
and inductive model checking algorithms that are used. For exam-
ple, it is difficult, given state of the art SMT solvers, to produce
proofs involving complex models involving non-linear floating-
point arithmetic. However, given an inductive proof produced by
an UNSAT-core-producing SMT solver, we feel confident that the
IVC_UC algorithm can produce an IVC. Our approach is theory
and invariant-generator agnostic, so as inductive model checking
algorithms evolve and SMT solvers add support for new theories,
the IVC algorithm should be able to work without modification.

8. RELATED WORK
Our work builds on top of a substantial foundation build-

ing Minimally Unsatisfiable Subformulas (MUSes) from UNSAT
cores [14], including [6, 7, 30, 40, 42]. Recent algorithms can han-
dle very large problems, but computing MUSes is still a resource-
intensive task. While some work is aimed at providing a set of
minimal unsatisfiable formulae, minimality is usually defined such
that given a set of clauses M, removing any member of M makes it
satisfiable [6]. The step of producing minimal invariants for proofs
has been investigated in depth by Ivrii et al. in [23].

UNSAT cores and MUSes are used for many different activi-
ties within formal verification. Gupta et al. [19] and McMillan and
Amla [34] introduced the use of unsatisfiable cores in proof-based
abstraction engines. Their goal is to shrink the abstraction size by
omitting the parts of the design that are irrelevant to the proof of
the property under verification. Torlak et al. in [46] finds MUSes
of Alloy specifications, and considers semantic vacuity, which we
consider in Section 1. Alloy models are only analyzed up to certain
size bounds, however, and in general are unable to prove proper-
ties for arbitrary models. Also, because we are extracting informa-
tion from proofs, it is possible to use IVCs for additional purposes
(proof explanation and completeness checking).

322

Figure 8: Pairwise Jaccard distance between IVCs

If we view Lustre as a programming language, our work can be
viewed as a more accurate form of program slicing [45]. We per-
form backwards slicing from the formula that defines the property
of interest of the model. The slice produced is smaller and more
accurate than a static slice of the formula [47], but guaranteed to
be a sound slice for the formula for all program executions, unlike
dynamic slicing [3]. Predicate-based slicing has been used [29] to
try to minimize the size of a dynamic slice. Our approach may
have utility for some concerns of program slicing (such as model
understanding) by constructing simple “requirements” of a model
and using the tool to find the relevant portions of the model.

Another potential use of our work is for “semantic” vacuity de-
tection. A standard definition of vacuity is syntactic and defined as
follows [26]: A system K satisfies a formula φ vacuously iff K ` φ
and there is some subformula ψ of φ such that ψ does not affect
φ in K. Vacuity has been extensively studied [5, 8, 10, 11, 20, 26]
considering a range of different temporal logics and definitions of
“affect”. On the other hand, our work can be used to consider a
broader definition of vacuity. Even if all subformulae are required
(the property is not syntactically vacuous), it may not require sub-
stantial portions of the model, and so may be provable for vacu-
ous reasons. The problem is exacerbated when the modeling and
property language are the same (as in JKind), because whether a
subformula is considered part of the model or part of the property,
from the perspective of checking tools, can be unclear.

Determining completeness of properties has also been exten-
sively studied. Certification standards such as DO-178C [41] re-
quire that requirements-derived tests achieve some level of struc-
tural coverage (MC/DC, decision, statement) depending on the crit-
icality level of the software, in order to approximate completeness.
If coverage is not achieved, then additional requirements and tests
are added until coverage is achieved. Chockler [9] defined the first
completeness metrics directly on formal properties based on muta-
tion coverage. Later work by Kupferman et al. [26] defines com-
pleteness as an extension of vacuity to elements in the model. We
present an alternative approach that uses the proof directly, which
we expect to be considerably less expensive to compute. Recent
work by Murugesan [39] and Schuller [43] attempts to combine test
coverage metrics with requirements to determine completeness.

