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We generalize Knoop et al.’s Lazy Code Motion (LCM) algorithm for partial redundancy elimi-
nation so that the generalized version also performs strength reduction. Although Knoop et al.
have themselves extended LCM to strength reduction with their Lazy Strength Reduction algo-
rithm, our approach differs substantially from theirs and results in a broader class of candidate
expressions, stronger safety guarantees, and the elimination of the potential for performance loss
instead of gain. Also, our general framework is not limited to traditional strength reduction, but
rather can also handle a wide variety of optimizations in which data-flow information enables the
replacement of a computation with a less expensive one. As a simple example, computations can
be hoisted to points where they are constant foldable. Another example we sketch is the hoist-
ing of polymorphic operations to points where type analysis provides leverage for optimization.
Our general approach consists of placing computations so as to minimize their cost, rather than
merely their number. So long as the cost differences between flowgraph nodes obey a certain
natural constraint, a cost-optimal code motion transformation that does not unnecessarily pro-
long the lifetime of temporary variables can be found using techniques completely analogous to
LCM. Specifically, the cost differences can be discovered using a wide variety of forward data-flow
analyses in a manner which we describe.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—optimiza-
tion

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Code motion, elimination of partial redundancies, strength
reduction

1. INTRODUCTION

We will present a general framework for code motion transformations that move
code not only to less frequently executed program points, but also to program
points where specialized circumstances allow the code to be replaced by less expen-
sive but functionally equivalent code. This is a general framework, rather than a
specific transformation, because it can be instantiated with different cost-reducing
specialization mechanisms. For the sake of concreteness, however, we will use a
single example instantiation for the bulk of the article, briefly sketching some other
possibilities in Section 5. Our example transformation uses a simple variant of con-
stant propagation and constant folding to replace multiplications with additions
or copies. As we will see, when this is coupled with our code motion framework,
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a← read()
b← read()

a← 2
b← 3

x← a× b

a← 1 b← b− 1

y ← a× b
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Fig. 1. An example program fragment.

the resulting transformation accomplishes strength reduction, although it does not
coincide in scope with any of the existing strength reduction algorithms.

In order to illustrate this example instantiation of our transformation framework,
consider the program fragment in Figure 1. Our goal is to transform it into Fig-
ure 2. Notice that all the inserted assignments to h (in nodes 4, 5, 12, and 13) have
the same effect as an assignment h ← a × b would have at the same point. How-
ever, by taking advantage of the specialized circumstances of nodes 5, 12, and 13,
the multiplication is replaced by a less-expensive operation. This helps explain the
nodes into which these assignments were placed. For example, the assignment in
node 5 cannot be delayed until node 6 without losing the opportunity for constant
folding, because of the joining in of the path from node 4. Similarly, the computa-
tions in nodes 12 and 13 cannot be delayed until node 14, because although here
each of the two joining paths has a cheap means of computation available, after the
join neither of those cheap means would be legal. Of course, there are some other
considerations as well. The computation in node 4 is there not because it is cheap,
but as an indirect consequence of the placement of a computation in node 5. The
computations in nodes 12 and 13 could equally well be in nodes 10 and 11, from a
cost perspective, but we prefer to delay them so as not to unnecessarily lengthen
lifetime ranges and risk additional register spilling. This actually only applies to
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.



Cost-Optimal Code Motion · 1299

a← read()
b← read()

h← a× b

a← 2
b← 3

h← 6

x← h

a← 1 b← b− 1

h← b h← h− a

y ← h
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Fig. 2. Transformed version of example program fragment.

the computation in node 12; because node 13’s computation is an update, the reg-
ister pressure would not be any different were the computation done in node 11.
For simplicity, however, our algorithm delays all computations, whether update or
not. We will return to this example shortly, to show how our algorithm actually
produces the desired result.

Our algorithm generalizes that of Knoop et al. [1994]; we assume familiarity with
that article, since otherwise we would have to reproduce large portions of it. In
referring to lemmas, theorems, etc. from that article, we will prefix the identifying
number with “OCM,” for Optimal Code Motion. We will also use the notations and
definitions introduced in that article, as well as one additional standard notation:
[i, j] for {n ∈ N | i ≤ n ≤ j}. Knoop et al. [1994] is divided into a “theory” portion,
concerning properties of t-refined flowgraphs, and a “practice” portion, concerning
how those properties can be calculated as fixed points using the original nonrefined
flowgraph. We will present our generalization only in terms of the “theory” portion,
assuming t-refined flowgraphs throughout, since the extension to the “practice”
portion is quite straightforward.

In keeping with Knoop et al. [1994], we will focus on optimizing a single term;
in our example, this is a× b. For notational convenience, this candidate expression
will be treated as an implicit parameter of all our functions and predicates, much
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like the program flow graph being operated on. In our example instantiation of
our transformation framework, as in Knoop et al.’s original transformation, there
are no interactions between the optimization of different terms of the form v1 × v2,
where v1 and v2 are variables. Thus if multiple terms are optimized, the results are
independent of the order in which the terms are handled. However, as with Knoop
et al.’s original transformation, this does not remain true if other optimizations,
such as copy propagation, are interleaved with the code motions. Nor need this
order independence hold for all instantiations of our framework. Therefore, in
general it may be necessary to use a heuristic ordering and/or an iterative approach;
we do not address these issues in this article.

As Figure 2 illustrated, our transformation consists of replacing each instance
of the candidate expression (a × b) by a new variable (h), and inserting compu-
tations that in their respective contexts have the same effect as an assignment of
the candidate expression to the variable. In order to keep our framework gen-
eral, we will concern ourselves only with selecting the insertion points, and not
with the question of which computation should be inserted at each selected point.
The latter is instead determined by the particular instantiation of our framework,
which must provide a function from nodes to statements, computation , such that
computation(n) is the statement to insert at node n if node n is chosen as an in-
sertion point. This function is as usual implicitly parameterized by the candidate
expression and flow graph. For example, given the flowgraph of Figure 1 and the
candidate expression a× b, our example instantiation of the transformation frame-
work would have computation(5) equal to h ← 6. (We will later show how this
example computation function is defined.)

Although the selection of specific computations to insert is outside the scope of
our framework, our transformation framework needs to know something about the
computations if it is to select insertion points wisely. Namely, it needs to know
how expensive a computation would be inserted at each point, were that point
selected. Therefore, our framework is instantiated not only with a computation
function, but also with a cost function that specifies a numerical cost for each of
the computations. That is, for a node n, the cost of computing computation(n) at
node n is given by cost(n). We will take this cost function to be another implicit
parameter, treating it as a fixed, given function from the flowgraph’s nodes to the
natural numbers.

The overall transformation algorithm can be viewed conceptually as having three
steps:

(1) Compute cost(n) for each node n.

(2) Use these costs and the analysis described in this article to select insertion
points. (This requires finding greatest fixed points of several equation systems,
as described in the practice section of Knoop et al. [1994].)

(3) At each selected insertion node, n, insert computation(n). Also, replace each
original use of the candidate expression by the new variable, h.

