
Bounded Model Checking of State-Space Digital Systems

The Impact of Finite Word-Length Effects on the Implementation of Fixed-Point
Digital Controllers Based on State-Space Modeling

Felipe R. Monteiro
Federal University of Amazonas

Manaus, Amazonas, Brazil
felipemonteiro@ufam.edu.br

ABSTRACT
The extensive use of digital controllers demands a growing
effort to prevent design errors that appear due to finite-
word length (FWL) effects. However, there is still a gap,
regarding verification tools and methodologies to check im-
plementation aspects of control systems. Thus, the present
paper describes an approach, which employs bounded model
checking (BMC) techniques, to verify fixed-point digital con-
trollers represented by state-space equations. The experi-
mental results demonstrate the sensitivity of such systems
to FWL effects and the effectiveness of the proposed ap-
proach to detect them. To the best of my knowledge, this
is the first contribution tackling formal verification through
BMC of fixed-point state-space digital controllers.

CCS Concepts
•Computer systems organization → Real-time sys-
tems; Embedded systems; •Software and its engineer-
ing → Model checking; Formal methods; •Theory of
computation → Verification by model checking;

Keywords
Real-time Systems; Model Checking; State-Space; Formal
Verification; Digital Controllers.

1. MOTIVATION
In real-time systems, digital controllers are algorithms

that manipulate digital signals, in order to influence the be-
havior of a system [29]; it can be mathematically expressed
as difference equations, transfer functions, or state-space
equations. In this particular work, the focus is on state-space
models, which represent the behavior of a system through
a state evolution equation ẋ(n + 1) and an instantaneous
output equation y(n), as follows:

ẋ(n+ 1) = Ax(n) +Bu(n)

y(n) = Cx(n) +Du(n),
(1)

where A, B, C, and D are matrices that fully specify a dig-
ital system. Such models can be translated into algorithms
and implemented in several kinds of microprocessors (e.g.,
field programmable gate arrays (FPGA) devices [27] and dig-
ital signal processors [24]). Importantly, each one of these
platforms can manipulate and represent numbers using dif-
ferent formats and arithmetics (e.g., number of bits, fixed-
or floating-point arithmetic), which can directly affect the
performance and precision of the digital-control system [7].
In fact, such systems are vulnerable to finite word-length
(FWL) effects [15, 19], which can cause several quantization
problems, such as truncation or round-off errors. Particu-
larly, in such circumstances, the precision of each element
from matrices A, B, C, and D will be affected by FWL ef-
fects, which can compromise the system’s properties (e.g.,
stability). Additionally, fixed-point processors present high
processing speed with reduced cost, which makes them a
valuable choice for designing digital controllers; nonetheless,
such an approach might lead to more nonlinearities, round-
off errors, and overflows.

In order to tackle such problem, this paper proposes a
verification methodology based on bounded model checking
(BMC) techniques [11], which verifies properties on state-
space digital controllers, by means of a verification tool named
as Digital-Systems Verifier (DSVerifier). It is worth noting
that this paper extends a previous work [7, 18, 2, 13, 6]. In
particular, the major improvement of the DSVerifier version
described here relies on the support for state-space mod-
els, which allows a better insight about the internal system
behavior, enables the verification of new properties (e.g.,
controllability and observability), and considers initial con-
ditions for system analysis [14]. In addition, DSVerifier now
supports two efficient model-checking tools as back-end: ES-
BMC [12, 28] (previously supported) and CBMC [22, 10].

2. BACKGROUND AND RELATED WORK
In order to deal with FWL effects on digital systems,

some approaches suggest special metrics, search algorithms
or methodologies to achieve an optimal word-length and
avoid FWL effects [25, 17, 8, 20, 26, 31]. There are also
simulation tools (e.g., LabVIEW [21] and MATLAB [30]),
which are traditionally used by control engineers. However,
such approaches depend on input stimulation to evaluate the

ar
X

iv
:1

61
0.