9. CONCLUSIONS & FUTURE WORK
In this paper, we have defined the notion of inductive validity

core (IVC) which appears to be a useful measure in relation to
a valid safety property for inductive model checking. We have

presented a novel algorithm for computing IVCs that are nearly
minimal and have shown that full minimality is undecidable in
many settings. Our algorithm is applicable to all forms of induc-
tive SAT/SMT-based model checking including k-induction, PDR,
and interpolation-based model checking. We have implemented
our IVC algorithm as part of the open source model checker JKind.
We have shown that the algorithm requires only a moderate over-
head and produces nearly minimal IVCs in practice. Moreover, the
produced IVCs are fairly stable with respect to underlying proof
engines (k-induction and PDR) and back-end SMT solvers (Yices,
Z3, MathSAT, SMTInterpol).

Our work has recently been integrated into the AADL/AGREE
tool suite [4, 38], which supports compositional reasoning about
system architectures. First, IVCs are used to to automatically com-
pute traceability information between high- and low-level require-
ments in compositional proofs. Second, IVCs are used by the
AGREE symbolic simulator to explain conflicts when the simulator
is not able to compute a “next state” for a set of chosen constraints.
A pilot project at Rockwell Collins is using the traceability infor-
mation produced by the IVC support in the AGREE tool.

In future work, we will compare the traceability matrices gen-
erated by IVCs with those produced by human experts and and by
automated heuristic approaches. Our expectation is that the trace-
ability information produced by IVCs will be both more accurate
and closer to minimal than other approaches. We also will exam-
ine the impact of multiple distinct IVCs on traceability research.
An initial paper on this work, which we call complete traceabil-
ity has been accepted to the RE@Next! track of the Requirements
Engineering conference [37]. We are interested in diversity both
in terms of regression analysis for testing and proof, as well as
examining the underlying sources of diversity in our analysis mod-
els. We suspect that in some cases, it indicates fault tolerance in
the architecture under analysis, and in other cases it may indicate
redundancy in requirements specifications for subcomponents. To
support a systematic investigation of diversity, we plan to inves-
tigate algorithms for exploring the space of IVCs, e.g., finding a
minimum, rather than minimal IVC, or finding all IVCs.

Finally, we are in the process of comparing our approach against
other approaches measuring completeness of requirements (such as
those in [9, 26, 27]).

Acknowledgments: This work was supported by DARPA un-
der contract FA8750-12-9-0179 (Secure Mathematically-Assured
Composition of Control Models) and by NASA under contract
NNA13AA21C (Compositional Verification of Flight Critical Sys-
tems).

323

10. REFERENCES
[1] JKind. http://loonwerks.com/tools/jkind.html.
[2] Set of Support. https://github.com/elaghs/Working/tree/

master/support/experiments.
[3] H. Agrawal and J. R. Horgan. Dynamic program slicing.

SIGPLAN Not., 25(6):246–256, June 1990.
[4] J. Backes, D. Cofer, S. Miller, and M. W. Whalen.

Requirements analysis of a quad-redundant flight control
system. In K. Havelund, G. Holzmann, and R. Joshi, editors,
NASA Formal Methods, volume 9058 of Lecture Notes in
Computer Science, pages 82–96. Springer International
Publishing, 2015.

[5] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient
detection of vacuity in ACTL formulas. In 9th International
Conference on Computer Aided Verification (CAV’97), pages
279–290, Berlin, Heidelberg, 1997. Springer Berlin
Heidelberg.

[6] A. Belov, M. Janota, I. Lynce, and J. Marques-Silva. On
computing minimal equivalent subformulas. In Principles
and Practice of Constraint Programming, pages 158–174.
Springer, 2012.

[7] A. Belov, I. Lynce, and J. Marques-Silva. Towards efficient
MUS extraction. AI Communications, 25(2):97–116, Apr.
2012.

[8] S. Ben-David and O. Kupferman. A framework for ranking
vacuity results. In Automated Technology for Verification and
Analysis - 11th International Symposium, ATVA 2013,
Hanoi, Vietnam, October 15-18, 2013. Proceedings, pages
148–162, 2013.

[9] H. Chockler, O. Kupferman, and M. Vardi. Coverage metrics
for formal verification. Correct hardware design and
verification methods, pages 111–125, 2003.