However, it is important to recognize that cost(n) can actually be calculated on a
demand-driven, sparse basis, rather than being precomputed for each node as the
conceptual algorithm suggests.
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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We will assume that the cost function obeys the following two constraints:

∀m,n ∈ N. m ∈ pred(n) ∧ Transp(m) ∧ ¬Comp(m) ⇒ cost(n) ≥ cost(m)
∀m,n ∈ N. pred(n) = {m} ∧ Transp(m) ∧ ¬Comp(m) ⇒ cost(n) = cost(m)

These constraints reflect the connection between cost and degree of specialization.
When paths join, any specialized computation that can be used after the join could
be used equally well before it, but not necessarily vice versa. This is captured by
the inequality in the first constraint. For a concrete example, consider node 6 in
Figure 2. The computation h ← a × b that could be inserted there would work
equally well in nodes 4 and 5, but the specialized computation h ← 6 that works
in node 5 will not work in node 6. The second constraint says that when there is
no joining of paths—when a node only has a single predecessor—there is no change
in specificity of context, and hence the cost should remain fixed. However, all bets
are off if the predecessor node contains an assignment to a or b or a computation
of a× b; then the cost can change arbitrarily.

In broad strokes, the Lazy Code Motion (LCM) technique of Knoop et al. [1994]
consists of first moving all computations as early in the program as possible, in
order to achieve the minimal number of computations (computational optimality),
and then moving them as much later as is possible without undoing this, in order to
minimize the lifetime of temporaries (lifetime optimality). Our Thrifty Code Mo-
tion (TCM) technique is based on the same outline of first moving computations
as early as possible, then delaying them to a later point. However, it stops the
second phase (delaying) earlier if necessary to maintain cost optimality (minimal
cost of the computations). This approach is intuitively reasonable, but a skeptical
attitude is in order. After all, although the starting and ending points of LCM’s
delaying are both computationally optimal, in general some of the intermediate
points are not. Therefore, stopping the delaying at some intermediate point based
on considerations foreign to LCM (such as our cost) will not in general preserve
computational optimality. As it happens, when the stopping point is chosen to op-
timize a cost function that satisfies the above constraints, computational optimality
is preserved—but that is part of what we need to prove in this article.

Temporarily taking correctness for granted, let us sketch how our transformation
takes us from Figure 1 to Figure 2, and how it differs from Knoop et al.’s Busy
Code Motion (BCM) and LCM transformations. Using a simple variant of constant
propagation and folding, together with some assumptions about hardware-level
costs, we can derive the computation and cost functions shown in Figure 3. (You
can easily verify that this cost function obeys the stated constraints.) Next we
analyze how early the computations could legally be placed, and determine that the
earliest nodes are 4, 5, 10, and 11. Thus BCM would hoist the computations from
nodes 7 and 16 to nodes 4, 5, 10, and 11. Not only is this hoisting computationally
optimal (minimizing the number of computations), but it is also cost optimal if we
insert the computations given by our computation function at nodes 4, 5, 10, and
11, rather than blindly inserting h ← a × b into each of them. We show this cost
optimality of BCM in Section 2. However, this earliest placement unnecessarily
prolongs the lifetime ranges of h. The LCM transformation therefore delays the
computations as far as possible without introducing redundancy, which in this case
would be all the way back to nodes 7 and 16, since the original program had
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n computation(n) cost(n)

1 h← a× b 4
2 h← a× b 4
3 h← a× b 4
4 h← a× b 4
5 h← 6 2
6 h← a× b 4
7 h← a× b 4
8 nop 1
9 nop 1

10 h← b 2
11 h← h− a 3
12 h← b 2
13 h← h− a 3
14 h← a× b 4
15 h← a× b 4
16 h← a× b 4

Fig. 3. Example computation and cost functions for Figure 1. The computation nop stands for
no operation, i.e., no computation is needed to bring h up-to-date.

no redundancy. Unfortunately, this eliminates the opportunities for using more
specialized computations. Therefore, our TCM transformation stops sinking the
computation not only when redundancy would be introduced, but also when the
cost would increase. In particular, since the cost of node 6 is greater than the cost
of one of its predecessors (node 5), TCM will not delay into node 6. Therefore,
nodes 4 and 5 are recognized as latest nodes for thrifty placement. Similarly, node
14’s cost is greater than that of one of its predecessors (in fact, both). So delaying
to node 14 is suppressed, and computations are placed in nodes 12 and 13. In
Section 3 we show that this minimizes lifetime ranges of the new temporary, h,
subject to retaining computational and cost optimality.

After we establish the TCM framework’s optimality in Sections 2 and 3, we
will turn in Section 4 to the question of how the framework can be instantiated
with suitable computation and cost functions. We will first show how our example
functions of Figure 3 are computed using a data-flow analysis. Next, we will show
that the example cost function satisfies the two constraints. Then we will generalize
and show that any cost function that results in an analogous manner from a forward
data-flow analysis must satisfy our constraints. Hence, any such cost function and
its companion computation function can be used to instantiate our TCM framework.
We sketch a couple examples of this broader applicability in Section 5, and discuss
our approach’s limitations. The primary limitation, inherited from LCM, is the
restriction to only inserting safe computations, i.e., those that compute values also
computed by the unoptimized program. We conclude in Section 6 with a comparison
to related work.

2. COST OPTIMALITY

In this section, we show that Knoop et al.’s BCM, i.e., the “earliest possible”
placement of computations, optimizes the cost of computations, not just the number
of computations. This provides necessary background to the following section,
where we show our new code motion transformation, TCM, to also be cost optimal.
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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However, our first order of business is to formally define cost optimality. We actually
provide two definitions, the first more intuitively reasonable and the second more
suited to proving TCM’s optimality, and show the two definitions to be nearly
equivalent.

Our first notion of cost optimality consists of minimizing the total cost, along
any finite path through the program, of the points at which the code motion places
computations. We will call this notion total-cost optimality, reserving the term
cost optimality for our second definition. The following definitions formalize total-
cost optimality, after first pausing to give a convenient notation for the indices
along a particular finite path where a particular code motion transformation places
computations.

Definition 1. For each code motion transformation CM ∈ CM and path p ∈
P[s, e], let the set CCM ,p = {i | CompCM (pi)}.

Definition 2. An admissible code motion transformation CM ∈ CMAdm is total-
cost-cheaper than another admissible code motion transformation CM ′ ∈ CMAdm

if and only if

∀p ∈ P[s, e].
∑

i∈CCM ,p

cost(pi) ≤
∑

i∈CCM ′,p

cost(pi).

Definition 3. An admissible code motion transformation CM ∈ CMAdm is total-
cost-optimal if and only if it is total-cost-cheaper than any other admissible code
motion transformation. We will call the set of total-cost-optimal code motion trans-
formations CMTotCostOpt .

We next define cost optimality as an alternative to total-cost optimality. The key
difference is that we will restrict our attention to those code motion transformations
that are not merely admissible, but rather computationally optimal, i.e., which
minimize the number of computations done. Since any two computationally optimal
code motion transformations perform the same number of computations along a
given finite path through the program, it makes sense to individually compare the
costs of corresponding pairs of computations. In order to facilitate this comparison,
we define a notation for the ith computation point. Using this, we can define a
computationally optimal code motion transformation as cost-optimal if it makes
each computation no more expensive than the corresponding computation under
any other computationally optimal code motion.

Definition 4. For each code motion transformation CM ∈ CM and path p ∈
P[s, e], let the function compNumbCM ,p(i) map the number i ∈ [1, |CCM ,p|], to
the node pj such that j ∈ CCM ,p ∧ |{k ∈ CCM ,p | k < j}| = i − 1. That is,
compNumbCM ,p(i) is the ith node along the path p for which CompCM holds.

