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The goal of community detection algorithms is to identify densely-connected units within large networks.

An implicit assumption is that all the constituent nodes belong equally to their associated community. How-

ever, some nodes are more important in the community than others. To date, efforts have been primarily

driven to identify communities as a whole, rather than understanding to what extent an individual node

belongs to its community. Therefore, most metrics for evaluating communities, for example modularity, are

global. These metrics produce a score for each community, not for each individual node. In this paper, we ar-

gue that the belongingness of nodes in a community is not uniform. We quantify the degree of belongingness

of a vertex within a community by a new vertex-based metric called permanence.

The central idea of permanence is based on the observation that the strength of membership of a vertex

to a community depends upon two factors: (i) the the extent of connections of the vertex within its commu-

nity versus outside its community, and (ii) how tightly the vertex is connected internally. We present the

formulation of permanence based on these two quantities. We demonstrate that compared to other existing

metrics (such as modularity, conductance and cut-ratio), the change in permanence is more commensurate to

the level of perturbation in ground-truth communities. We discuss how permanence can help us understand

and utilize the structure and evolution of communities by demonstrating that it can be used to – (i) measure

the persistence of a vertex in a community, (ii) design strategies to strengthen the community structure,

(iii) explore the core-periphery structure within a community, and (iv) select suitable initiators for message

spreading.

We further show that permanence is an excellent metric for identifying communities. We demonstrate

that the process of maximizing permanence (abbreviated as MaxPerm) produces meaningful communities

that concur with the ground-truth community structure of the networks more accurately than eight other

popular community detection algorithms. Finally, we provide mathematical proofs to demonstrate the cor-

rectness of finding communities by maximizing permanence. In particular, we show that the communities

obtained by this method are (i) less affected by the changes in vertex-ordering, and (ii) more resilient to

resolution limit, degeneracy of solutions and asymptotic growth of values.

Categories and Subject Descriptors: I.5.3 [Clustering]: Algorithms

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Permanence, community discovery, community evaluation metric, mod-

ularity

1. INTRODUCTION

Community detection is the process of finding closely related groups of entities in a
network. Complex networks, such as those arising in biology, social sciences and epi-
demiology, represent systems of interacting entities. The entities are represented as
vertices in the network and their pair-wise interactions are represented as edges. A
community, then, is a group of vertices that have more internal connections (i.e., con-
nections to vertices within the group) than external connections (i.e., connections to
vertices outside the group).

Most community detection algorithms are based on combinatorial optimization. The
goal is to find the community assignment that leads to the optimal value of a spec-
ified network parameter, such as modularity [Newman and Girvan 2004] or conduc-
tance [Leskovec et al. 2009]. However, since many real-world communities are based
on subjective measurements (as opposed to a formal mathematical definition), the val-
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idation of the results is done by comparing the obtained communities with known
“ground-truth” communities. Very rarely do the obtained communities exactly match
with ground-truth communities. Moreover, due to the phenomenon of resolution limit
and degeneracy of solutions [Fortunato and Barthelemy 2007], the optimum parame-
ter value sometimes produces intuitively incorrect solutions. As a result, community
detection is an active area of research with new optimization metrics being regularly
proposed [He et al. 2013; Yang and Leskovec 2012], that either produce more accu-
rate results on a certain subclass of networks and/or can address some of the above
discussed issues.

Almost all community detection metrics and related algorithms contain the implicit
notion that all the vertices in a community belong equally to the community, i.e., the
community membership is homogeneous. Therefore, the optimal score of the metric can
only be obtained over the network as a whole. The information about how placement
of vertices affects the community structure is lost using these current measurements.
In order to include this important information, we have introduced a vertex-centric
metric called permanence [Chakraborty et al. 2014].

The key idea in formulating permanence is as follows. Most optimization metrics are
based on the total internal and external connections of the vertex. We posit that the
distribution of the external connections of a vertex is equally important. In particular,
our vertex assignment decisions are based not on the total number of external connec-
tions but on the maximum number of external connections to any single neighboring
community. If vertex v is in community S and vertex u is in community T and there
exists an edge (v, u), then S and T are neighboring communities of each other.

To the best of our knowledge, we are the first to make this distinction between the
total external connections and their distribution. Permanence of a vertex thus quan-
tifies its propensity to remain in its assigned community and the extent to which it is
“pulled” [Chakraborty et al. 2014] by the neighboring communities.

Permanence provides a heterogeneous vertex-centric measure (in the range 1 to -1)
of the extent to which a vertex belongs to its community. A value of 1 indicates that a
vertex is placed correctly in its community, and a value of -1 indicates the vertex does
not belong to its assigned community. The permanence of the network is given by the
average permanence of all the vertices of a network. It is easy to see that the more cor-
rectly the vertices are placed in their communities, the higher the overall permanence.
Using this concept we propose a new community detection algorithm, MaxPerm based
on optimizing the permanence of the network [Chakraborty et al. 2014].

In this paper, after providing background information on the related work in commu-
nity detection (Section 2) and the datasets that we used in our experiments (Section
3), we explain the rationale behind creating the permanence metric (Section 4). We
show how change in permanence is more commensurate to perturbation of ground-
truth communities as compared to other competing metrics (Section 6) and present
a community detection, MaxPerm, based on maximizing permanence (Section 8) . We
extend this earlier work with the following new contributions:

— In-depth Study of Network Parameters Affecting the Value of Permanence. We study
how the distribution of different network parameters, such as connectivity and clus-
tering coefficient affect the value of permanence (Sections 5 and 6).

— Use of Permanence to Understand the Structure of the Network. We show that per-
manence can provide a better understanding of the structure of the network, such
as how to strengthen the communities and revealing the core-periphery based on the
community structure, as well as its use in applications such as vertex persistence
in communities of evolving networks and identifying effective initiators for message
spreading (Section 7).
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— In-depth Analysis of Communities Obtained using MaxPerm. The communities ob-
tained by MaxPerm are in general of a smaller size than those obtained by other
community detection methods. We study the structure of the communities obtained
and show that these communities are actually well defined sub-communities (Sec-
tion 8).

— Algorithmic Factors Affecting Results of MaxPerm. We study how different algorith-
mic factors such as ordering of the vertices and selection of initial seed communities
affects the results of MaxPerm (Sections 9 and 10).

— Analytical Proof on Correctness. We provide analytical results to demonstrate how
finding communities by maximizing permanence reduces the existing limitations of
community detection algorithms such as resolution limit, degeneracy of solutions and
asymptotic growth of values. (Section 11).

We make our experimental codes available in the spirit of reproducible research:
http://cnerg.org/permanence.

2. RELATED WORK

We present the ongoing research on two aspects of community detection: (i) algorithms
to detect community and (ii) metrics for evaluating the correctness of the obtained
community.

2.1. Community detection algorithms

Most of the research in community detection algorithms are based on the idea that
a community is a set of nodes that has more and/or better links between its members
than with the remainder of the network. Work in this area encompasses many different
approaches including, modularity optimization [Blondel et al. 2008; Clauset et al. 2004;
Guimera and Amaral 2005; Newman 2004b; 2006], spectral graph-partitioning algo-
rithm [Newman 2013; Richardson et al. 2009], clique percolation [Farkas et al. 2007;
Palla et al. 2005], local expansion [Baumes et al. 2005; Lancichinetti et al. 2009], fuzzy
clustering [Psorakis et al. 2011; Sun et al. 2011], link partitioning [Ahn et al. 2010;
Evans and Lambiotte 2009], random-walk based approach [De Meo et al. 2013a; Pons
and Latapy 2006], information theoretic approach [Rosvall and Bergstrom 2007; 2008],
diffusion-based approach [Raghavan et al. 2007a], significance-based approach [Lanci-
chinetti et al. 2010] and label propagation [Raghavan et al. 2007b; Xie and Szymanski
2011; 2012].

However most of these algorithms produce different community assignments if cer-
tain algorithmic factors, such as the order in which the vertices are processed, changes.
[Lancichinetti and Fortunato 2012a] proposed consensus clustering by re-weighting
the edges based on how many times the pair of vertices were allocated to the same com-
munity, for different identification methods. Several pre-processing techniques [Bader
et al. 2013; Riedy et al. 2011] have been developed to improve the quality of the solu-
tion. These methods form an initial estimate of the community allocation over a small
percentage of the vertices and then refine this estimate over successive steps. Recently,
[Chakraborty et al. 2013] pointed out how vertex ordering influences the results of the
community detection algorithms. They identified invariant groups of vertices (named
as “constant communities”) whose assignment to communities are not affected by ver-
tex ordering.

2.2. Community evaluation metrics

Most community detection algorithms are based on optimizing a combinatorial metric.
Examples of such metrics include conductance [Leskovec et al. 2009; Kannan et al.
2000; Shi and Malik 2000], cut-ratio [Fortunato 2010; Leskovec et al. 2010]; however,
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the most popular and widely accepted metric is modularity [Newman 2006; Newman
and Girvan 2004]. It is defined as the difference (relative to the total number of edges)
between the actual and the expected (in a randomized graph with the same number
of nodes and the same degree sequence) number of edges inside a given community.
Although initially defined for undirected and unweighted networks, the definition of
modularity has been extended to capture community structure in weighted [Newman
2004a] and directed [Leicht and Newman 2008] networks.

It was also demonstrated that modularity suffers from a resolution limit, that is, by
optimizing modularity we cannot find communities smaller than a threshold size [For-
tunato and Barthelemy 2007], or weight [Berry et al. 2011]. The threshold depends
on the total number (or total weight) of edges in the network and on the degree of
interconnectedness between communities. Later, [Good et al. 2010] also showed that
optimizing modularity can lead to degeneracy of solutions, i.e., an exponential number
of high (and nearly equal)-modularity but structurally distinct solutions from a single
graph. They also studied the (asymptotic) growth of modularity, showing that it de-
pends strongly both on the size of the network and the number of modules it contains.