10
07

9v
1 

 [
cs

.S
E

] 
 3

1 
O

ct
 2

01
6



state-space of a system, which might not exploit all possi-
ble conditions that a system can exhibit. In contrast, Alur
et al. [3, 4] proposed the prior automated verification ap-
proaches, regarding model checking, which inspired the de-
velopment of other verifiers for cyber-physical systems and
hybrid automata (e.g., Maellan [32], Open-Kronos [33], and
UPPAAL [5]). Nonetheless, differently from the work pre-
sented here, such approaches do not tackle system robust-
ness related to implementation aspects [7, 18, 2].

3. METHODOLOGY
DSVerifier works as front-end for BMC tools (with sup-

port to full ANSI-C verification), in order to verify state-
space digital systems. As one can see in Figure 1, the ver-
ification methodology proposed in this paper is split into
two main stages as follows: manual (user) and automated
(DSVerifier) procedures. In the former, the software engi-
neer manually performs steps 1 to 3. Step 1 is related to the
design process of a digital system, while step 2 to its imple-
mentation details, i.e., numerical representation < I, F >,
where I is the number of bits for the integer part, and F is
the number of bits for the fractional part. Then, in step 3
the user chooses a property φ to be verified (e.g., quantiza-
tion error), a maximum verification time, a bound k, and a
BMC tool. Importantly, all specifications from the previous
steps are detailed in an input file using the same syntax as
MATLAB code standard.

Step 1 
 
 

 
Digital controller 

design 

Step A 
 
 

 
Parser 

Input file 
(.ss extension)	

Step B 
 
 

 
Compute a FWL 
controller model 

Step 2 
 
 

 
Define numerical 
representation 

Step 3 
 
 

 
Configure 
verification 

Step C 
 
 

 
Verify using an 

available BMC tool 

Counterexample 

Verification 
Successful 

User 

DSVerifier 

Figure 1: Verification methodology.

After that, DSVerifier receives the respective input file
and then performs the verification of the desired property
φ; it is worth noting that steps A to C are completely
automatic. In step A, DSVerifier builds an intermediate
ANSI-C code for the digital system implementation. Then,
in Step B, it formulates a FWL model using a function
FWL[·] : R → Q[R], which applies the FWL effects to a
state-space digital system, where Q[R] represents the quan-
tized set of representable real numbers in the chosen im-
plementation format. Finally in the step C, the transla-
tion of the resulted ANSI-C code (i.e., the respective quan-
tized state-space digital system) into SAT or SMT formulae
is completed, by a highly efficient bounded model-checking
tool (e.g., ESBMC or CBMC) [12, 22]. Here, DSVerifier
symbolically checks a given property φ w.r.t. digital sys-
tems. If any violation is found, then DSVerifier reports a
counterexample, which contains system inputs that lead to
a failure. A successful verification result is reported if the
system is safe w.r.t. φ up to a bound k.

As aforementioned, DSVerifier supports the verification of
the following properties regarding quantized digital system:
Quantization error - it checks whether the output quan-
tization is inside a tolerable bound; Stability - it checks

digital-system stability using the Eigen Library [16]; Con-
trollability - it checks whether a digital system M is con-
trollable, based on the rank of its controllability matrix; and
Observability - it checks whether a digital system M is
observable, based on the rank of its observability matrix.

It is worth noting that all numerical operations are per-
formed through fixed-point arithmetic, according to a cer-
tain precision set by the user, and all properties are sound
and complete. In addition, all aforementioned verifications
can be performed in a closed-loop configuration.

4. PRELIMINARY RESULTS
For the following evaluation, an automatic test-suite was

developed, with 25 digital systems1 extracted from litera-
ture [1, 23]. In particular, this study employs CBMC v5.4,
with the SAT solver MiniSAT v2.2.0 [9]. All systems are
checked against four properties, as described in Section 3,
using a 32-bits micro-controller hardware configuration with
three precisions (8, 16, and 32-bits), which results in 300
verifications.