Definition 5. A code motion transformation CM ∈ CMCmpOpt is cheaper than
a code motion transformation CM ′ ∈ CMCmpOpt if and only if

∀p ∈ P[s, e] ∀i ∈ [1, |CCM ,p|]
cost(compNumbCM ,p(i)) ≤ cost(compNumbCM ′,p(i)).

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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Definition 6. A code motion transformation CM ∈ CMCmpOpt is cost-optimal
if and only if it is cheaper than any other computationally optimal code motion
transformation. We will call the set of cost-optimal code motion transformations
CMCostOpt .

Comparing our two notions, total-cost optimality and cost optimality, it is not
initially apparent that they should essentially coincide. On the one hand, it appears
that total-cost optimality is more restrictive because it optimizes over a broader
class of code motion transformations. On the other hand, it appears that cost
optimality is more restrictive because it constrains the cost of each computation
individually rather than only in aggregate. However, we will establish in Theorem 1
below that these issues are essentially illusory. We will build up to that theorem
with some generally useful lemmas, which also show BCM in particular to be both
cost optimal and total-cost optimal.

Lemma 1 (Correspondence Lemma). For any computationally optimal code
motion transformation CM ∈ CMCmpOpt and any path p ∈ P[s, e]

(1 ) There is a bijection fCM ,p : CCM ,p → {(j, l) ∈ N2 | p[j, l] ∈ FU-LtRg(BCM )}.
This bijection associates with each i ∈ CCM ,p the unique (j, l) pair in the func-
tion’s range with j ≤ i ≤ l. That is, this pair specifies the subpath of p contain-
ing pi that is a first-use lifetime range for BCM.

(2 ) ∀k ∈ [1, |CCM ,p|] ∃l ∈ N

fCM ,p(compNumbCM ,p(k)) = (compNumbBCM ,p(k), l).

Proof. Part (3) of the Busy-Code-Motion Lemma (OCM Lemma 3.12) shows
that every computation of CM takes place in a first-use lifetime range of BCM ;
since the first-use lifetime ranges are disjoint (by OCM Lemma 3.9), this must be
unique. Thus the function fCM ,p is well defined, and to complete our proof of
part (1) we need only show that it is one-to-one and onto. Part (2) of the Busy-
Code-Motion Lemma shows that fCM ,p is onto; by the computational optimality of
BCM (OCM Theorem 3.13), the domain and range of fCM ,p are equinumerous, so
it must be one-to-one as well. Part (2) of the Correspondence Lemma follows from
part (1) by induction on k.

Lemma 2 (Increasing Cost Lemma). For all paths p ∈ FU-LtRg(BCM ),
cost(p1) ≤ cost(p2) ≤ · · · ≤ cost(pλp).

Proof. From the definition of a first-use lifetime range and the admissibility of
BCM , it follows that p ∈ FU-LtRg(BCM )⇒ Transp∀(p[1, λp[)∧¬Comp∃(p[1, λp[).
The constraint on the cost function then directly provides the result.

Corollary 1. BCM ∈ CMCostOpt .

Proof. This follows directly from the Correspondence and Increasing Cost Lem-
mas.

Lemma 3. BCM ∈ CMTotCostOpt .

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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Proof. Let CM ∈ CMAdm and p ∈ P[s, e]. By OCM Lemma 3.12 parts (1)
and (2), there exists a function f : CBCM ,p → CCM ,p with the property that
∀i ∈ CBCM ,p∃j. i ≤ f(i) ≤ j ∧ p[i, j] ∈ FU-LtRg(BCM ). By the Increasing Cost
Lemma, ∀i ∈ CBCM ,p. cost(pi) ≤ cost(pf(i)). By OCM Lemma 3.9, f is one-to-one.
Therefore, we have ∑

i∈CBCM ,p

cost(pi) ≤
∑

i∈CBCM ,p

cost(pf(i))

=
∑

i∈f(CBCM ,p)

cost(pi)

≤
∑

i∈CCM ,p

cost(pi)

Theorem 1. (1 ) CMCostOpt = CMTotCostOpt ∩ CMCmpOpt . (2 ) If ∀n ∈ N.
cost(n) 6= 0, then CMCostOpt = CMTotCostOpt .

Proof. By definition, any cost-optimal code motion transformation, CM , is also
computationally optimal. Therefore, we can establish one direction of each part of
the theorem by showing that CM is also total-cost optimal. We have that CM is
cost-optimal; by Corollary 1, so is BCM . Thus they must have the same total cost
along any path p ∈ P[s, e]. Together with BCM ’s total-cost optimality (Lemma 3),
this implies the total-cost optimality of CM .

To establish the reverse direction of part (1), we need to show that total-cost op-
timality and computational optimality together imply cost optimality. Let the code
motion transformation CM ∈ CMTotCostOpt ∩CMCmpOpt and the path p ∈ P[s, e].
Because CM and BCM are both computationally optimal, their computation points
along p are in one-to-one correspondence. Because BCM is cost-optimal (by Corol-
lary 1), each computation point of BCM along p has cost less than or equal to that
of the corresponding computation point of CM . If any of these inequalities were
strict, the total cost of BCM along p would be less than that of CM , contradicting
the total-cost optimality of CM . Therefore, CM must be cost optimal as well.

Finally, to finish part (2), we need to show that total-cost optimality and the ab-
sence of zero-cost nodes imply cost optimality. Let the code motion transformation
CM ∈ CMTotCostOpt , and let the path p ∈ P[s, e]. Define the function f as in the
proof of Lemma 3. We have∑

i∈CBCM ,p

cost(pi) =
∑

i∈CCM ,p

cost(pi)

(by the total-cost optimality of BCM and CM )

=
∑

i∈f(CBCM ,p)

cost(pi) +
∑

i∈CCM ,p−f(CBCM ,p)

cost(pi)

(splitting the sum)
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=
∑

i∈CBCM ,p

cost(pf(i)) +
∑

i∈CCM ,p−f(CBCM ,p)

cost(pi)

(since f is one-to-one)

≥
∑

i∈CBCM ,p

cost(pi) +
∑

i∈CCM ,p−f(CBCM ,p)

cost(pi)

(by the Increasing Cost Lemma)

Therefore, we have
∑

i∈CCM ,p−f(CBCM ,p) cost(pi) ≤ 0. But we are given that none
of the costs is zero, i.e., they are all strictly positive. So, the preceding summation
must be over an empty range, i.e., f is onto as well as one-to-one. In other words,
CM is computationally optimal. Part (1) of the theorem then lets us conclude that
it is cost optimal as well.

Thus our original notion of total-cost optimality nearly coincides with cost op-
timality. The cost-optimal code motion transformations are total-cost optimal as
well, so restricting ourselves to computationally optimal transformations does not
exact a price in the total cost that can be achieved. In fact, not only are no strictly
total-cost cheaper transformations excluded, but moreover if there are no zero-cost
nodes, then no transformations at all are excluded, since all the total-cost-optimal
transformations are cost optimal as well. Having seen this, we will restrict our at-
tention to cost-optimal transformations and proceed to the problem of minimizing
lifetime ranges.