To address the resolution limit problem, multi-resolution versions of modular-
ity [Arenas et al. 2008; Reichardt and Bornholdt 2006] were proposed to allow
researchers to specify a tunable target resolution limit parameter. [Lambiotte 2010]
proposed different types of multi-resolution quality functions to tackle resolution
limit problem. [He et al. 2013] considered different community densities as good
quality measures for community identification, which do not suffer from resolution
limits. Furthermore, [Lancichinetti and Fortunato 2011] stated that even those
multi-resolution versions of modularity are inclined to merge the smallest well-formed
communities, and to split the largest well-formed communities. Recently, [Chen
et al. 2013] proposed Modularity Density metric to solve the problems raised by
[Lancichinetti and Fortunato 2011]. A detailed review can be found in [Chakraborty
et al. 2016a].

Metrics to compare with ground-truth communities: Although all these met-
rics mentioned above are useful in analytically evaluating a community structure,
a stronger measure of correctness is to compare the obtained community structure
with the actual known community structure (ground-truth) of a network. To compare
these two community structures, different validation metrics have been proposed, such
as Normalized Mutual Information (NMI) [Danon et al. 2005], Adjusted Rand Index
(ARI) [Hubert and Arabie 1985] and Purity (PU) [Manning et al. 2008]. However, [Or-
man et al. 2012] argued that these metrics are not completely relevant in the context
of network analysis, because they ignore the network structure. They proposed the
weighted versions of these measures where misplacing a high degree vertex would in-
cur higher penalty compared to a low degree vertex. In our experiments, we, therefore,
also use the weighted versions of these measures, namely Weighted-NMI (W-NMI),
Weighted-ARI (W-ARI) and Weighted-Purity (W-PU) (we refer the reader to the paper
[Orman et al. 2012] for the detailed descriptions of these metrics). Note that all the
metrics are bounded between 0 (no matching) and 1 (perfect matching).

3. NETWORK DATASETS AND GROUND-TRUTH COMMUNITIES

We examine a set of artificially generated networks and three real-world complex net-
works whose underlying ground-truth community structures are known to us. The
brief description of the used datasets and their ground-truth communities are men-
tioned below.
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3.1. Synthetic networks

We select the LFR benchmark model [Lancichinetti and Fortunato 2009] to generate
artificial networks with a community structure. The model allows to control directly
the following properties: number of nodes n, desired average degree k and maximal de-
gree kmax, exponent γ for the degree distribution, exponent β for the community size
distribution, and mixing coefficient µ. The parameter µ represents the desired average
proportion of links between a node and the nodes located outside its community, called
inter-community links. Unless otherwise stated, the LFR network is generated with
the number of nodes (n) as 1000, and µ is varied from 0.1 to 0.6. For the rest of the
parameters, we use the default value of the parameters mentioned in the implemen-
tation1 designed by [Lancichinetti and Fortunato 2009].

Table I: Properties of real-world networks. n and e are the number of nodes and edges,
c is the number of communities, < k > and kmax its average and maximum degree,
nmin
c and nmax

c the sizes of its smallest and largest communities.

Network n e < k > kmax c nmax
c

nmin
c

Football 115 613 10.57 12 12 13 5
Railway 301 1,224 6.36 48 21 46 1
Coauthorship 103,677 352,183 5.53 1,230 24 14,404 34

3.2. Real-world networks

We use three real-world networks mentioned below whose ground-truth community
structures are known a priori. The properties of these dataset are summarized in Ta-
ble I.
Football network [Girvan and Newman 2002] contains the network of American
football games between Division IA colleges during the regular season of Fall 2000.
The vertices in the graph represent teams (identified by their college names) and edges
represent regular-season games between the two teams they connect. The teams are
divided into conferences (indicating communities) containing around 8-12 teams each.
Railway network [Ghosh et al. 2011] consists of nodes representing stations, where
two stations si and sj are connected by an edge if there exists at least one train-route
such that both si and sj are scheduled halts on that route. Here the communities are
states/provinces of India since the number of trains within each state is much higher
than the trains in-between two states.
Coauthorship network [Chakrabort et al. 2013] is derived from the citation
dataset2. Here each node represents an author and an undirected edge between au-
thors is drawn if the two authors collaborate at least once via publishing a paper. The
communities are marked by the research fields since authors have a tendency to col-
laborate with other authors within the same field. Besides the aggregated network,
we also create some intermediate networks mentioned in Table VII by cumulatively
aggregating all the vertices and edges over each year, e.g., 1960-1971, 1960-1972, ...,
1960-1980.

4. DEFINING PERMANENCE

In this section, we describe the permanence metric and the two primary concepts
behind its formulation.

1https://sites.google.com/site/santofortunato/inthepress2
2http://cnerg.org/
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Fig. 1: (Color online) Toy example depicting permanence of two vertices u and v. The
communities are represented by broken lines.

Concept I: A vertex should have more number of internal connections than the number
of connections to any of the external neighboring communities.

Most optimization metrics consider the total number of external neighbors of the
vertex. However, in our earlier experiment [Chakraborty et al. 2014; Chakraborty
2015; Chakraborty et al. 2016b], we empirically demonstrated that a group of vertices
are likely to be placed together so long as the number of internal connections is
larger than the number of connections to any one single external community. In other
words, a vertex which has connections to some external communities, experiences a
separate “pull” from each of these external communities. In formulating permanence
we consider the maximum pull, which is proportional to the maximum number of
connections to an external community (see Figure 1).

Concept II: Within the substructure of a community, the internal neighbors of the
vertex should be highly connected among each other.

Most optimization metrics only consider the internal connections of a vertex within
its own community. However, how strongly a vertex is connected also depends on
whether its internal neighbors are connected with each other. To measure this con-
nectedness of a vertex, we compute the clustering coefficient of the vertex with respect
to its internal neighbors. For a vertex v belonging to community c, it is measured by
the ratio between the actual number of edges among the neighbors (which also belong
to c) of v and the total number of possible edges among the neighbors [Holland and
Leinhardt 1971]. The higher this internal clustering coefficient, the more tightly the
vertex is connected to its community (see Figure 1).

We combine these two criteria to formulate permanence of a vertex v, as follows:

Perm(v) =
[ I(v)

Emax(v)
×

1

D(v)

]

−
[

1− cin(v)
]

(1)

where I(v) is the number of internal (in its own community) neighbors of v, Emax(v) is
the maximum number of connections of v to any one of the external communities, D(v)
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is the degree of v and cin(v) is the clustering coefficient among the internal neighbors
of v. Figure 1 presents a toy example to calculate the permanence of a vertex.

For vertices that do not have any external connections, Perm(v) is considered to
be equal to the internal clustering coefficient (i.e., Perm(v) = cin(v)). If the number
of internal connections, I(v), is less than 2, we set the internal clustering coefficient,
cin(v), to be 0. Therefore, for a vertex in a singleton community, Perm(v) = 0.

The maximum value of Perm(v) is 1 and is obtained when vertex v is an internal
node and part of a clique. The lower bound of Perm(v) is close to -1. This is obtained

when I(v) ≪ D(v), such that
I(v)

D(v)Emax(v)
≈ 0 and cin(v) = 0. Therefore for every vertex

v, −1 < Perm(v) ≤ 1. The permanence of a graph G(V,E), where V is the set of ver-
tices and E is the set of edges, is given by Perm(G) = 1

|V |

∑

v∈V Perm(v). For a graph

G(V,E), the range is −1 < Perm(G) ≤ 1. Perm(G) will be closer to 1 if majority of ver-
tices have high permanence, that is the vertices are in well-defined communities. This
can happen only if the network inherently possesses a strong community structure.

5. EFFECT OF INDIVIDUAL COMPONENTS ON PERMANENCE

In this section, we study the distribution of permanence values corresponding to the
vertices in the graph based on their communities. We first compute the permanence of
each vertex based on the ground-truth communities of the benchmark networks. We
divide the permanence values ranging from −1 to 1 into 20 bins where the low (high)
numbered bins contain nodes with lower (higher) permanence. We plot the bins on x-
axis, and for each bin, on the y-axis, we plot the fraction of vertices whose permanence
value falls in that bin. We observe in Figures 2(a) that this curve follows a Gaussian-
like distribution, i.e., there are few vertices with very high or very low permanence
values with a peak at the intermediate values. The peak shifts from left to right with
the decrease of µ value in the LFR network (keeping the other parameters of LFR
constant). The shift in the peak shows that as the communities get more well-defined
with the decrease of µ, most vertices move towards higher permanence. Figure 2(b)
shows that Football network also follows similar kind of behavior, where most of the
vertices fall in medium Perm range. However, for Railway and Coauthorship networks,
the curve follows “U-shaped” pattern, indicating maximum vertices falling in either
very low or very high permanence buckets.

This phenomenon indicates that the community structure is not very clear in these
networks. Recall that we have computed communities from ground-truths. The high
proportion of lower values indicates that the networks contain entities that are not
easy to classify, such as railway stations that are at the border of the states or authors
who publish in multiple fields.

To understand the dependence on each component of the permanence equation
(Equation 1), we further plot permanence with respect to each individual component,
i.e., I(v), D(v), Emax(v), Cin(v) and their combination in Figure 3. Figure 3(a) shows a
decreasing trend of I(v) with the increase of permanence for LFR, where the pattern
is completely opposite for real-world networks as shown in Figure 3(f). The trend is
almost similar for the relation between D(v) and permanence in Figures 3(b) and 3(g).
However, here most of the real-world networks except Football show similar pattern
with that of LFR, where high degree nodes tend to exhibit low or medium permanence
value. Further, we plot the relation between permanence and Emax(v) in Figures 3(c)
and 3(h) and observe that while all the real-world networks show an inverse relation,
for two LFR networks (µ = 0.3 and µ = 0.6) it initially increases and then starts de-
creasing. From these observations, one can not find any universal relation as such
among different networks. However, once we combine these factors together and plot

the dependence between permanence and
I(v)
D(v) ×

1
Emax(v)

in Figures 3(d) and 3(i), we
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D(v) ×

1
Emax(v)

per vertex, (e),(j) < Cin(v) >, average

internal clustering coefficient per vertex for LFR (upper panel) and real-world (lower
panel) networks.

observe a consistent behavior for all the networks in that the value of the combination
tends to increase almost linearly with permanence. A similar trend is followed in Fig-
ures 3(e) and 3(j) where the value of internal clustering coefficient tends to increase
with the increase of permanence. These results show that permanence depends on two

factors – (i) the combined effect of
I(v)
D(v) ×

1
Emax(v)

, and (ii) the value of Cin(v).