15%	 18%	 13%	
21%	

32%	

2%	

31%	

3%	

28%	

6%	 20%	
13%	

33%	 33%	

33%	

33%	

33%	 33%	

0%	

25%	

50%	

75%	

100%	

Successful	 Failed	 Successful	 Failed	 Successful	 Failed	 Successful	 Failed	

Stability	 Quantization	 Controllability	 Observability	

32-bits	

16-bits	

8-bits	

Figure 2: Experimental results.

Indeed, all components of the test-suite are stable, con-
trollable, and observable; however, based on the experimen-
tal results shown in Figure 2, one may noticed that (i) the
properties of a digital system might not be held, once quan-
tization errors affect its representation, (ii) the lower the
precision, the higher its sensibility to FWL effects, and (iii)
controllability and observability are less sensitive to FWL
effects, once they only rely on the system’s coefficients. In
addition, all 300 verifications were performed in approxi-
mately 7 hours. Finally, the failed cases were validated with
Simulink [34], using the respective counterexample.

Contributions. Particularly, this work makes four ma-
jor contributions: (i) support for state-space representa-
tions, (ii) verification of quantization error for single-input
and single-output (SISO) systems [29], (iii) stability (for
state-space systems), controllability and observability verifi-
cations for SISO and multi-input and multi-output (MIMO)
systems [29], and (iv) closed-loop verification for the afore-
mentioned properties. To the best of my knowledge, this is
the first report addressing formal verification through BMC
of fixed-point digital controllers, based on the state-space
representation. In future, other properties and BMC tools
will be integrated into DSVerifier, in addition to support for
systems with uncertainties.

1DSVerifier, all benchmarks, and a detailed test evaluation
are available at www.dsverifier.org/



5. REFERENCES
[1] T. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Lu, and

X. Zhu. Introduction to Control Theory And Its
Application to Computing Systems, pages 185–215.
Springer US, Boston, MA, 2008.

[2] B. R. Abreu, Y. M. R. Gadelha, C. L. Cordeiro, B. E.
de Lima Filho, and S. W. da Silva. Bounded model
checking for fixed-point digital filters. Journal of the
Brazilian Computer Society, 22(1):1–20, 2016.

[3] R. Alur, C. Courcoubetis, and D. Dill. Model-checking
for real-time systems. In Logic in Computer Science,
1990. LICS ’90, Proceedings., Fifth Annual IEEE
Symposium on e, pages 414–425, Jun 1990.

[4] R. Alur, C. Courcoubetis, and D. Dill. Model-checking
in dense real-time. Inf. Comput., 104(1):2–34, May
1993.

[5] G. Behrmann, A. David, and K. G. Larsen. A Tutorial
on Uppaal, pages 200–236. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004.

[6] I. Bessa, R. Abreu, J. E. Filho, and L. Cordeiro.
Smt-based bounded model checking of fixed-point
digital controllers. In IECON 2014 - 40th Annual
Conference of the IEEE Industrial Electronics Society,
pages 295–301, Oct 2014.

[7] I. V. Bessa, H. I. Ismail, L. C. Cordeiro, and J. E. C.
Filho. Verification of fixed-point digital controllers
using direct and delta forms realizations. Design
Automation for Embedded Systems, 20(2):95–126,
2016.

[8] J. Carletta, R. Veillette, F. Krach, and Z. Fang.
Determining appropriate precisions for signals in
fixed-point iir filters. In Design Automation
Conference, 2003. Proceedings, pages 656–661, June
2003.

[9] A. Cimatti, A. Griggio, B. J. Schaafsma, and
R. Sebastiani. The MathSAT5 SMT Solver, pages
93–107. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[10] E. Clarke, D. Kroening, and F. Lerda. A Tool for
Checking ANSI-C Programs, pages 168–176. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004.

[11] E. M. Clarke, E. A. Emerson, and J. Sifakis. Model
checking: Algorithmic verification and debugging.
Commun. ACM, 52(11):74–84, Nov. 2009.