3. MINIMIZING LIFETIME RANGES

Knoop et al. [1994] define their LCM algorithm, which minimizes lifetime ranges
while retaining computational optimality, in terms of two predicates, Delayed and
Latest . We can analogously define our TCM in terms of TDelayed and TLatest ,
where the “T” stands for “Thrifty.” The difference is that we are only willing
to delay so long as the cost of the computation does not go up. Recall that in
stating these definitions, we are going to treat the cost function as fixed, when in
fact it is an implicit parameter. Thus we appear to be defining TCM as a single
transformation, when in fact it is a general framework or family of transformations.

Definition 7. The predicate TDelayed(n), for n ∈ N , is defined by

TDelayed(n)⇔
∀p ∈ P[s, n] ∃i ≤ λp. Earliest(pi) ∧ ¬Comp∃(p[i, λp[) ∧ cost(n) = cost(pi).

It is worth observing that the the i which this definition asserts exists must in
fact be unique, by OCM Lemma 3.9, and that the same applies to the definition of
Delayed as well.

For practical computation of TDelayed as a fixed point, it is useful to note that
by the Increasing Cost Lemma, cost(pi) = cost(pi+1) = · · · = cost(n). Therefore,
TDelayed is the greatest fixed point of

TDelayed(n)⇔
Earliest(n) ∨ n 6= s ∧

∧
m∈pred(n)

TDelayed(m) ∧ ¬Comp(m) ∧ cost(m) = cost(n).
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For example, you can use this formulation to verify that in Figure 1, nodes 4, 5,
10, 11, 12, and 13 are TDelayed .

Just as only Delayed nodes can be computation points after a computationally
optimal code motion transformation, we can show that only TDelayed nodes can
be computation points after a cost-optimal code motion transformation.

Lemma 4. ∀CM ∈ CMCostOpt ∀n ∈ N. CompCM (n)⇒ TDelayed(n).

Proof. By OCM Lemma 3.16(3), we know CompCM (n) implies that ∀p ∈
P[s, n] ∃i ≤ λp. Earliest(pi)∧¬Comp∃(p[i, λp[). It remains to show that cost(n) =
cost(pi). Arbitrarily extend p to some p′ ∈ P[s, e]. By the Correspondence Lemma,
there is some k for which pi = compNumbBCM ,p′(k) and n = compNumbCM ,p′(k).
By Corollary 1, BCM is cost optimal, and we are given that CM is also cost optimal.
Thus we have cost(pi) = cost(n).

Definition 8. The predicate TLatest(n), for n ∈ N , is defined by

TLatest(n)⇔ TDelayed (n) ∧
(

Comp(n) ∨
∨

m∈succ(n)

¬TDelayed(m)
)
.

Next we can prove that TLatest truly deserves its name: within each lifetime
range of BCM, there is a unique TLatest node, which is the last TDelayed node in
the range.

Lemma 5. (1 ) ∀p ∈ LtRg(BCM) ∃i ≤ λp. TLatest(pi). (2 ) ∀p ∈ LtRg(BCM)
∀i ≤ λp. TLatest(pi)⇒ ¬TDelayed∃(p]i, λp]).

Proof. The proof of part (1) directly parallels that of OCM Lemma 3.17’s part
(1).

The proof of part (2) requires a bit more care. From the definitions of TLatest
and TDelayed , we have TLatest(pi) ⇒ TDelayed(pi) ⇒ Delayed(pi). Thus in
the case that Comp(pi) holds, we have Latest(pi), and hence by OCM Lemma
3.17(2), ¬Delayed∃(p]i, λp]). From the definition of TDelayed , this in turn implies
¬TDelayed∃(p]i, λp]), our desired result.

The remaining case is for ¬Comp(pi). Then there must exist a successor, m, of pi
for which we have ¬TDelayed(m). If we moreover have ¬Delayed(m), then as above
we have Latest(pi), so again the result follows from OCM Lemma 3.17(2). Thus we
need only still address the case of ¬Comp(pi)∧¬TDelayed (m)∧Delayed (m). Here
we have cost(p1) = cost(pi) 6= cost(m). But note we not only have ¬Comp(pi), but
also by the admissibility of BCM have Transp(pi). Therefore, by the constraint
on the cost function, we conclude that m must have a predecessor other than pi,
and hence by the Control Flow Lemma (OCM Lemma 2.1), m must be pi’s only
successor, i.e., m = pi+1. Relying again on our constraint on the cost function, we
can specifically state that cost(pi+1) > cost(p1). It remains to establish our result
from this.

Let j be the smallest integer for which Comp(pj), i.e., p[1, j] ∈ FU-LtRg(BCM ).
By the Increasing Cost Lemma, for any index k with i < k ≤ j we have cost(pk) ≥
cost(pi+1) > cost(p1), so we have ¬TDelayed∃(p]i, j]). Now consider p]j, λp]. In
this remaining portion of the path, we can again follow the proof of OCM Lemma
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3.17(2). By the definition of LtRg(BCM ), we have ¬Earliest∃(p]j, λp]), which to-
gether with Comp(pj) implies ¬Delayed∃(p]j, λp]) and hence the remaining portion
of our result, ¬TDelayed∃(p]j, λp]).

The above properties of TDelayed and TLatest , which parallel those of Delayed
and Latest , are the keys to showing that our TCM algorithm enjoys properties anal-
ogous to those of LCM: it retains cost-optimality (as LCM retains computational
optimality) while minimizing lifetime ranges. We show this below.

Definition 9. The Thrifty Code Motion (TCM) transformation is defined by the
InsertTCM and ReplTCM predicates:

InsertTCM (n) ⇔ TLatest(n)
ReplTCM (n) ⇔ Comp(n)

Definition 10. A cost-optimal code motion transformation CM ∈ CMCostOpt is
cost-almost-lifetime-optimal if and only if

∀p ∈ LtRg(CM ). λp ≥ 2⇒ ∀CM ′ ∈ CMCostOpt∃q ∈ LtRg(CM ′). p v q.

(This is identical to the definition of almost-lifetime-optimal, but with CMCostOpt

substituted for CMCmpOpt .) We will call the set of cost-almost-lifetime-optimal
code motion transformations CMCostALtOpt .

Theorem 2. TCM ∈ CMCostALtOpt .

Proof. We will show this in four stages:

(1) TCM ∈ CMAdm .
(2) TCM ∈ CMCmpOpt .
(3) TCM ∈ CMCostOpt .
(4) TCM ∈ CMCostALtOpt .

The proof of parts (1) and (2) directly parallel those of parts (1) and (2) of OCM
Theorem 3.18 (the Almost-Lazy-Code-Motion Theorem). Having established com-
putational optimality, cost optimality (part (3)) directly follows from the cost op-
timality of BCM (Corollary 1) by way of the Correspondence Lemma and the
definition of TDelayed . The proof of part (4) once again parallels that of the cor-
responding part of OCM Theorem 3.18, part (3).

As an example of TLatest , you can verify that in Figure 1, nodes 4, 5, 12, and
13 are TLatest . This accounts for the insertion of computations into those nodes
in Figure 2.