6. EFFECT OF PERTURBATIONS ON GROUND-TRUTH COMMUNITIES

One of the crucial measures for an effective community scoring metric is how it be-
haves under different perturbations of the ground-truth community structure [Yang
and Leskovec 2012]. The metric should be robust to small perturbations of the ground-
truth communities, such as when groupings of nodes that differ very slightly from the
original ground-truth grouping. Furthermore, the metric should also be sensitive to
large perturbations. If the change is so large that the ground-truth structure dissolves
to a random set of nodes, then the value of the scoring function should be low. In this
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section, we compare the change in value of permanence with three other community
scoring metrics and demonstrate that among them permanence is both robust to noise
as well as sensitive to large changes in the network.

6.1. Community scoring metrics

We consider the following community scoring metrics:

— Modularity (Mod): Modularity [Newman 2006] is defined by the fraction of the
edges that fall within the given groups minus the expected such fraction if edges
were distributed at random. Formally, for a given graph G(V,E), it is quantified as
follows:

Q =
1

2m

∑

u,v∈V

[Auv −
kukv
2m

]δ(cu, cv) (2)

where m = |E|, Auv is the (u, v) entry of the adjacency matrix A, ku is the degree of
vertex u, cu is the community of vertex u, and δ(cu, cv) = 1 if u and v are in the same
community or 0 otherwise.

— Conductance (Con): Conductance [Leskovec et al. 2009] is the ratio between the
number of edges inside the cluster and the number of edges leaving the cluster [Kan-
nan et al. 2000; Shi and Malik 2000]. More formally, conductance Φ(S) of a set of
nodes S is defined as follow:

Φ(S) =
CS

min(V ol(S), V ol(V \ S))
(3)

where CS denotes the size of the edge boundary, CS = |(u, v) : u ∈ S, v /∈ S|, and
V ol(S) =

∑

u∈S du where du is the degree of vertex u.
— Cut-ratio (Cut): Cut-ratio is a standard metric in graph clustering [Fortunato 2010;

Leskovec et al. 2010], which is defined as the fraction of all possible edges leaving the
cluster S. Formally, given an undirected graph G(u, v), the cut-ratio θ(S) of a set of
nodes S is defined as follow:

θ(S) =
CS

nS(n− nS)
(4)

where CS is defined earlier, and nS = |S|.

Note that the higher the value of modularity, the better the quality of the community
structure; however for conductance and cut-ratio, the opposite argument is applicable.
Therefore, to make these two measures comparable to modularity and permanence, we
measure (1-Con) and (1-Cut) for conductance and cut-ratio respectively.

6.2. Perturbation strategies

Given a graph G =< V,E > and perturbation intensity p, we restructure the ground-
truth community by applying a perturbation strategy. We experiment with the three
perturbation strategies as proposed in [Yang and Leskovec 2012]. We designate a given
ground-truth community as S and the rest of the network as S′.

(1) Edge-based perturbation: We select an inter-community edge (u, v) where u ∈ S
and v ∈ S′ (where S 6= S′) and assign u to S′ and v to S. We continue this process for
p · |E| iterations. This strategy preserves the size of S, but certain vertices within
the ground-truth community may become disconnected.

(2) Random perturbation: We pick two random nodes u ∈ S and v ∈ S′ (where
S 6= S′) that may not be connected by an edge and then swap their memberships.
We continue this process for p · |V | iterations. Random perturbation maintains the
size of S, but the community may have disconnected vertices.
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Fig. 4: (Color online) Change in the value of the scoring functions with the increase of
perturbation intensity p in (a) edge-based, (b) random and (c) community-based per-
turbation strategies. The values are normalized by the maximum value obtained from
each function.

(3) Community-based perturbation: This perturbation is similar to the edge-based
strategy. However, each community S is perturbed one by one for p · |S|, until the
nodes of the community are swapped with nodes outside the community. This pro-
cess is repeated for all the communities separately.

We perturb networks using these perturbation strategies for values of p ranging
between 0.01 to 0.5. We compute how the perturbations, as given by the value of
p, affect the values of modularity, permanence, 1-Con and 1-Cut. For small val-
ues of p, small change of the scoring function is desirable. This indicates that the
scoring function is robust to noise. For high perturbation, that is larger values of p,
the communities become more random. Therefore, the values should drop significantly.

6.3. Experimental results

Figure 4 shows the results of our experiments. To compare equitably across the differ-
ent scoring functions, we scale the values of each parameter by normalizing with the
maximum value obtained from that function. For all three strategies, the scoring func-
tion values decrease with the increase of p. Of the three methods Community-based
produces the fastest degradation, followed by Random perturbation and Edge-based
perturbation is the slowest. However, once p has reached a certain threshold, the de-
crease is much faster in permanence, while other scoring functions do not always show
this sensitivity to large perturbation.

In order to further observe how perturbation affects each of the three major com-
ponents of the permanence metric, namely the internal degree I(v), the maximum
external connections Emax(v) and the internal clustering-coefficient cin(v), we further
measure the change of their individual values as a function of p. Figure 5 shows the
rate of these changes for random perturbation. The most sensitive components of per-
manence are the internal degree and the average internal clustering-coefficient of ver-
tices. These values tend to be comparatively stable for small perturbations, but de-
grades significantly as p increases. This provides another justification for incorporating
the internal clustering-coefficient as a penalty factor in the formulation of permanence.
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Fig. 5: (Color online) Change in the average values of internal degree I(v), maximum
external connections Emax(v) and internal clustering-coefficient cin(v) of vertices of
two representative networks with the increase of perturbation intensity in random
perturbation strategy.

7. IMPLICATIONS OF PERMANENCE

We have shown in [Chakraborty et al. 2014], using a rank correlation approach, that
permanence is a better quality scoring metric as compared to modularity, conductance
and cut-ratio. In Section 6, we demonstrated how permanence is robust to small pertur-
bations and sensitive to larger ones. In this section, we analyze the characteristics of
permanence from different perspectives of community structure, based on their known
ground-truth structure.

7.1. Measuring persistence of a vertex in its community

We observe, using the metadata of the co-authorship networks, that the permanence
of a vertex is proportional to its persistence, i.e., how long a vertex remains in an
evolving community. In the original publication dataset [Chakrabort et al. 2013] as
mentioned in Section 3, each scientific article is categorized into one of the 24 research
fields (such as Algorithms, Programming Languages, AI etc.). We tag each author by
the field in which she has published maximum papers. Each field corresponds to a
community [Chakrabort et al. 2013]. Essentially, we intend to measure the persistence
of an author in her own community in terms of her research age. For this, we define
research age (ξ) of an author in a field/community in two different ways as follows.

Definition 1: Collective research age (ξc): The collective research age ξfc (a) of an
author a in a field/community f is defined by the total number of distinct years author
a has published at least one paper in the field f .

Definition 2: Discounted research age (ξd): The discounted research age ξfd (a) of
an author a in a field/community f is defined by the total number of distinct years
author a has published at least one paper in the field f , where each year is linearly
penalized by the number of its immediate consecutive preceding years when she has
not published a single paper on f . The linear penalty is introduced to bring in the
effect of “consistency break” in the publication career of an author. Ideally, an author
who is publishing consistently in a field should be more persistent than an author
publishing in stretches with intermediate gaps. The penalty is used to significantly
put more emphasis on the former case than the latter case.

For example, let us assume that an author a has published papers in the following

years: 1960, 1965, 1966, 1967, 1970. Therefore, ξfc (a) = 5 and ξfd (a) = (1+1/4+1+1+
1/2) = 3.75 (year 1965 is penalized by its previous 4 consecutive unproductive years,
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similarly for 1970). We then plot the average degree and the average permanence of
authors against two types of research ages in Figure 6. We observe that while there is
almost no correlation between the average degree and the research age of an author,
the permanence value of an author is almost linearly correlated with the research
age. This evidence essentially leads to the the following conclusions: (i) permanence
of a vertex is a suitable way of representing its persistence in its own community,
which can not be derived from the degree of a vertex, (ii) since the result in Figure
6 is reported over all the authors in different communities, we can also compare the
extent of persistence of two vertices belonging to two different communities, i.e., same
permanence value of two vertices in two different communities indicates the equal
extent of persistence in their corresponding communities.
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Fig. 6: Changes of average degree and average permanence (with variance) of authors
with the increase in (a) collective research age ξc, and (b) discounted research age ξd.

7.2. Strengthening the community structure

The value of permanence of a vertex signifies its propensity to remain in its own com-
munity. Therefore, vertices having low permanence in a community are loosely con-
nected to the community. We explore whether we can strengthen the community struc-
ture by deleting vertices with low permanence. Note that when a vertex is deleted from
its community, it would also affect the permanence value of the remaining vertices.
Therefore, we rank3 the vertices at the very beginning based on permanence and do
not consider further changes in permanence during the deletion. Then in each step, we
measure the quality of the cluster by edge-density (ratio between the actual number of
edges and the expected number of edges in that cluster).

For each community, we remove top n% low ranked vertices based on permanence
and measure the percentage change of edge-density (averaged over all the communi-
ties) due to this removal. One can observe in Figure 7 that the edge-density increases
with the increase in n. Although overall there is increase in edge density, we notice
that in LFR (µ = 0.6), the edge-density starts decreasing after removing 35% of ver-
tices. The reason might be described as follows. In LFR (µ = 0.6) vertices generally
exhibit small permanence value due to the overall inferior community structure. The
range of permanence values of vertices in each community of LFR (µ = 0.6) is also
not high as compared to the same for LFR (µ = 0.1). Therefore, removing 35% of ver-
tices from LFR (µ = 0.6) might result in the removal of vertices having relatively high
ranking based on permanence. On the other hand, since the range is high for LFR

3We use dense ranking scheme to rank the authors.
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(µ = 0.1) and LFR (µ = 0.3), the same extent of deletion of vertices might not affect the
high-ranked vertices in the community. However for these networks, such decrease in
edge-density can also be observed for higher extent of deletion (usually beyond 50%,
not shown in Figure 7).
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Fig. 7: (Color online) Percentage change in edge-density after removing top n% (varies
from 10% to 50%) low-ranked vertices based on permanence. Each point in this plot is
averaged over all the communities, and therefore, the variance is also plotted.