[10] H. Chockler and O. Strichman. Easier and more informative
vacuity checks. In Proceedings of the 5th IEEE/ACM
International Conference on Formal Methods and Models for
Codesign, MEMOCODE ’07, pages 189–198, Washington,
DC, USA, 2007. IEEE Computer Society.

[11] H. Chockler and O. Strichman. Before and after vacuity.
Formal Methods in System Design, 34(1):37–58, 2008.

[12] J. Christ, J. Hoenicke, and A. Nutz. Smtinterpol: An
interpolating smt solver. In Proceedings of the 19th
International Conference on Model Checking Software,
SPIN’12, pages 248–254, Berlin, Heidelberg, 2012.
Springer-Verlag.

[13] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani.
The mathsat5 smt solver. In Proceedings of the 19th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’13, pages
93–107, Berlin, Heidelberg, 2013. Springer-Verlag.

[14] A. Cimatti, A. Griggio, and R. Sebastiani. A simple and
flexible way of computing small unsatisfiable cores in sat
modulo theories. In Proceedings of the 10th International
Conference on Theory and Applications of Satisfiability
Testing, SAT’07, pages 334–339, Berlin, Heidelberg, 2007.
Springer-Verlag.

[15] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[16] B. Dutertre and L. D. Moura. The YICES SMT solver.
Technical report, SRI, 2006.

[17] N. Een, A. Mishchenko, and R. Brayton. Efficient
implementation of property directed reachability. In

Proceedings of the International Conference on Formal
Methods in Computer-Aided Design, FMCAD ’11, pages
125–134, Austin, TX, 2011. FMCAD Inc.

[18] F. Gaucher. Slicing lustre programs. Technical report,
VERIMAG, Grenoble, February 2003.

[19] A. Gupta, M. Ganai, Z. Yang, and P. Ashar. Iterative
abstraction using sat-based bmc with proof analysis. In
Proceedings of the 2003 IEEE/ACM international conference
on Computer-aided design, page 416. IEEE Computer
Society, 2003.

[20] A. Gurfinkel and M. Chechik. Robust vacuity for branching
temporal logic. ACM Trans. Comput. Logic, 13(1):1:1–1:32,
Jan. 2012.

[21] G. Hagen and C. Tinelli. Scaling up the formal verification of
lustre programs with smt-based techniques. In Formal
Methods in Computer-Aided Design, 2008. FMCAD ’08,
pages 1–9, Nov 2008.

[22] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
Synchronous Dataflow Programming Language Lustre.
Proceedings of the IEEE, 79(9):1305–1320, September 1991.

[23] A. Ivrii, A. Gurfinkel, and A. Belov. Small inductive safe
invariants. In Formal Methods in Computer-Aided Design,
FMCAD 2014, Lausanne, Switzerland, 2014, pages
115–122, October 2014.

[24] T. Kahsai, Y. Ge, and C. Tinelli. Instantiation-based invariant
discovery. In NASA Formal Methods - Third International
Symposium, NFM 2011, Pasadena, CA, USA, April 18-20,
2011. Proceedings, pages 192–206, 2011.

[25] E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang,
Y. Shin, E. Moritz, M. Gethers, D. Poshyvanyk, J. Maletic,
J. Huffman Hayes, A. Dekhtyar, D. Manukian, S. Hossein,
and D. Hearn. Tracelab: An experimental workbench for
equipping researchers to innovate, synthesize, and
comparatively evaluate traceability solutions. In Proceedings
of the 34th International Conference on Software
Engineering, ICSE ’12, pages 1375–1378, Piscataway, NJ,
USA, 2012. IEEE Press.

[26] O. Kupferman. Sanity checks in formal verification. In
Proceedings of the 17th International Conference on
Concurrency Theory, CONCUR’06, pages 37–51, Berlin,
Heidelberg, 2006. Springer-Verlag.

[27] O. Kupferman, W. Li, and S. Seshia. A theory of mutations
with applications to vacuity, coverage, and fault tolerance. In
Proceedings of the 2008 Int’l Conf. on Formal Methods in
Computer-Aided Design, page 25, 2008.