[12] L. Cordeiro, B. Fischer, and J. Marques-Silva.
Smt-based bounded model checking for embedded
ansi-c software. IEEE Transactions on Software
Engineering, 38(4):957–974, 2012.

[13] I. V. d. Bessa, H. I. Ismail, L. C. Cordeiro, and
J. E. C. Filho. Verification of delta form realization in
fixed-point digital controllers using bounded model
checking. In 2014 Brazilian Symposium on Computing
Systems Engineering, pages 49–54, Nov 2014.

[14] F. Fairman. Linear Control Theory: The State Space
Approach. Wiley, 1998.

[15] Y. Guang-Hong, G. Xiang-Gui, C. Wei-Wei, and
G. Wei. Linear Systems: Non-Fragile Control and
Filtering. CRC Press, Inc., Boca Raton, FL, USA, 1st
edition, 2013.

[16] G. Guennebaud, B. Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[17] L. Harnefors. Implementation of resonant controllers

and filters in fixed-point arithmetic. IEEE
Transactions on Industrial Electronics,
56(4):1273–1281, April 2009.

[18] H. I. Ismail, I. V. Bessa, L. C. Cordeiro, E. B.
de Lima Filho, and J. E. Chaves Filho. DSVerifier: A
Bounded Model Checking Tool for Digital Systems,
pages 126–131. Springer International Publishing,
Cham, 2015.

[19] R. Istepanian and J. F. Whidborne. Digital Controller
Implementation and Fragility: A Modern Perspective.
Springer-Verlag London, London, UK, 1st edition,
2001.

[20] R. S. H. Istepanian and J. F. Whidborne.
Multi-objective design of finite word-length controller
structures. In Evolutionary Computation, 1999. CEC
99. Proceedings of the 1999 Congress on, volume 1,
page 68 Vol. 1, 1999.

[21] G. W. Johnson. LabVIEW Graphical Programming:
Practical Applications in Instrumentation and Control.
McGraw-Hill School Education Group, 2nd edition,
1997.

[22] D. Kroening and M. Tautschnig. CBMC – C Bounded
Model Checker, pages 389–391. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

[23] B. C. Kuo. Digital Control Systems. Oxford University
Press, Inc., New York, NY, USA, 2nd edition, 1992.

[24] M. Masten and I. Panahi. Digital signal processors for
modern control systems. Control Engineering Practice,
5(4):449 – 458, 1997.

[25] R. Middleton and G. Goodwin. Improved finite word
length characteristics in digital control using delta
operators. IEEE Transactions on Automatic Control,
31(11):1015–1021, Nov 1986.

[26] V. Mohta. The title of the work. Master’s thesis,
Finite worldlength effects in fixed-point
implementations of linear systems, Massachusetts
Institute of Technology, 1998.

[27] E. Monmasson and M. N. Cirstea. Fpga design
methodology for industrial control systems: A review.
IEEE Transactions on Industrial Electronics,
54(4):1824–1842, Aug 2007.

[28] J. Morse, M. Ramalho, L. Cordeiro, D. Nicole, and
B. Fischer. ESBMC 1.22, pages 405–407. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

[29] K. Ogata. Modern Control Engineering. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 4th edition, 2001.

[30] K. Sigmon. MATLAB Primer. CRC Press, 5th
edition, 1998.

[31] W. Sung and K.-I. Kum. Simulation-based
word-length optimization method for fixed-point
digital signal processing systems. IEEE Transactions
on Signal Processing, 43(12):3087–3090, Dec 1995.

[32] Synopsys. Hybrid rtl formal verification, 2006.

[33] S. Tripakis, S. Yovine, and A. Bouajjani. Checking
timed büchi automata emptiness efficiently. Formal
Methods in System Design, 26(3):267–292, 2005.

[34] D. Xue and Y. Chen. System Simulation Techniques
with MATLAB and Simulink. No Longer used. Wiley,
2013.


	1 Motivation
	2 Background and Related Work
	3 Methodology
	4 Preliminary Results
	5 References