7.3. Heterogeneity and core-periphery organization of community structure

Although it is implicitly assumed that all the constituent members of a community
belong to the community equally, this is not true in reality. Within a community, the
extent of involvement and activity may not be same for all members – permanence
can capture this heterogeneity. The permanence of a node v belonging to a community
c indicates the extent to which the node belongs to the community. With this value
several inferences can be drawn about the communities present. For instance, it in-
herently creates a gradation/ranking of the constituent vertices in a community. This
ranking may be important in many cases – for example in exploring the core-periphery
structure of a community.

To explore the relation of permanence of a vertex with its position vis-a-vis core of
a community, we use farness centrality (d) proposed in [Yang and Leskovec 2014] as
a measure to locate the position of a vertex within a community. In order to measure
farness centrality for each community, we construct the induced subgraph constituting
all the nodes in the community and measure average shortest path for each vertex
within this subgraph. Thus, the lower the value of d for a vertex, the closer the vertex
is to the core part of the community4. We plot average permanence of vertices as a
function of farness centrality in Figure 8. We observe that for both LFR and real-
world networks, average permanence decreases with the distance from the center of
the community. Therefore, the value of permanence can act as a strong indicator of the
position of the vertex in the community.

The next investigation reveals the manner in which the permanence value of vertices
decreases from the core. A smooth decrease in value would indicate that the nodes in

4Farness centrality is just the reverse of closeness centrality in a connected component.
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Fig. 8: (Color online) Community-wise average permanence, < Perm > of vertices as a
function of farness centrality d for LFR and real-world networks.

a community are arranged in layers with each layer of vertices roughly having sim-
ilar permanence. In order to understand the mixing pattern of vertices we measure
permanence-based assortativity (r)5 [Newman 2003] to observe the preference for a
network’s nodes in a community c to attach to other nodes that have nearly similar
permanence. We divide the permanence values into 20 bins so that nodes within a
bin are considered to have equivalent permanence values, and then measure r of a
network. For comparison, we also measure degree-based assortativity of vertices in
each network. We observe in Table II that both synthetic and real-world networks are
highly assortative in terms of permanence, rather than in terms of degree. This result
indeed indicates that in general, a community is organized into several layers, where
each layer is composed of vertices exhibiting similar permanence, and vertices tend to
be highly connected within each layer than across different layers.

Table II: Average of the assortativity scores, < r > (degree-based and Perm-based) of
the communities per network.

< r > LFR (µ = 0.1) LFR (µ = 0.3) LFR (µ = 0.6)
Degree-based 0.088 0.108 0.082
Perm based 0.520 0.551 0.430

< r > Football Railway Coauthorship
Degree-based -0.105 0.153 0.155
Perm based 0.747 0.531 0.489

7.4. Initiator selection for message spreading

Message spreading is one of the challenging problems in complex networks and dis-
tributed systems [Chierichetti et al. 2010]. Starting with one source node/initiator
having a message, the protocol proceeds in a sequence of synchronous rounds with
the goal of delivering it to every node in the network. At every time step, each node in
the system having the message communicates with one node (not having the message)
in its neighborhood and transfers the message. The algorithm terminates when all
the nodes in the system have received the message. A fundamental issue in message

5Assortativity (r) lies between -1 and 1. When r = 1, the network is said to have perfect assortative patterns,
when r = 0 the network is non-assortative, while at r = -1 the network is completely disassortative.
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spreading is the selection of initiators. Selecting initiators based on the degree leads
to faster spreading (requires less steps in average) of message than the random node
selection [Demers et al. 1987]. Since vertices with higher permanence form the core of
the community, we posit that initiator selection based on permanence would help in
faster dissemination of the message. Note the message spreading algorithms are based
on only the local view of the vertices, therefore global methods such as those described
in [Kempe et al. 2003] will not be applicable under this formulation.

To validate this hypothesis, we consider the LFR network and vary the number of
nodes from 10,000 to 90,000, keeping the other parameters constant (see Section 3). We
select multiple initiators by picking one node per community present in the ground-
truth structure based on the following criteria separately: (i) random, (ii) highest de-
gree, (iii) highest permanence. For each network configuration, we run 500 simulations
and report in Figure 9 the average number of time steps required for the message to
reach all the nodes in the network. We observe that the permanence based initiator
selection from ground-truth communities requires minimum time steps to spread the
message compared to the degree-based selection.
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Fig. 9: (Color online) Number of time steps required to broadcast a message in LFR
network by varying the number of nodes.

8. COMMUNITY DETECTION USING PERMANENCE MAXIMIZATION

We now present an algorithm for detecting communities by maximizing the perma-
nence of the network. Our algorithm, MaxPerm (pseudocode in Algorithm 1), finds
high permanence partitions of large networks using a greedy agglomerative approach,
similar to the methods used in [Blondel et al. 2008; Clauset et al. 2004].

Initially the vertices are assigned to random connected subgraphs as their initial
seed community. At each iteration, a vertex is moved from one community to another
if its permanence increases. This process is continued for several iterations until the
value of the permanence of the network is unchanged. Although convergence to a
fixed value is not theoretically guaranteed, we have observed that on test cases the
algorithm converges within ten iterations. As in the case of modularity-maximization
methods, we observe that creation of appropriate seed communities can help improve
the quality of community detection. We shall discuss this issue later in Section 10.

8.1. Computational complexity and strategies for improvement

The computational complexity of the algorithm is as follows. The most expensive part
in computing the permanence of a vertex v is the internal clustering co-efficient, cin(v).
Given the degree of vertex v is D(v), computing cin(v) takes time O(D(v)2). For each



A:16 T. Chakraborty et al.

ALGORITHM 1: MaxPerm: Community Detection using Maximizing Permanence

Data: A graph G(V,E)
Result: Permanence of G; Detected communities
Each vertex is assigned to its seed community;
Set value of maximum iteration as maxIt ;
vertices← |V |;
Sum← 0;
Old Sum← −1;
Itern← 0;
while Sum 6= Old Sum and Itern < maxIt do

Itern← Itern+ 1;
Old Sum← Sum;
Sum← 0;
forall the v ∈ V do

// Compute current permanence of v
cur p← Perm(v);
if cur p == 1 then

Sum← Sum+ cur p;
continue;;

end
cur p neig ← 0;
Neig(v)=set of neighbors of v;
forall the u ∈ Neig(v) do

// Compute current permanence of u
cur p neig ← cur p neig + Perm(u);

end
// Comm(v) is the set of neighboring communities of v
forall the C ∈ Comm(v) do

Move v to community C;
// Compute permanence of v in community C
n p← Perm(v) ;
// Neighbors of v are affected for this movement
n p neig ← 0;
forall the u ∈ Neig(v) do

// Compute new permanence of u
n p neig ← n p neig + Perm(u);

end
if (cur p < n p) and (cur p neig < n p neig) then

cur p← n p;
else

Replace v to its original community;
end

end
Sum← Sum+ cur p;

end

end
Netw perm = Sum/vertices ; // Permanence of G
Return Netw perm;

vertex we compute the permanence for its own and each of its neighboring communi-
ties. Let the number of neighboring communities of vertex v at iteration k be Ck(v).
Let the total number of iterations required by the algorithm be maxIt. Therefore, the

time to execute MaxPerm is:
∑k=maxIt

k=1

∑v=|V |
v=1 (Ck(v)O(D(v)2)).
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Let dmax be the maximum degree of the network. We also note that the maximum
number of communities that a node can belong to is dmax + 1. The upper bound for
MaxPerm is O(maxIt·|V |·d3max). Since only a few nodes of the network has the highest
degree, in practice the time is much lower than the value given by this upper bound.

The execution time can be further reduced by a few simple strategies. First, instead
of recomputing Perm(v), for each community, we can store the number of edges each
vertex has in each of its neighboring communities. We update these values only when
a vertex or its neighbor changes communities. Second, since we want the permanence
to increase if a vertex changes communities, the only communities to consider for re-
location are those with both high internal degree and high clustering coefficient. By
computing permanence for only communities that satisfy these criteria we can reduce
the computation time. Both these strategies require us to keep track of the communi-
ties for neighbors of the vertex, for each vertex. Together, this requires extra storage
of order O(|V |D(v)) ≈ O(E).

8.2. Baseline community detection algorithms

There exist numerous community detection algorithms, which differ in the way they
define the community structure. Here we select the following set of algorithms and cat-
egorize them according to the principle they use to identify communities as per [Orman
et al. 2012].

(1) Modularity-based approaches: We select three modularity optimization algo-
rithms, namely FastGreedy approach [Newman 2004b], Louvain [Blondel et al.
2008] and CNM [Clauset et al. 2004], which differ in the way they perform this
optimization.

(2) Node similarity-based approaches: This category deals with the notion that
a community is viewed as a group of nodes which are similar to each other, but
dissimilar from the rest of the network. It includes WalkTrap [Pons and Latapy
2006] which is built on the notion that random walks tend to get trapped into a
community.

(3) Compression-based approaches: These approaches assume the community
structure as a set of regularities in the network topology, which can be used to rep-
resent the whole network in a more compact way than the whole adjacency matrix.
The best community structure is supposed to be the one maximizing compactness
while minimizing information loss. The quality of the representation is assessed
through measures derived from information theory. Two popular such algorithms
are InfoMod [Rosvall and Bergstrom 2007] and InfoMap [Rosvall and Bergstrom
2008].