Note that it is also possible to do an “isolation” analysis and so refine TCM to be
cost-lifetime-optimal (defined by analogy with lifetime optimal), rather than just
cost-almost-lifetime-optimal, i.e., by the elimination of single-node lifetime ranges.
However, we choose not to do this because some of the low-cost computation points
may gain their cost savings by updating the previous value of the variable h. In
particular, this is the case for strength reduction. Thus an assignment to h that
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a← read()
b← read()

h← a× b
x← h

a← read()

h← a× b
y ← h

a← a+ 1

h← h+ b
z ← h

1

2

3

4

5

6

Fig. 4. The definition of h in node 4 is not really isolated.

appears to be isolated may actually be needed for a later update. For example,
in the simplified program of Figure 4, all the definitions of h are isolated by the
standard of LCM’s isolation analysis, but our optimization necessitates retaining
the one in node 4. A more sophisticated isolation analysis can of course be done
that accounts for these uses of h that occur in update computations, rather than
just the uses that replace original computations. A Chaitin-style register allocator
[Chaitin et al. 1981; Chaitin 1982] will automatically do this, by detecting the
isolated definitions of h as independent live ranges and coalescing each with the
variable into which it is copied. We choose to rely on such a coalescing allocator,
rather than doing the analysis here.

There is another important observation regarding (almost-)lifetime optimality
and the use of update computations of h, that is, inserted computations that them-
selves make use of h. Since we took our definition of lifetime ranges from Knoop
et al. [1994], it completely ignores these uses that occur in inserted computations.
Thus, if TCM is faced with a situation in which there are two cost-optimal choices
for where to insert a computation, it will always choose the later one, even if at that
point an update computation needs to be inserted to achieve the optimal cost while
at the earlier position a nonupdate computation could have achieved the same cost.
Under this circumstance, the choice of the later insertion point actually results in
a a longer period over which h is contributing to register pressure. See Figure 5 for
an example. This problem arises because the update assignment serves not only to
initiate a new lifetime range, but also to extend the previous range, since it is an
additional use point. Thus a register is demanded for h all the way from its most
recently preceding nonupdate computation. This flaw of the TCM algorithm can
be avoided, however, by simply never using a cost function that assigns the same
cost to a circumstance in which updating is necessary and one where a nonupdat-
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a← 0 a← −1

a← 1 a← 0

h← 0
x← h

h← −b
y ← h

h← h+ b
z ← h

b← read()

a← 0 a← −1

a← 1 a← 0

h← 0
x← h

h← −b
y ← h

h← b h← 0

z ← h

b← read()

Fig. 5. A late update computation can cause more register pressure than an earlier nonupdate

computation. These are two alternative optimized versions; the original (not shown) has no
assignments to h and has a × b in place of each use of h. The wavy arrows represent potentially
large regions of uninteresting code, in which h is live in the left-hand version but not in the
right-hand version.

ing computation can achieve the same efficiency. That is, in the design of the cost
function, the necessity of using updating can serve as a “tie-breaker” between oth-
erwise equally attractive options. As an example, suppose that were it not for this
consideration, we would assign a cost of cost ′(n) to the cheapest way we know to
compute the term t at node n on our target hardware. Moreover, let update(n) be
0 if there is some way to compute t this cheaply at n without using the old value of
h, and 1 otherwise. Then we could define cost(n) = 2 · cost ′(n) + update(n). This
avoids the register pressure problem, because when the joining of paths causes an
update computation to be necessary (as in Figure 5), cost(n) will be higher after
the join than it is before, even if cost ′(n) remains constant. Thus TCM will choose
the nodes before the join as the insertion points.

4. ORIGIN OF THE COST AND COMPUTATION FUNCTIONS

As we have repeatedly stressed, the TCM framework is independent of the cost and
computation functions, so long as the cost function meets the two stated constraints.
However, in this section we will show one way in which such functions can plausibly
arise. In particular, we will examine in detail the functions used in our running
example, and then show that any functions arising in an analogous manner will
also satisfy the constraints.

Our approach consists of first using a data flow analysis to assign each node, n,
a set of computations, Sn, that would be legal alternatives to insert at that node.
Then we can use a hardware-specific model of the cost of each computation to define
computation(n) as a minimal cost element of Sn and cost(n) as its cost. (Of course,
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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computation cost

nop 1
h← ±a 2
h← ±b 2
h← const 2
h← h± a 3
h← h± b 3
h← a × b 4

Fig. 6. Example hardware-specific assignment of costs to computations.

an actual implementation need not construct the full set to determine a minimal
cost element.) In the example of Figures 1 and 2, we have S5 = {h← 6, h← a×b}
and S6 = {h ← a × b}, for instance. Note that S6 ⊆ S5. Thus, no matter what
hardware-specific costs are assigned to the computations, a minimal cost element
of S6 will be no more expensive than a minimal cost element of S5. This illustrates
a general benefit of our approach: we will be able to show that the cost function
satisfies its constraints purely by reference to the properties of the sets Sn, without
regard to the hardware-specific cost assignment. Thus the cost assignment is quite
arbitrary, other than that it should break ties in favor of nonupdate computations,
in order to reduce register pressure, as discussed earlier. To construct the example
functions in Figure 3, we used the costs shown in Figure 6.

Having seen that the sets Sn are the crux of the matter, we can turn to their
computation using data flow analysis. The analysis used for our example is a variant
of constant propagation and folding. Because the sets Sn are not information rich
enough to directly serve as the basis of the data flow analysis, we perform the
analysis using some more detailed information, info(n), and then translate to Sn
afterward. Specifically, we associate with each node four pieces of information,
which together determine Sn. Two are the values of a and b, if each is known to
have a constant value at that node. For example, at node 10 we know that a = 1,
but do not know a constant value for b. The other two pieces of information are
the changes in a and b since the most recent computation of a× b. Again, we can
either have a constant value or an indication (which we write >) that no constant
value is known. For example, at node 10, ∆b = 0, but ∆a = >. We summarize the
four pieces of information at node n as a four-tuple, info(n) = (a,∆a, b,∆b). For
example, info(10) = (1,>,>, 0) and info(11) = (>, 0,>,−1). Formally, we define
a complete lattice FlatInt that contains ⊥, the integers, and >, with ⊥ v k v >
for any integer k, and with any distinct integers incomparable. Then the function
info maps flow graph nodes to elements of the lattice FlatInt4. We will use L as
a name for FlatInt4.

As is usual in data flow analysis, we will associate with each node, n, a flow
function fn : L → L, and will use these flow functions to define the info function.
The flow functions themselves can be readily derived from our intended semantics of
the tuples (a,∆a, b,∆b). In doing so, we need to extend the arithmetic operators +
and − to operate on FlatInt. We use ⊕ and 	 for the extended versions, and have
∀x ∈ FlatInt. >⊕x = x⊕> = >, and ∀x ∈ FlatInt. x 6= > ⇒ ⊥⊕x = x⊕⊥ = ⊥.
(And similarly for 	.) If node n contains only a single three-address instruction,
we can define fn as follows. We only show assignments to a and x; assignments to
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n fn(a,∆a, b,∆b)

1 (a,∆a, b,∆b)
2 (>,>,>,>)
3 (2,∆a 	 a⊕ 2, 3,∆b 	 b⊕ 3)
4 (a,∆a, b,∆b)
5 (a,∆a, b,∆b)
6 (a,∆a, b,∆b)
7 (a, 0, b, 0)
8 (1,∆a 	 a⊕ 1, b,∆b)
9 (a,∆a, b	 1,∆b 	 1)

10 (a,∆a, b,∆b)
11 (a,∆a, b,∆b)
12 (a,∆a, b,∆b)
13 (a,∆a, b,∆b)
14 (a,∆a, b,∆b)
15 (a,∆a, b,∆b)
16 (a, 0, b, 0)

Fig. 7. Flow functions for example analysis of Figure 1.

b should be handled symmetrically to a, and all other variables should be treated
as x.

fn(a,∆a, b,∆b) =



(a,∆a, b,∆b) if Transp(n) ∧ ¬Comp(n)
(const ,∆a 	 a⊕ const , b,∆b) if n is a← const
(a⊕ const ,∆a ⊕ const , b,∆b) if n is a← a+ const
(>,>, b, 0) if n is a← a× b
(>,>, b,∆b) if n is a← anything else
(a, 0, b, 0) if n is x← a× b.