[28] O. Kupferman and M. Y. Vardi. Vacuity detection in
temporal model checking. Journal on Software Tools for
Technology Transfer, 4(2), February 2003.

[29] H. F. Li, J. Rilling, and D. Goswami. Granularity-driven
dynamic predicate slicing algorithms for message passing
systems. Automated Software Engineering, 11(1):63–89,
2004.

[30] J. Marques-Silva. Minimal unsatisfiability: Models,
algorithms and applications. In Multiple-Valued Logic
(ISMVL), 2010 40th IEEE International Symposium on,
pages 9–14. IEEE, 2010.

[31] MathWorks Inc. Simulink Design Verifier.
http://www.mathworks.com/products/sldesignverifier, 2015.

[32] MathWorks Inc. Simulink Requirements Traceability.
http://www.mathworks.com/discovery/requirements-
traceability.html,
2016.

324

[33] K. L. McMillan. A methodology for hardware verification
using compositional model checking. Technical Report
1999-01, Cadence Berkeley Labs, Berkeley, CA 94704,
1999.

[34] K. L. McMillan and N. Amla. Automatic abstraction without
counterexamples. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 2–17. Springer,
2003.

[35] S. P. Miller, M. W. Whalen, and D. D. Cofer. Software model
checking takes off. Commun. ACM, 53(2):58–64, 2010.

[36] Requirements for Safety Related Software in Defence
Equipment, Issue 2. UK Ministry of Defence, 1997.

[37] A. Murugesan, M. W. Whalen, E. Ghassabani, and M. P.
Heimdahl. Complete traceability for requirements in
satisfaction arguments. In Proceedings of the International
Conference on Requirements Engineering (RE@Next!
Track). IEEE, September 2016.

[38] A. Murugesan, M. W. Whalen, S. Rayadurgam, and M. P.
Heimdahl. Compositional verification of a medical device
system. In ACM Int’l Conf. on High Integrity Language
Technology (HILT) 2013. ACM, November 2013.

[39] A. Murugesan, M. W. Whalen, N. Rungta, O. Tkachuk,
S. Person, M. P. Heimdahl, and D. You. Are we there yet?
Determining the adequacy of formalized requirements and
test suites. In NASA Formal Methods, pages 279–294.
Springer, 2015.

[40] A. Nadel. Boosting minimal unsatisfiable core extraction. In
Formal Methods in Computer-Aided Design (FMCAD),
2010, pages 221–229. IEEE, 2010.

[41] RTCA/DO-178C. Software considerations in airborne
systems and equipment certification.

[42] V. Ryvchin and O. Strichman. Faster extraction of high-level
minimal unsatisfiable cores. In Theory and Applications of

Satisfiability Testing-SAT 2011, pages 174–187. Springer,
2011.

[43] D. Schuler and A. Zeller. Assessing oracle quality with
checked coverage. In Proceedings of the Fourth IEEE Int’l
Conf. on Software Testing, Verification and Validation, pages
90–99, 2011.

[44] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety
properties using induction and a SAT-solver. In FMCAD,
pages 108–125, 2000.

[45] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3:121–189, 1995.

[46] E. Torlak, F. S.-H. Chang, and D. Jackson. Finding minimal
unsatisfiable cores of declarative specifications. In
Proceedings of the 15th International Symposium on Formal
Methods, FM ’08, pages 326–341, Berlin, Heidelberg, 2008.
Springer-Verlag.

[47] M. Weiser. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering, ICSE
’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.

[48] M. Whalen, G. Gay, D. You, M. Heimdahl, and M. Staats.
Observable modified condition/decision coverage. In
Proceedings of the 2013 Int’l Conf. on Software Engineering.
ACM, May 2013.

[49] D. You, S. Rayadurgam, M. Whalen, and M. Heimdahl.
Efficient observability-based test generation by dynamic
symbolic execution. In 26th International Symposium on
Software Reliability Engineering (ISSRE 2015), November
2015.

[50] L. Zhang and S. Malik. Extracting small unsatisfiable cores
from unsatisfiable boolean formula. In 6th International
Conference on Theory and Applications of Satisfiability
Testing: SAT 2003, May 2003.

325