(4) Significance-based approaches: According to these approaches, a community
structure can be expected under certain circumstances, but groups of densely con-
nected nodes can also appear only by chance. Order Statistics Local Optimiza-
tion Method (OSLOM) [Lancichinetti et al. 2010] is a local optimization method
applied to measure the statistical significance of individual communities.

(5) Diffusion-based approaches: These approaches rely on the assumption that in-
formation is more efficiently exchanged between nodes of the same community.
In Community Overlap Propagation Algorithm (COPRA) [Raghavan et al.
2007b], the information takes the form of a label, and the propagation mechanism
relies on a vote between neighbors. Communities are then obtained by considering
groups of nodes with the same label.

Each algorithm is used with its default parameters. Although the algorithms
OSLOM and COPRA are suitable for overlapping community detection, these are used
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here to detect mutually exclusive communities (i.e., non-overlapping communities) by
setting a priori the number of overlapping nodes as zero.

8.3. Validation measures

A stronger test of the correctness of the community detection algorithm, however, is by
comparing the obtained community with a given ground-truth structure. We use three
standard validation metrics, namely Normalized Mutual Information (NMI) [Danon
et al. 2005], Adjusted Rand Index (ARI) [Hubert and Arabie 1985] and Purity
(PU) [Manning et al. 2008] to measure the accuracy of the detected communities with
respect to the ground-truth community structure. [Orman et al. 2012] argue that these
metrics ignore the network structure and propose the weighted versions of these mea-
sures where misplacing a high degree vertices would incur higher penalty. We there-
fore also use the weighted versions of these measures, namely Weighted-NMI (W-NMI),
Weighted-ARI (W-ARI) and Weighted-Purity (W-PU). All these metrics are bounded be-
tween 0 (no matching) and 1 (perfect matching).

Table III: Differences of MaxPerm with the other algorithms for different networks.
Each value is obtained by averaging the values of all six validation metrics. The ex-
panded results are shown in Appendix. Positive differences indicate the improvement
of our algorithm.

Networks Louvain FastGreedy CNM WalkTrap Infomod Infomap COPRA OSLOM

LFR (µ=0.1) 0.00 0.00 0.14 0.00 0.06 0.00 0.11 0.00
LFR (µ=0.3) 0.00 0.87 0.40 0.00 0.08 0.00 0.02 0.00
LFR (µ=0.6) -0.75 0.02 -0.13 -0.50 -0.20 -0.72 -0.09 -0.68

Football 0.02 0.01 0.30 0.02 0.01 0.00 0.03 0.01
Railway 0.14 0.37 0.20 0.02 0.19 0.02 0.01 0.11

Coauthorship 0.00 0.14 0.05 0.02 -0.04 -0.02 0.09 0.09

8.4. Performance analysis

Table III shows results of the improvement of our method (as differences between
the NMI of a baseline algorithm to MaxPerm) compared to the algorithms given in
Section 8.2 and averaged over all the validation metrics. The detailed results of im-
provement in terms of each validation measure separately are shown in Table VIII of
Appendix.

For LFR (µ=0.1) network, MaxPerm is as efficient as Louvain, WalkTrap, Infomap
and OSLOM (and achieves an average accuracy of 0.95), which is followed by Fast-
Greedy, Infomod, COPRA and CNM. For LFR (µ=0.3) network, MaxPerm once again
seems to be comparable in performance to Louvain, WalkTrap, Infomap and OSLOM
(and achieves average accuracy of 0.86), which is followed by COPRA, Infomod, CNM
and FastGreedy. However, MaxPerm does not work well for the LFR (µ = 0.6) network.
In this case, Louvain outperforms other competing algorithms with the average accu-
racy of 0.53, which is followed by Infomap, OSLOM, WalkTrap, Infomod, CNM, Max-
Perm and FastGreedy. We hypothesize that maximizing permanence performs better
at identifying communities from networks which actually possess modular structure.
If the communities are not that well-separated as in LFR (µ = 0.6), more singleton
communities are formed and the permanence value tends to degrade. We shall address
this issue further at the end of this section.

For Football network, MaxPerm achieves highest average accuracy of 0.86 with In-
fomap, followed by FastGreedy, Infomod and OSLOM at the second position, Louvain
and WalkTrap at the third position, COPRA and CNM at the forth and fifth positions
respectively. For Railway network, MaxPerm completely dominates others with the
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Table IV: Average pairwise similarities between outputs of the community detection
algorithms on different LFR networks.

Validation LFR LFR LFR
measure (µ=0.1) (µ=0.3) (µ=0.6)

NMI 0.95 0.82 0.53
ARI 0.98 0.79 0.48
PU 0.99 0.85 0.56

W-NMI 0.94 0.85 0.54
W-ARI 0.97 0.78 0.50
W-PU 0.98 0.83 0.57

average accuracy of 0.78, which is followed by COPRA, Infomap, WalkTrap, OSLOM,
Louvain, CNM and FastGreedy. Once again, MaxPerm shows moderate performance
for Coauthorship network, and seems to be as good as Louvain (achieves average
accuracy of 0.34). Although MaxPerm seems to be superior than FastGreedy, CNM,
WalkTrap, COPRA and OSLOM, they are dominated by two information-theoretic ap-
proaches (Infomod and Infomap).

To summarize our algorithm is competitive with other standard algorithms, except
for LFR(µ = 0.6) and coauthorship networks. In order to understand this behavior we
further look at the community structure of these two networks individually.

8.5. Analyzing the community structure of LFR (µ = 0.6)

To understand why MaxPerm is not as competitive for LFR (µ = 0.6), we study the
quality of the ground-truth communities. We observe that the average internal cluster-
ing coefficient in the network decreases with increase in µ. The value is 0.78 for LFR
(µ = 0.1), it reduces to 0.36 for LFR (µ = 0.6). Moreover, 97% of vertices in ground-
truth communities of LFR (µ=0.6) have less internal connections than the external
connections. In contrast, LFR (µ=0.1) and LFR (µ=0.3) have almost no such nodes.
This indicates that the LFR (µ = 0.6) network does not have modular structure.

To further validate this hypothesis, we measure the similarity of the communities
obtained by different community detection algorithms using the validation measures.
The results in Table IV clearly show that the values of the validation metrics decrease
with the increase in µ. This is because as µ increases, the communities in LFR network
become more fuzzy and the consensus between the outputs of different algorithms di-
lutes. The results of a good community detection algorithm should reflect such absence
of modular structure in the network (hence show poor performance). In the absence of
a modular structure, permanence-based algorithm tends to detect more singleton com-
munities rather than arbitrarily assigning vertices into communities.

8.6. Analyzing the community structure of coauthorship network

To explain the results of MaxPerm obtained from coauthorship network, we analyze
the meta data of the communities. The titles and the abstract written by the authors in
each community obtained by MaxPerm show that our method splits large ground-truth
communities into denser submodules.

This phenomenon is more prominent in older research areas such as Algorithms and
Theory, Databases etc. These submodules are actually the subfields (sub-communities)
of a field (community) in computer science domain. Few examples of such sub-
communities obtained from our algorithm are noted in Table VI. Thus, our algorithm,
in addition to identifying well-defined communities, is also able to unfold the hierar-
chical organization of a network (see Section 8.7 for more discussion).
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Table V: Size of the largest communities obtained from different community detection
algorithms and their similarities with the ground-truth structure.

Size of the large communities
LFR (µ = 0.1) LFR (µ = 0.3) LFR (µ = 0.6) Football Railway Coauthorship

Ground-truth 63 49 42 12 13 12674
Louvain 65 62 57 24 17 1254

FastGreedy 78 95 76 18 4 9875
CNM 91 86 72 32 32 11251

Walktrap 71 83 65 15 14 8620
Infomod 65 61 46 16 4 324
Infomap 65 59 48 16 4 357
COPRA 54 56 76 20 10 465
OSLOM 57 42 87 18 12 732

MaxPerm 60 49 40 13 13 318

Similarity of largest community obtained from the algorithm with that of the ground-truth
LFR (µ = 0.1) LFR (µ = 0.3) LFR (µ = 0.6) Football Railway Coauthorship

Louvain 0.89 0.70 0.41 0.87 0.70
FastGreedy 0.51 0.32 0.39 0.65 0.52 0.39

CNM 0.82 0.52 0.76 0.31 0.71 0.66
Walktrap 0.88 0.51 0.73 0.57 0.75 0.64
Infomod 0.90 0.79 0.82 0.86 0.84 0.78
Infomap 0.90 0.74 0.83 0.86 0.85 0.78
COPRA 0.79 0.67 0.70 0.78 0.52 0.59
OSLOM 0.81 0.81 0.73 0.72 0.68 0.61

MaxPerm 0.95 1 0.83 0.92 0.87 0.79
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Fig. 10: (Color online) Distribution of the community size obtained from the ground-
truth structure vis-a-vis other community detection algorithms.

8.7. Detection of small sized communities

Many optimization algorithms tend to ignore smaller size communities and combine
them to produce larger communities. This phenomenon is known as the “resolution
limit” problem. Here we provide experimental results to show that MaxPerm can mit-
igate the effects of resolution limit (analytical proof is given in Section 11).

In our test suite, we observe that all the competing algorithms produce larger sized
communities as compared to those obtained by permanence. Figure 10 shows the com-
munity size distribution of the ground-truth structure, and that obtained from other
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community detection algorithms. We observe that with the increase of µ in LFR net-
work, the size distributions obtained from ground-truth and Louvain respectively start
separating, while the pattern obtained from MaxPerm remains almost same in that
most of the communities are small in size. Interestingly, for coauthorship network
even if most of the communities in ground-truth are large in size, the communities
obtained from Louvain and MaxPerm are almost of similar size.