If the node n contains more than one instruction, we can construct fn from the
above basis by composition. For instance, Figure 7 shows the flow functions for our
running example.

Having defined our flow functions, we next examine how we use them to solve
for info. Our convention for the ordering relation on L is that x v y means y
describes a situation at least as general as x. As such, we will use the join or least-
upper-bound operator, t, as our confluence operator to merge the information on
converging paths. We consider two different ways in which the function info(n) can
be defined: by taking a join over all paths leading up to the node n, or as a least-
fixed-point solution to equations relating the information at each node to that at
its predecessors. It is well known [Kildall 1973] that these produce the same result
when the flow functions are distributive, rather than merely monotonic. However,
our example flow functions are not all distributive (specifically, f3 and f8 are not),
and we speculate that this may also be true for many other analyses to which our
general framework might profitably be applied. Therefore, we will show that either
solution leads to a cost function obeying our necessary constraint. Thus if a means
exists to find the join over all paths, its additional precision can safely be used. In
the more normal case that only the least fixed point is computable, that will also be
safe. It so happens that although our example analysis is not distributive, the two
solutions coincide for the particular flowgraph we show. Thus the info(n) column
of Figure 8 can be correctly read as either the join over all paths or the least fixed
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n info(n)

1 (>,>,>,>)
2 (>,>,>,>)
3 (>,>,>,>)
4 (>,>,>,>)
5 (2,>, 3,>)
6 (>,>,>,>)
7 (>,>,>,>)
8 (>, 0,>, 0)
9 (>, 0,>, 0)

10 (1,>,>, 0)
11 (>, 0,>,−1)
12 (1,>,>, 0)
13 (>, 0,>,−1)
14 (>,>,>,>)
15 (>,>,>,>)
16 (>,>,>,>)

Fig. 8. The info function for our running example.

point.
In order to discuss joins over all paths (even when there are infinitely many), we

will rely on the lattice being complete. In order to discuss the least fixed point, we
will rely on the flow functions being monotonic. When considering other analyses
beyond our initial example, one can settle for weaker conditions on the lattice and
flow functions by omitting either our results about joins over all paths or our results
about least fixed points.

Either way we solve the forward data flow analysis problem, we will take as
given the value of info(s), which we will call Init . For our sample analysis, we
use Init = (>,>,>,>). To define the join over all paths, we extend the flow
functions from individual nodes to paths by composition. That is, for any path p,
fp = fpλp ◦ · · · ◦ fp2 ◦ fp1 . Then our join over paths definition is

∀n ∈ N. info(n) =
⊔

p∈P[s,n]

fp[1,λp[(Init).

Our least-fixed-point definition is that we take info as the least fixed point of the
system

info(n) =
{

Init n = s⊔
m∈pred(n) fm(info(m)) n 6= s.

Once info(n) is computed using either definition, it can be abstracted to Sn, the
set of computations that might be inserted into n. In the following, ca and cb are
arbitrary constants, and (ca × cb) should be interpreted as the constant formed by
the compile-time multiplication of ca and cb. Sn is the minimal set such that

info(n) v (>, 0,>, 0) ⇒ nop ∈ Sn
info(n) v (0,>,>,>) ⇒ h← 0 ∈ Sn
info(n) v (>,>, 0,>) ⇒ h← 0 ∈ Sn

info(n) v (±1,>,>,>) ⇒ h← ±b ∈ Sn
info(n) v (>,>,±1,>) ⇒ h← ±a ∈ Sn
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info(n) v (ca,>, cb,>) ⇒ h← (ca × cb) ∈ Sn
info(n) v (>,±1,>, 0) ⇒ h← h± b ∈ Sn
info(n) v (>, 0,>,±1) ⇒ h← h± a ∈ Sn
info(n) v (>, ca, cb, 0) ⇒ h← h+ (ca × cb) ∈ Sn
info(n) v (ca, 0,>, cb) ⇒ h← h+ (ca × cb) ∈ Sn
info(n) v (>,>,>,>) ⇒ h← a× b ∈ Sn.

We have now completely shown how our example cost and computation functions
are defined. First the data flow analysis yields info(n). Then this is mapped to Sn
as shown above. Finally a minimal cost element of Sn is chosen as computation(n),
and cost(n) is its cost. Having seen this three-stage process, we next turn to
the question of how it ensures that the cost functions satisfies the two necessary
constraints. We start with the key observation that the info function has properties
analogous to those we need for cost .

Lemma 6. Using the least-fixed-point definition of the info function,

∀m,n ∈ N. m ∈ pred(n) ∧ Transp(m) ∧ ¬Comp(m) ⇒ info(n) w info(m)
∀m,n ∈ N. pred(n) = {m} ∧ Transp(m) ∧ ¬Comp(m) ⇒ info(n) = info(m).

Proof. Suppose we have Transp(m)∧¬Comp(m). Recall from the construction
of the flow functions that fm is then the identity function. Therefore,

info(n) =
⊔

m′∈pred(n)

fm′(info(m′))

w fm(info(m))
= info(m).

When m is the only predecessor of n, i.e., the only value for m′ above, we can
replace the w by =.

Lemma 7. Using the join over paths definition of the info function,

∀m,n ∈ N. m ∈ pred(n) ∧ Transp(m) ∧ ¬Comp(m) ⇒ info(n) w info(m)
∀m,n ∈ N. pred(n) = {m} ∧ Transp(m) ∧ ¬Comp(m) ⇒ info(n) = info(m).

Proof. By the definition of info and the fact that fm is the identity, we have

info(n) =
⊔

p∈P[s,n]

fp[1,λp[(Init)

=
⊔

m′∈pred(n)

⊔
p∈P[s,m′]

fm′(fp[1,λp[(Init))

w
⊔

p∈P[s,m]

fm(fp[1,λp[(Init))

=
⊔

p∈P[s,m]

fp[1,λp[(Init)

= info(m).
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In the case where m is the only predecessor of n, the w in the above reasoning can
be replaced by =.

Theorem 3. If cost(n) is defined in terms of Sn, and thus in terms of info(n),
as described above, we have

∀m,n ∈ N. m ∈ pred(n) ∧ Transp(m) ∧ ¬Comp(m) ⇒ cost(n) ≥ cost(m)
∀m,n ∈ N. pred(n) = {m} ∧ Transp(m) ∧ ¬Comp(m) ⇒ cost(n) = cost(m).

Proof. By Lemma 6 or 7, we have info(n) w info(m), with equality when n
has no predecessors other than m. From the construction of the sets, S, this im-
plies Sn ⊆ Sm, again with equality when there are no other predecessors. Thus
computation(n) ∈ Sm, and since computation(m) is chosen as a minimal-cost ele-
ment of Sm, we must have cost(n) ≥ cost(m). When there is only one predecessor,
Sn = Sm, and so clearly their minimal-cost elements must be of equal cost.