We therefore investigate whether these smaller size communities are arbitrary or
actually represent different sub-communities of a large community present in the
ground-truth structure. As shown in Table VI, for the co-authorship network the
smaller communities actually represented sub-disciplines of a larger academic field.
However, such meta data is not available for all networks. To answer this question, we
construct a bipartite network consisting of the communities obtained from the algo-
rithm A (denoted as set CA) as vertices in one partition and the ground-truth commu-
nities (denoted as set CG) as vertices in another partition. We create the edges CA×CG

with edge weights derived as follows: the weight of the edge connecting ca ∈ CA and
cg ∈ CG is measured by the fraction of vertices in ca that are also part of cg. We only
consider edges with non-zero weights. If a detected community is mostly subsumed by
one ground-truth community, it produces very high edge-weight (ranging from 0.8-1)
and very small-edge-weight (0-0.2); whereas medium edge-weight (0.4-0.7) indicates
that the detected community is equally absorbed in multiple ground-truth communi-
ties. For example, assume that ca contains 10 nodes which are distributed into two
ground-truth communities c1g and c2g in two different ways: (Case 1.) 8 vertices of ca are

in c1g and 2 are in c2g, (Case 2.) 4 vertices of ca are in c1g and 6 are in c2g. Therefore, in Case

1 the edge weights are 0.8 and 0.2 for (ca → c1g) and (ca → c2g) respectively; whereas in

Case 2 the edge weights are 0.4 and 0.6 for (ca → c1g) and (ca → c2g) respectively.

We construct such weighted bipartite graphs separately for all the algorithms. In
Figure 11, we divide the edge-weights into 10 buckets such that bucket 1 corresponds
to higher-edge weight. Then in y-axis, we plot the fraction of edges falling in each
bucket. We observe that while the proportion of edges for baseline algorithms is higher
in medium weight zone, for MaxPerm most of the edges either fall in higher weighted
buckets or lower-weighted buckets. This indicates that the communities obtained by
MaxPerm are indeed subgroups within one larger community, rather than being scat-
tered across multiple communities.

We also observe that despite finding small communities, the largest-size community
obtained by MaxPerm best corresponds to the largest ground-truth community. In Ta-
ble V, we show for all the networks that the size of the largest communities detected
by the other algorithms is much larger than the size of the largest community present
in the ground-truth structure. We also measure the maximum similarity (using Jac-
card coefficient) between the largest-size community detected by each algorithm with
the communities in ground-truth structure and notice that MaxPerm is able to de-
tect largest size community which is most similar to the ground-truth structure (see
Table V). These experimental results indicate that MaxPerm is more effective in re-
ducing the effect of resolution limit.

9. EFFECT OF VERTEX ORDERING

Most of the community detection algorithms attempt to optimize certain functions
(such as modularity) and therefore are heavily dependent on the order in which ver-
tices are processed. This is an important source of concern among researchers on how
to reconcile results where the final outcome can change due to the mere change in ver-
tex ordering [Seifi et al. 2013; Lancichinetti and Fortunato 2012b; Delvenne et al. 2010;
De Meo et al. 2013b; Chakraborty et al. 2013]. In this direction, [Chakraborty et al.
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Communities Sub-communities

Algorithms Theory of computation; Formal methods;
and Theory Information & coding theory;

Computational geometry; Data structure;
Databases Models; Query optimization; Database

languages; storage; Performance;
security, and availability

Table VI: Example of communities and sub-communities obtained from coauthorship
network using MaxPerm algorithm.
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Fig. 11: (Color online) Fraction of edges of the bipartite network with a specific weight.
The range of the edge-weight is divided into ten buckets (bucket 1: 0.9-1, bucket 2:
0.8-0.89 and so on). The bipartite network corresponds to the coauthorship network.

2013] show that despite such fluctuations in the final outcome, there exist few invari-
ant groups of vertices in a network that always remain together, and they are known
as “constant communities”. Further, they study the change in community structure
based on the number of constant communities by a metric, called sensitivity (φ), which
is measured as the ratio of the number of constant communities to the total number of
vertices. For a particular network, if the value of φ for an algorithm remains consistent
over different vertex orderings, the algorithm would be qualified to be resilient to the
effect of vertex ordering.

We plot the value of sensitivity over different vertex orderings for each algorithm in
Figure 12. In x-axis, we plot the number of different permutations of the vertices. For
fair comparison, we normalize the sensitivity values by the minimum value for each
algorithm and plot it in y-axis so that the sensitivity profiles of all the algorithms start
from 1. For a particular network, the lower the value of sensitivity of an algorithm
across different perturbations, the better the algorithm resilient to the initial vertex
ordering. There are two consequences of this result: (i) For a specific LFR network, say
LFR (µ = 0.3), we can observe that MaxPerm remains almost consistent in terms of
sensitivity over different iterations, which is in most cases followed by Infomod, In-
fomap and Louvain. COPRA and OSLOM perform worst among the others. (ii) Across
different LFR networks, we observe that with the increase of µ, the performance of
all the algorithms start deteriorating. The reason could be that with the increase of
µ, communities in LFR network become fuzzier, and therefore multiple community
partitions can be equally good. Similar result is observed across different real-world
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Fig. 13: Average accuracy of community detection results with different seeding tech-
niques. Seeding based on high degree gives the highest accuracy.

networks where the algorithms tend to be largely insensitive for coauthorship network
due to the lack of clear separation between communities.

10. EFFECT OF SEED COMMUNITY SELECTION

The first step before starting the iterations to maximize permanence is to place the
vertices in initial (seed) communities. The importance of seed communities in detect-
ing communities has been studied for other metrics as in [Riedy et al. 2011]. In this
section, we explore how it affects the MaxPerm algorithm.

We note that vertices in seed communities should consist of connected subgraphs.
If the vertices in the communities are not connected to each other, then their initial
permanence will be zero (because I(v) is zero), and moving to a neighboring community
does not improve this value. We consider three seed selection strategies as follows:

— Pair Wise: Two vertices are assigned to the same seed community if they are con-
nected by an edge. If we encounter a vertex whose neighbors have all been already
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assigned to communities, that unmatched vertex is kept as a singleton. This is the
fastest out of the three seeding methods.

— High Degree: We first order the vertices in the decreasing order of degree. The ver-
tex with the highest degree and its neighbors are assigned to the same community.
We continue combining each unassigned vertex in the sorted list and its unassigned
neighbors into a community. This seeding is based on maximizing I(v) for the high
degree vertices.

— High CC: We order the vertices in the decreasing order of clustering coefficient, and
similar to the high degree, combine the vertices with high clustering coefficient and
their neighbors in a community. This seeding is based on maximizing cin(v) and is
the most expensive of the three methods.

We test the seeding strategies on the four networks (LFR with µ = 0.1, 0.3, Football
and Railway) on which MaxPerm consistently outperformed the other algorithms. As
can be seen in Figure 13, the best accuracy comes from using the high degree strategy.
The reason for this is that Pair Wise depends on the vertex ordering, and the pairings
can change depending on how vertices are numbered. High CC is too restrictive, be-
cause once a vertex is in a tightly coupled group, there is less chance for it to migrate
to a larger (if slightly) less tightly coupled group. Thus maximizing permanence using
high clustering coefficient tends to fall into local minima. In High Degree, the group-
ings are less random compared to Pair Wise, but they also provide more flexibility for
vertices to migrate between communities as compared to High CC. We believe that
this is the reason behind High Degree providing the best accuracy.

11. HANDLING LIMITATIONS OF MODULARITY MAXIMIZATION ALGORITHMS

In this section we analytically show how finding communities by maximizing perma-
nence can reduce the effect of some of the common issues in community detection
including (a) resolution limit, (b) degeneracy of solution and (c) dependence on the size
of the graph.

We illustrate our proof using a simple example of two communities A and B con-
nected by one vertex v (as shown in Figure 14). There is no edge between the commu-
nities A and B, except through the vertex v. This simple example covers many of the
scenarios where problems due to degeneracy of solutions or resolution limits arise. For
example, by considering A and B to be cliques, and v to be a vertex within the clique
A, we can form a subgraph from the circle of cliques as shown in Figure 15(a). This
figure is a common example to show the existence of resolution limit [Fortunato and
Barthelemy 2007]. In a similar manner, by considering A and B as single vertices, we
can obtain the subgraphs of a grid as shown in Figure 15(b). A grid is an example of a
network where multiple solutions can occur.

11.1. Terminology and Theorems

Let vertex v be connected to α (β) nodes in community A (B), and these α (β) nodes
form the set Nα (Nβ). The number of vertices in community A is (x+α), and the number
of vertices in community B is (y + β). Let the average internal degree (connections to
internal neighbors only) of a vertex a ∈ Nα and a vertex b ∈ Nβ , before v is added, be Iα
and Iβ respectively. Let the average internal clustering coefficient6 of the neighboring
nodes in communities A and B be CA and CB respectively.

If v is added to communities A (B) then the average internal clustering coefficient of
v becomes Cv

A (Cv
B) respectively, and the average internal clustering coefficients of the

6Note that internal clustering coefficient of v is obtained by considering the ratio of the existing connections and the total

number of possible connections among the internal neighbors of v.
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Case 1: [(A + v) : B] Case 2: [A : (B + v)]

Case 3: [(A + v + B)] Case 4: [A : B : v]

Fig. 14: (Color online) Illustrative example explaining four possible cases of community
assignment of vertex v.

Fig. 15: (a) A cycle of m identical k-cliques each having k vertices and connected by
single edges; (b) a 5× 5 grid network.

nodes in Nα(Nβ) become Cα (Cβ). We will use these average values to approximate the
permanence measure.

We assume that the communities A and B are tightly connected internally such
that the values of CA and CB are very high (at least greater than 0.5). We note that
the values Cα (Cβ) will depend on the connections of v to the communities and the
connections of the vertices in Nα and Nβ.

To simplify this, we will consider two special cases. One case is when the nodes in
the community are tightly connected and adding v does not significantly change the
internal clustering coefficient. In this case, we assume Cα = CA and Cβ = CB . The
other case is when v is added that no new connections are formed among the neighbors

of v, but the internal degree increases by one. Therefore, Cα = CA
(Iα−1)
(Iα+1) (similarly,

Cβ = CB
(Iβ−1)
(Iβ+1) ).

The combination of communities A, B and the vertex v can have four cases (see
Figure 14) as follows:

— Case 1. v joins with community A only. We denote this configuration as [(A+v) : B],
and its total permanence as P(A+v):B . We assume that the combined permanence

of all nodes x 6∈ (Nα ∪ Nβ ∪ v) as Px. This value will not be affected due to the
re-assignments. Therefore, the total permanence is the sum of the following factors:
Px, [αCα] (for the nodes in Nα connected to v), [ α

(α+β)β − (1 − Cv
A)] (for vertex v) and

[β(
Iβ

Iβ+1 − (1− CB))] (for the nodes in Nβ).
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P(A+v):B = Px + αCα + α
(α+β)β − (1− Cv

A) + β(
Iβ

Iβ+1 − (1 − CB))

— Case 2. v joins with community B only. We denote this configuration as [(A : (v+B)],
and its total permanence as PA:(v+B). The values of this total permanence is the

sum of the following factors: Px, [α( Iα
Iα+1 − (1 − CA))] (for the nodes in Nα),

[ β
(α+β)α − (1− Cv

B)] (for vertex v) and [βCβ ] (for the nodes in Nβ connected to v).

PA:(v+B) = Px + α( Iα
Iα+1 − (1− CA)) +

β
(α+β)α − (1− Cv

B) + βCβ

— Case 3. A, B and v merge together. We denote this configuration as [(A + v + B)],
and its total permanence as P(A+v+B). The values of this total permanence is the

sum of the following factors: Px, [αCα] (for the nodes in Nα), [
α(α−1)Cv

A+β(β−1)Cv
B

(α+β)(α+β−1) ]

(for vertex v) and [βCβ ] (for the nodes in Nβ connected to v).

P(A+v+B) = Px + αCα +
α(α−1)Cv

A+β(β−1)Cv
B

(α+β)(α+β−1) + βCβ

— Case 4. A, B and v remain as separate communities. We denote this configuration
as [(A : v : B)], and its total permanence as P(A:v:B). The values of this total

permanence is the sum of the following factors: Px, [α( Iα
Iα+1 − (1 − CA))] (for the

nodes in Nα), 0 (for vertex v) and [β(
Iβ

Iβ+1 − (1− CB))] (for the nodes in Nβ).

P(A:v:B) = Px + α( Iα
Iα+1 − (1− CA)) + β(

Iβ
Iβ+1 − (1− CB))

We present a set of theorems as to when these conditions will occur. By using these
theorems we can analytically show that degeneracy of solutions and resolution limit is
reduced when maximizing permanence.

Lemma 1 Given Cα = CA and Cβ = CB, let Z1 = α−β
αβ

+(Cv
A − Cv

B)+
(

α
Iα+1 − β

Iβ+1

)

.

The assignment [(A+ v) : B] will have a higher permanence than [A : (v+B)], if Z1 > 0
and a lower permanence if Z1 < 0.

Given Cα = CA
(Iα−1)
(Iα+1) and Cβ = CB

(Iβ−1)
(Iβ+1) , let Z2 = α−β

αβ
+ (Cv

A − Cv
B) +

(

α(CA+1)
Iα+1 − β(CB+1)

Iβ+1

)

. The assignment [(A + v) : B] will have a higher perma-

nence than [A : (v +B)], if Z2 > 0 and a lower permanence if Z2 < 0.

Proof. Here we are comparing between Case 1 and Case 2. The difference in total
permanence between these two assignments by assuming Cα = CA and Cβ = CB is:

P(A+v):B − PA:(v+B) =
α

(α+ β)β
+ Cv

A + β(
Iβ

Iβ + 1
− 1)

− (α(
Iα

Iα + 1
− 1) +

β

(α+ β)α
+ Cv

B)

=
α− β

αβ
+ (Cv

A − Cv
B) + (

α

Iα + 1
−

β

Iβ + 1
)
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The difference in total permanence between these two assignments by assuming

Cα = CA
(Iα−1)
(Iα+1) and Cβ = CB

(Iβ−1)
(Iβ+1) is:

P(A+v):B − PA:(v+B) =
α

(α + β)β
+ Cv

A + β(
Iβ

Iβ + 1
− 1)

− (α(
Iα

Iα + 1
− 1) +

β

(α+ β)α
+ Cv

B)

=
α− β

αβ
+ (Cv

A − Cv
B) + (

α(CA + 1)

Iα + 1
−

β(CB + 1)

Iβ + 1
)

If this difference is greater than zero then [(A + v) : B] will have a higher perma-
nence. If the difference is less than zero then [A : (v+B)] will have higher permanence.

Lemma 2 Joining v to community A gives higher permanence than merging the

communities A, B and v, if (i) Cβ = CB , and X > 0 and (ii) if Cβ = CB
Iβ−1
Iβ+1 and

X + βCB
2

Iβ+1 > 0; where X = α
(α+β)β − β

Iβ+1 − 1 +
β(β−1)(Cv

A+Cv
B)

(α+β)(α+β−1) +
2αβCv

A

(α+β)(α+β−1)

Proof. We are comparing Case 1 and Case 3 and in this case Cβ = CB . The differ-
ence in total permanence is:

P(A+v):B − P(A+v+B) =
α

(α + β)β
− 1 + Cv

A + β(
Iβ

Iβ + 1
− 1 + CB)

− (
α(α − 1)Cv

A + β(β − 1)Cv
B

(α+ β)(α + β − 1)
+ βCβ)

Substituiting CB with Cβ

=
α

(α + β)β
− 1 + Cv

A −
β

Iβ + 1

− (
α(α − 1)Cv

A + β(β − 1)Cv
B

(α+ β)(α + β − 1)
)

=
α

(α + β)β
− 1−

β

Iβ + 1

+
β(β − 1)(Cv

A + Cv
B)

(α+ β)(α + β − 1)
+

2αβCv
A

(α+ β)(α + β − 1)

Now we consider the case where Cβ = CB
Iβ−1
Iβ+1 . The difference in total permanence

is:

P(A+v):B − P(A+v+B) =
α

(α + β)β
− 1 + Cv

A + β(
Iβ

Iβ + 1
− 1 + CB)

− (
α(α − 1)Cv

A + β(β − 1)Cv
B

(α+ β)(α + β − 1)
+ βCβ)

Substituiting Cβ = CB
Iβ−1
Iβ+1

=
α

(α + β)β
− 1−

β

Iβ + 1
+ βCB

2

Iβ + 1

+
β(β − 1)(Cv

A + Cv
B)

(α+ β)(α + β − 1)
+

2αβCv
A

(α+ β)(α + β − 1)
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Lemma 3 If Cα = CA and Cβ = CB then the communities will merge (i.e.,
[(A+ v +B)]), rather than remain separate (i.e., [A : B : C]).

If Cα = CA
(Iα−1)
(Iα+1) C

β = CB
(Iβ−1)
(Iβ+1) and then the communities will merge if:

α(α−1)Cv
A+β(β−1)Cv

B

(α+β)(α+β−1) > α (2CA−1)
Iα+1 + β (2CB−1)

Iβ+1 .

Proof: We are comparing Case 3 and Case 4, and the case Cα = CA and Cβ = CB

The difference in total permanence is:

P(A+v+B) − P(A:v:B) = αCα +
α(α− 1)Cv

A + β(β − 1)Cv
B

(α + β)(α+ β − 1)
+ βCβ

− (α(
Iα

Iα + 1
− (1− CA)) + β(

Iβ
Iβ + 1

− (1− CB)))

=
α(α − 1)Cv

A + β(β − 1)Cv
B

(α+ β)(α + β − 1)

+
α

Iα + 1
+

β

Iβ + 1

This value is always positive so the communities will merge.

We now consider the case where Cα = CA
(Iα−1)
(Iα+1) Cβ = CB

(Iβ−1)
(Iβ+1) permanence is:

P(A+v+B) − P(A:v:B) = αCα +
α(α− 1)Cv

A + β(β − 1)Cv
B

(α + β)(α+ β − 1)
+ βCβ

− (α(
Iα

Iα + 1
− (1− CA)) + β(

Iβ
Iβ + 1

− (1− CB)))

=
α(α − 1)Cv

A + β(β − 1)Cv
B

(α+ β)(α + β − 1)

− α
(2CA − 1)

Iα + 1
− β

(2CB − 1)

Iβ + 1

Lemma 4 If Cα = CA and Cβ = CB then the communities will remain separate
(i.e., [A : v : B]) rather than v joining with community A (i.e., [(A + v) : B]), if
α( 1

Iα+1 + 1
(α+β)β ) + (Cv

A − 1) < 0.

Otherwise, if Cα = CA
(Iα−1)
(Iα+1) ; Cβ = CB

(Iβ−1)
(Iβ+1) and then the communities will remain

separate if α(1−2CA

Iα+1 + 1
(α+β)β ) + (Cv

A − 1) < 0.

Proof: We are comparing Case 1 and Case 4 for the case Cα = CA
(Iα−1)
(Iα+1) ; Cβ =

CB
(Iβ−1)
(Iβ+1) . The difference in total permanence is:

P(A+v):B − P(A:v:B) = αCα +
α

(α+ β)β
− (1− Cv

A)

− (α(
Iα

Iα + 1
− (1− CA))

= α(
1 − 2CA

Iα + 1
) +

α

(α+ β)β
+ (Cv

A − 1)
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If we consider the case Cα = CA and Cβ = CB, then

P(A+v):B − P(A:v:B) = αCα +
α

(α+ β)β
− (1 − Cv

A)

− (α(
Iα

Iα + 1
− (1 − CA))

= α(
1

Iα + 1
+

1

(α+ β)β
) + (Cv

A − 1)

11.2. Mitigation of issues in modularity maximization

Using the above lemmas, we can determine the conditions for which a particular as-
signment (of the four possible ones) will give the highest permanence. Using these
conditions, we shall show how permanence overcomes three major shortcomings of
modularity maximization.

(i) Degeneracy of solution is a problem where a community scoring metric (e.g.,
modularity) admits multiple distinct high-scoring solutions and typically lacks a clear
global maximum, thereby, resorting to tie-breaking [Good et al. 2010]. Consider the
case where the vertex v has equal connections to groups A and B, therefore α = β, and

the neighbors of v are not connected to each other, i.e. Cα = CA
(Iα−1)
(Iα+1) ; Cβ = CB

(Iβ−1)
(Iβ+1) .