We have now finished discussing our example functions and can turn to the
more general question of how other data flow analyses can analogously give rise to
cost functions that satisfy the constraints. The proofs above relied only on quite
general properties (such as monotonicity), with one notable exception. Namely,
our example data flow analysis had the property that Transp(n) ∧ ¬Comp(n) ⇒
fn(x) = x. This was relied upon in both Lemmas 6 and 7, and does not hold for
many more general data flow analyses. For example, if the info at each node were
expanded to track the values of other variables, the above condition would not hold.
However, by adding one additional step to our process, we can substantially relax
this restriction.

Namely, rather than directly defining Sn from info(n), we can interpose an ab-
straction function, relevance, mapping L to another lattice L′, and define Sn in a
monotonic fashion from relevance(info(n)). Our restriction is now that

∀n ∈ N. Transp(n) ∧ ¬Comp(n)⇒ relevance ◦ fn = relevance.

We can informally say that fn must be transparent to the relevant portion of the
data flow information, rather than to all of it. Provided relevance is monotonic,
a result analogous to Lemma 6 can be proved, but with relevance(info(m)) and
relevance(info(n)) in place of info(m) and info(n). If we further restrict relevance
to be distributive, Lemma 7 can similarly be generalized. Therefore, a result like
Theorem 3 still holds. This provides the key to TCM’s more general applicability—
an area we touch on in the next section.

5. LIMITATIONS AND POTENTIAL

This section attempts to delimit more clearly the applicability of the TCM tech-
nique by both making more explicit some of its limitations, which previously were
mentioned only in passing, and sketching two examples of additional potential ap-
plications, rather different from the running example used up until now.

We will take up the limitations first—in a spirit of realism, not pessimism. There
are three principle limitations: the insistence on safety, the restriction on the cost
function, and the absence of a mechanism for transforming nested expressions in
ways made profitable by later linear function test replacement and dead-code elim-
ination.
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a← read()
b← read()

x← a× b

a← a+ 1

y ← a× b

a← read()
b← read()

h← a× b

x← h

a← a+ 1

h← h+ b

y ← h

Fig. 9. A questionable replacement of an outer-loop multiplication by an inner-loop addition.

When we say our insertion points are all safe, we mean that no inserted com-
putation calculates a value not calculated by the unoptimized program. One con-
sequence of our insistence on safety is that we never can chain together multiple
update computations without an intervening use. For example, consider a loop
body containing the multiplication i × 10, then a conditional increment of i, and
then a conditional decrement of i. On a machine where multiplication is more
than twice as expensive as addition, the loop would run faster if it were strength
reduced, coupling each of the conditional updates to i with a corresponding update
to a temporary holding i×10. However, TCM does not consider this option, as it is
unsafe. Note that “safety” is not merely a technical term here: a spurious overflow
could arise in the scenario described above. On the other hand, the overflow could
in practice be engineered around, leaving TCM at a disadvantage relative to other
strength reduction algorithms.

This also allows us to gain more insight into the superficially surprising result
that cost optimality and total cost optimality nearly coincide (Theorem 1). As the
above example shows, it can be profitable to replace a single expensive computation
with two inexpensive computations. However, doing so requires the unsafe chaining
of updates, which we had implicitly ruled out in the statement of the theorem.

On the other hand, if we were to drop the requirement of safety and allow multiple
updates, it turns out that there is in general no total-cost-optimal version of a
program, independent of the path taken through the program. One version can
favor one path through the program while another favors another path, with none
being optimal for all paths. For example, in Figure 9, either version of the program
can have lower total cost, depending on the relative frequencies of the inner and
outer back edges.

Our safety restriction has other consequences as well, beyond ruling out multiple
updates. In the introductory example, the use of a×b that occurs after the loop exit
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is essential to allow safe strength reduction. This is not as much of a limitation as
it may initially appear, however, in that it only affects situations (like the example)
in which a redefinition of a or b in the loop body is under conditional control. The
more straightforward case of an unconditional assignment in the loop body can be
safely handled with an update in the synthetic node on the loop’s back edge.

Similarly, the insistence on safety means that we can only handle loops that first
use a × b, then afterward redefine a and/or b. (Unless, that is, another use of
a × b occurs before loop entry.) A loop that did the redefinition before the use
would only be strength reducible if we allowed an unsafe computation in the loop
prologue. Luckily, modern programming style often favors use before redefinition.

Moving on to the second principal limitation of TCM, we have to be aware that
although the cost function can arise from many analyses, it is not fully general.
Consider, for example, a cost function that models the scheduling of hardware re-
sources. Such a cost function might assign a lower cost to an earlier node even
without joining of paths, uses of the optimized term, or definitions of its variables.
For example, it could be less expensive to do the computation earlier not because
a specialized version can be substituted, but because the latency can be fully over-
lapped with other computations before the result is needed. Important as such
scheduling considerations are, they are completely outside of TCM’s scope. The
cost of a computation is allowed to depend on the specificity of information available
about the operands, but not on such “extrinsic” factors as hardware scheduling.

Also, note that hoisting a computation only increases the specificity of context
if we are considering the precontext, or history, of the computation. Sinking a
computation increases the specificity of the postcontext, or future. Either form of
specificity can be relevant to cost. For example, by sinking a computation into a
region where one of its operands becomes dead, we might allow a less expensive
two-address instruction to be used. This opportunity would not be exploitable
using TCM. Instead, it appears that an analogous extension to partial dead-code
elimination might be useful.

Finally, in addition to these general limitations of the TCM framework, there
are some limitations specific to the instantiation of TCM we used as our running
example. For instance, our analysis cannot track a constant through variables other
than those being multiplied. As a second example, our transformation cannot take
advantage of an increment of a by 2 if b is nonconstant, even if a shift and an add
are cheaper than a multiplication, or if the value 2b happens to be available.

Having commented on TCM’s limitations, we can now provide some positive
evidence of its applicability, in particular two examples supporting our claim that
TCM has potential outside of the normal strength reduction area. Our first example
is the compilation of polymorphic operations. A type (or class) analysis can serve
as the basis for the cost function: the operation is cheaper at program points where
specific type information is deducible. For example, consider the following code in
an object-oriented language like Java:

Foo x = getSomeFoo(); // could be any subclass of Foo
while(x.someMethod()) // have to find which class’s someMethod
x = new Foo(x); // this makes a Foo, no subclass

On entry to this loop, it is not known what specific class of object x refers to—it
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i← 0

t← a[i]
u← t× c
v ← i+ 1
a[v]← u
i← v

Fig. 10. A program with opportunity for scalar replacement.

could be any subclass of Foo. As such, the concrete method to be invoked needs
to be dynamically selected. However, on subsequent iterations a cheaper static
binding to a specific method is possible. Assuming the compiler’s intermediate
representation separates method lookup from method invocation, TCM could be
used to hoist one copy of the method lookup code above the loop1and another copy
to the end of the loop body. The one at the end of the loop body could then be
“strength reduced” to a static binding.

One of the anonymous referees observed that some simple cases of scalar replace-
ment might also be expressible in the TCM framework. Consider for example the
program in Figure 10. Performing BCM on the expression a[i] produces the flow-
graph shown on the left in Figure 11. It would be plausible for a specialization
mechanism to then replace the two hoisted instances of a[i] as shown on the right
in that figure. Thus TCM, armed with suitable computation and cost functions
embodying the simplification mechanism, would produce this result. (In this exam-
ple, TCM’s lifetime reduction compared with BCM does not come into play, but in
general it would.)