Since the neighbors are not connected therefore Cv
A = Cv

B = 0.

In this case the condition in Lemma 4 becomes; P(A+v):B−P(A:v:B) = α 1−2CA

Iα+1 + 1
2α −1

Because the values of CA range from 0 to 1, the values of (1−2CA) is negative. Moreover
1
2α is less than 1. Therefore the value of P(A+v):B − P(A:v:B) is negative, indicating that
permanence is higher if v, A and B form separate communities.

According to Lemma 3, the communities will merge if:
α(α−1)Cv

A+β(β−1)Cv
B

(α+β)(α+β−1) > α (2CA−1)
Iα+1 + β (2CB−1)

Iβ+1 . Since Cv
A = Cv

B = 0, the left hand side is 0.

Therefore permanence is higher if v, A and B form separate communities.
Therefore, if v has equal number of connections to each community, and the neighbors

of v are not connected then v will remain as singleton, rather than arbitrarily joining
any of its neighbor groups.

(ii) Resolution limit is a problem where communities of certain small size are
merged into larger ones [Fortunato and Barthelemy 2007; Good et al. 2010]. One of
the classic examples where modularity cannot identify communities of small size is a
cycle of m cliques (see Figure 15 (a)). Here maximum modularity is obtained if two
neighboring cliques are merged.

In the case of permanence, we can determine that whether two communities A and
B would merge (as in modularity) or whether v would join community A (we select A
as the community to explain the case, but similar analysis can also be done for the case
when v joins B).

We assume that the communities A and B are tightly connected, such that CA > .5
and CB > .5. We assume v is tightly connected to group A, such that Cv

A ≈ 1 and

connected by one edge to group B (β = 1), such that Cβ = CB
Iβ−1
Iβ+1 .

From Lemma 2 we have; P(A+v):B − P(A+v+B) =
α

(α+1) − 1− 1
Iβ+1 + 2CB

Iβ+1 + 2
α+1

which is equal to 1
(α+1) +

2CB−1
Iβ+1 . Since CB > .5 therefore the value is positive. This

indicates that permanence is higher if v joins group A rather than if the three groups
merge.

Note that, this result is independent of the size of the communities A and B. This
phenomenon highlights that in general, if v is very tightly connected to a community
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Table VII: Change in modularity, permanence and the other network parameters with
the (near-)symmetric growth of coauthorship network as discussed in Section 3.2. N :
number of nodes, C: number of communities, I: internal degree, D: degree, cin(v): clus-
tering coefficient of v with respect to its internal neighbors, Emax(v): maximum exter-
nal connectivity of v, CD: average intra-community density (number of edges normal-
ized by the number of nodes). The consistency of four network parameters indicates
symmetric growth of the network in different instantiations.

C
o
a
u

th
o
rs

h
ip

Network

N 964 1515 1991 2681 3386 4836 6284 7814 9001 10386

properties

C 24 24 24 24 24 24 24 24 24 24
I
D

0.082 0.095 0.093 0.091 0.089 0.104 0.111 0.112 0.115 0.113
1

Emax(v)
(×10−4) 3.8 3.2 2.9 3.9 2.8 2.11 2.39 2.92 2.69 3.22

1− cin(v) 0.239 0.248 0.246 0.251 0.251 0.260 0.265 0.269 0.270 0.274
CD 74.30 80.30 90.34 98.18 102.68 118.68 118.72 123.29 110.22 123.292

Modularity 0.369 0.374 0.395 0.392 0.421 0.422 0.465 0.471 0.493 0.501
Permanence 0.094 0.092 0.092 0.096 0.095 0.095 0.097 0.097 0.097 0.098

and very loosely connected to another community, highest permanence is obtained when
v joins the community to which it is more connected.

(iii) Asymptotic growth of value of a metric implies a strong dependence on both
the size of the network and the number of modules the network contains [Good et al.
2010]. Rewriting equation 1, we get the permanence of the entire network G as follows:
Perm(G) = 1

|V |

∑

v∈V

[

I(v)
D(v)Emax(v)

]

− 1
|V |

∑

v∈V
[(1 − cin(v))]. We can notice that most of the pa-

rameters in the above formula are independent of the symmetric growth of network
size and the number of communities. Table VII illustrates the property from a real-life
example of coauthorship network where the modularity increases with increase in the
size of the network, while permanence remains almost constant.

12. CONCLUSION AND FUTURE WORK

In this paper, we present a new vertex-centric community quality metric, called per-
manence, that unlike other metrics considers both the connection density among inter-
nal neighbors and the distribution of external connectivity of a vertex. We empirically
demonstrated on synthetic and real-world networks that permanence is an effective
community evaluation metric compared to other well-known approaches such as mod-
ularity, conductance and cut-ratio. We also showed how permanence is appropriately
sensitive to the fluctuations of community structure. Further experiments on char-
acterizing permanence revealed that – (i) permanence can measure the persistence
of a vertex in its own community, and (ii) one can strengthen the community struc-
ture by suitably removing nodes with low permanence value. Finally, we developed a
new community detection algorithm by maximizing permanence - MaxPerm that has a
much superior performance compared to state-of-the art algorithms on most datasets.
Moreover, MaxPerm detects more efficient and realistic community structure – (i) the
obtained communities are highly connected, irrespective of the size of the communi-
ties, as a result of which one is able to detect small and even singleton communities; (ii)
the communities obtained by MaxPerm are less affected by the initial vertex ordering.

The proposed metric calls for deeper levels of investigation. More algorithms and
datasets from diverse areas need to be selected to reinforce the robustness of our pro-
posed metric. Since permanence is a local metric, one immediate direction would be
to discover local community boundary for a particular seed node. We intend to extend
permanence metric to enable evaluation of the quality of overlapping community struc-
tures and to weighted and directed networks. Overall, we believe that this metric will
help in formulating a strong theoretical foundation in the identification and evaluation
of various types of community strictures where the ground-truth is not known.
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APPENDIX

In this appendix, we expand Table III. In this table, the differences between the re-
sults obtained from MaxPerm and all the other algorithms are shown in terms of six
validation measures for all the networks.
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Table VIII: Differences of MaxPerm with the other algorithms in terms of the validation metrics. Positive differences
indicate the improvement of our algorithm. The rows indicated by “L” show values obtained from the LFR graphs with
µ =0.1, 0.3 and 0.6 respectively (from left to right and separated by semicolons). The rows indicated by “R” show values for
football, railway and coauthorship networks (from left to right and separated by semicolons). The average improvements
over different validation measures are shown in rows 8 and 15 for LFR and real-world networks respectively.

Type Validation Louvain FastGreedy CNM WalkTrap Infomod Infomap COPRA OSLOM
metrics

L

NMI 0.14; 0.00; -0.78 0.00; 0.81; -0.02 0.07; 0.24; -0.25 0.00; 0.00; -0.13 0.04; 0.05; -0.78 0.00; 0.01; 0.12 0.08; 0.09; -0.78 0.00; 0.01; 0.12
ARI 0.00; -0.02; -0.76 0.00; 0.98; 0.03 0.24; 0.59; -0.10 0.00; 0.01; -0.52 0.11; 0.13; -0.05 0.00; -0.01; -0.95 0.16; 0.01; 0.02 0.00; -0.01; -0.86
PU 0.00; 0.00; -0.72 0.00; 0.86; 0.04 0.12; 0.41; -0.13 0.00; -0.01; -0.58 0.08; 0.09; -0.11 0.00; 0.00; -0.83 0.09; -0.01; 0.06 0.00; 0.01; -0.81
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R

NMI 0.01; 0.37; 0.03 0.00; 0.14; 0.13 0.22; 0.07; 0.02 0.01; 0.11; 0.01 0.01; 0.25; -0.02 0.01; 0.06; -0.06 0.02; 0.05; 0.14 0.03; 0.16; 0.09
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Illés Farkas, Dániel Ábel, Gergely Palla, and Tamás Vicsek. 2007. Weighted network modules. New Journal
of Physics 9, 6 (2007), 180.

Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3-5 (2010), 75 – 174. http:
//www.sciencedirect.com/science/article/B6TVP-4XPYXF1-1/2/99061fac6435db4343b2374d26e64ac1

Santo Fortunato and M Barthelemy. 2007. Resolution limit in community detection. PNAS (Jan. 2007).

Saptarshi Ghosh, Avishek Banerjee, Naveen Sharma, Sanket Agarwal, and Niloy Ganguly. 2011. Statisti-
cal Analysis of The Indian Railway Network: a Complex Network Approach. Acta Physica Polonica B
Proceedings Supplement 4 (March 2011), 123–137.

M. Girvan and M. E. Newman. 2002. Community structure in social and biological networks. PNAS 99, 12
(June 2002), 7821–7826.

B.H. Good, Y.A. De Montjoye, and A. Clauset. 2010. Performance of modularity maximization in practical
contexts. Phys. Rev. E 81, 4 (2010), 046106.

Roger Guimera and Luis A. Nunes Amaral. 2005. Functional cartography of complex metabolic networks.
Nature 433, 7028 (Feb 2005), 895–900.

Dongxiao He, Dayou Liu, Weixiong Zhang, Di Jin, and Bo Yang. 2013. Discovering link communities in
complex networks by exploiting link dynamics. CoRR abs/1303.4699 (2013).

Paul W Holland and Samuel Leinhardt. 1971. Transitivity in Structural Models of Small Groups. Small
Group Research 2, 2 (1971), 107–124.

L. Hubert and P. Arabie. 1985. Comparing partitions. Journal of classification 2, 1 (1985), 193–218.

R. Kannan, S. Vempala, and A. Veta. 2000. On Clusterings-good, Bad and Spectral. In Proceedings of the 41st
Annual Symposium on Foundations of Computer Science (FOCS ’00). IEEE Computer Society, Washing-
ton, DC, USA, 367–. http://dl.acm.org/citation.cfm?id=795666.796585
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