6. RELATED WORK

There are two fundamentally distinct approaches to integrating strength reduction
into partial redundancy elimination. One approach (exemplified by our work) treats
all computations that have the same net effect (at some point in the flowgraph)
as equivalent. In our running example, we have a number of computations equiv-
alent to h ← a× b. In this approach, we use the techniques of partial redundancy
elimination to select in a unified manner the program points that should contain
some computation (of this equivalence class), whether it be a high-cost compu-

1In a language like Java which requires an exception to be raised at method invocation time if the
initial x is a null reference, some additional care will be required with the hoisted method lookup
to make sure the exception is not prematurely raised.
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i← 0

h← a[i]

t← h
u← t× c
v ← i+ 1
a[v]← u
i← v

h← a[i]

i← 0

h← a[0]

t← h
u← t× c
v ← i+ 1
a[v]← u
i← v

h← u

Fig. 11. Code motion and simplification achieves scalar replacement.

tation or a low-cost one. However, we “bias” the partial redundancy elimination
in favor of choosing those computation points at which low-cost members of the
equivalence class exist. At each chosen point, we then use the lowest-cost equivalent
computation.

In the alternative approach to integrating strength reduction with partial redun-
dancy elimination, the low-cost update computations are initially ignored. That
is, nodes at which an update computation would suffice are treated as though they
were transparent. Given this simplification, normal (“unbiased”) partial redun-
dancy elimination is used to choose only the full-cost computation points. The
necessary update computation points are then added in afterward.

The majority of prior work on integrating strength reduction with partial redun-
dancy elimination has fallen into this latter category, unlike the approach presented
in this article. The earliest work is that of Joshi and Dhamdhere [1982], which was
followed by Dhamdhere [1989]. The current state-of-the-art versions are those of
Knoop et al. [1993], Dhaneshwar and Dhamdhere [1995], and Kennedy et al. [1998].

All of these variants differ from our approach in that they may insert “unsafe”
computations, i.e., computations of values that were not computed by the unopti-
mized program. This can cause problems in some circumstances, for example when
an overflow exception can result. On the other hand, it may be possible to avoid
these adverse consequences, for example by using instructions that do not signal
exceptions. If such precautions suffice, the ability to insert unsafe computations
can open up some optimization opportunities that are closed to our rigidly safe
approach, as discussed in the previous section.

The algorithm of Knoop et al. and those of Dhamdhere and his collaborators also
differ from our approach in being restricted to a narrower class of candidate com-
putations. For this reason, none of them would be able to handle our introductory
example. In particular, all except the Strength Reduction of Large Expressions
(SRLE) algorithm of Dhaneshwar and Dhamdhere are limited to multiplications of
a variable by a constant. This is extended in SRLE to larger expressions, but with
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one operand of each multiplication still required to be a constant. By contrast,
Kennedy et al.’s algorithm covers a rather broad class of candidates. As published,
it still does not suffice for our introductory example, but a simple extension would
allow it to handle the loop portion of our example.

More fundamentally, this approach inextricably combines the notions of “less-
expensive computation” and “update computation.” As such, it cannot be adapted
to goals outside the traditional ambit of strength reduction, such as hoisting com-
putations to points where they are constant foldable. (Our introductory example
also included an instance of this optimization.)

Finally, all of these algorithms (unlike ours) can make some programs slower
rather than faster. Of the three state-of-the-art algorithms, those of Knoop et al.
and Kennedy et al. have a more severe problem in this regard than does that of
Dhaneshwar and Dhamdhere, in that they can cause unboundedly large slowdowns,
by replacing a multiplication in an outer loop by an addition in an inner loop.2

Consider for example the transformation shown in Figure 9. Because the update
computation h← h+ b in this example is unsafe, in the sense that it can compute
values that would not otherwise be computed, our TCM transformation would not
fall into this trap.

Of the above papers focusing on the integration of strength reduction with partial
redundancy elimination, Kennedy et al.’s is unique in that it is based on a novel
algorithm (SSAPRE) for partial redundancy elimination in static single-assignment
(SSA) form [Chow et al. 1997]. We suspect that SSAPRE could equally well be
extended in the manner of our TCM, though proving this remains as future work.

Turning to our own approach, in which partial redundancy elimination is used
to place all computations, not just the full-cost ones, the prior work is decidedly
sparser. An early letter by Dhamdhere [1979] seems to suggest the general approach
of first placing computations, then replacing some by less expensive versions. The
only paper to flesh this out in a partial redundancy elimination context is the
“semantic” approach of Knoop and Steffen [1991]. This differs from our work in
two important regards. First, a very powerful and expensive analysis is used to
determine semantically equivalent computations, while we suggest more limited
means of determining equivalences. Second, no provision is made for minimizing
the lifetimes of temporaries, unlike in TCM.

As we remarked in the previous section, if one abandons TCM’s insistence on
safety, it is no longer possible in general to simultaneously optimize each path
through the program. There is a body of work on partial redundancy elimination
that follows up on precisely this observation, by placing computations that are
“speculative” (or in our more prejudicial terminology, unsafe), and using statistical
information about execution frequencies to optimize over the frequency-weighted
collection of paths. This approach is exemplified by Bod́ık et al. [1998], Gupta et al.
[1998], and Horspool and Ho [1997].

Another of TCM’s limitations mentioned in the previous section is that the re-
strictions on the cost function make it unsuitable for modeling hardware resource

2At least, the published version of Kennedy et al.’s algorithm has this problem. Fred Chow
indicated in private correspondence that in implementing the algorithm, the SGI group made a
simple modification that avoids this problem.
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availability. For an alternative approach to partial redundancy elimination that
does incorporate resource availability, see Gupta et al. [1997].

Rüthing’s FCM algorithm [1998] is another partial redundancy elimination al-
gorithm that, like TCM, stops sinking computations in between the earliest point
of BCM and the latest point of LCM. In FCM’s case, the objective is to globally
optimize register pressure in the face of large (i.e., nested) expressions.

Finally, it is worth comparing our approach briefly to other strength reduction
algorithms that are not based on partial redundancy elimination: the classic al-
gorithms of Allen [1969], Cocke and Kennedy [1977], and Allen et al. [1981], and
the SSA-based approach of Cooper et al. [1995]. These approaches focus on the
notions of induction variables and region constants. This causes some reduction in
generality, with the extent of the reduction dependent on the specific definitions
used by the particular strength reduction algorithm. For example, the strength re-
duction aspect of our introductory example could be handled by Allen et al. [1981]
but not by Cooper et al. [1995], Allen [1969], or Cocke and Kennedy [1977]. A
minor variation on the example would move it out of the range of Allen et al. [1981]
as well, however, while leaving our own algorithm effective. Also, like most of the
algorithms based on partial redundancy elimination, these strength reduction al-
gorithms may introduce unsafe computations and cause performance loss, rather
than gain.
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Steffen, B., Knoop, J., and Rüthing, O. 1991. Efficient code motion and an adaption to strength
reduction. In Proceedings of the 4th International Joint Conference on Theory and Practice of
Software Development. Lecture Notes in Computer Science, vol. 494. Springer-Verlag, 394–415.

Received March 1998; accepted May 1998

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.


	Introduction
	Cost optimality
	Minimizing lifetime ranges
	Origin of the cost and computation functions
	Limitations and potential
	Related work
	Acknowledgments
	References

