
acmqueue | may-june 2016 1

component technologies

T
his article shows how cluster-level logging
infrastructure can be implemented using open
source tools and deployed using the very same
abstractions that are used to compose and
manage the software systems being logged.

Collecting and analyzing log information is an essential
aspect of running production systems to ensure their
reliability and to provide important auditing information.
Many tools have been developed to help with the
aggregation and collection of logs for specific software
components (e.g., an Apache web server) running on
specific servers (e.g., Fluentd4 and Logstash.9) They are
accompanied by tools such as Elasticsearch3 for ingesting
log information into persistent storage and tools such as
Kibana7 for querying log information.

Collecting the logs of components realized using
containers such as those from Docker2 and orchestrated
by systems such as Kubernetes,8 however, is more
challenging because there is no longer a specific program
and a specific sever. This is because a component consists
of many anonymous instances (replicas) that are scaled
up and down in number depending on the system load.

Logging
Challenges

of Container
Based Cloud

Deployments

SATNAM SINGH

1 of 24 TEXT
ONLY

Cluster-level
 Logging

of Containers
with Containers

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2956641.2965647&domain=pdf&date_stamp=2016-05-14

acmqueue | may-june 2016 2

component technologies

Furthermore, there is no specific server because each
replica is run on a server chosen by the orchestrator.

This article looks at how to overcome these challenges
by describing how cluster-level log aggregation and
inspection can be implemented on the Kubernetes
orchestration framework. A key aspect of the approach
described here is its exploitation of the same abstractions
that are used to compose and manage the system to be
logged to also build the logging infrastructure itself. This
approach makes use of using existing open source tools
such as Fluentd, Elasticsearch, and Kibana, which are
deployed inside containers and orchestrated to collect the
logs of the other containers running in a cluster.

A BRIEF INTRODUCTION TO KUBERNETES
This article describes just enough of the Kubernetes
system to help motivate a log collection and aggregation
scenario for a simple application. A comprehensive
description of the Kubernetes container orchestrator can
be found on its website,8 and an overview article on Borg,
Omega and Kubernetes is available on acmqueue.1

The Kubernetes system can orchestrate components of
applications on a variety of public clouds as well as private
clusters. In this article an application is deployed on a
Kubernetes cluster created on a collection of VMs (virtual
machines) running on the public cloud Google Compute
Engine.5 A cluster could have been created using Google
Container Engine (GKE),6 which automates many aspects
of cluster creation and management. To emphasize the
provider-agnostic nature of the approach, we illustrate
the explicit creation of a Kubernetes cluster that performs

2 of 24

http://queue.acm.org/detail.cfm?id=2898444
http://queue.acm.org/detail.cfm?id=2898444
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/

acmqueue | may-june 2016 3

component technologies

log collection and aggregation with open-source tools.
Either explicit cluster creation or creation using a cluster
management system like GKE allows us to perform log
collection and aggregation with open-source tools,
although GKE allows for tighter integration with Google’s
proprietary cloud logging system.

Figure 1 shows the deployment of a four-node
Kubernetes cluster that is used for the example application
described in this article. This cluster has four worker VMs
called kubernetes-minion-08on, kubernetes-minion-
7i2t, kubernetes-minion-9l7k, and kubernetes-
minion-ei9f. A fifth Kubernetes master VM orchestrates
work onto the other VMs. For work scheduled on this
cluster by Kubernetes, however, you should remain
oblivious to the name or IP address of the particular node
that is used to run the applications since this is one of
the details that is abstracted by Kubernetes. You don’t
know the name of the machine running our program.
Furthermore, the components of the application will scale
up and down in size as the system evolves and deals with
failure, so one logical component may execute across
many different machines. The name of the machine(s)
running your program may change.

3 of 24

FIGURE 1: Kubernetes cluster running on Google Compute Platform

acmqueue | may-june 2016 4

component technologies

Consequently, in the Kubernetes model it does not
make sense to think of a specific program P running on
a specific machine M. It is far more idiomatic to identify
parts of the system by making queries over labels that are
attached to anonymous entities created by the Kubernetes
orchestrator, which will return the currently running
entities that match the query. This allows us to talk about
a dynamically evolving infrastructure without mentioning
the names of specific resources.

A Music Store Application
A Kubernetes deployment of a hypothetical music
store application is used to help describe how cluster-
level container logs can be collected. The application
has several front-end microservices that accept HTTP
requests to a web interface for browsing and buying
music. These front-end services work by communicating
with a back-end MySQL instance and a Redis cluster that
provide the persistent storage needed by the application.
A persistent disk hosted on Google Compute Engine also
provides the storage needed by the MySQL database.

LOGGING PODS
The basic unit of deployment in Kubernetes is a pod. A pod
is the specification of resources that should always be
allocated together as an atomic unit onto the same node
along with other information that a cluster orchestrator
can use to manage the pod’s behavior. The music store
application uses one pod to describe the deployment of the
MySQL instance as shown in the YAML file (albums-db-pod.

4 of 24

acmqueue | may-june 2016 5

component technologies

yaml [https://github.com/satnam6502/logging-acm-queue/
blob/master/albums-db-pod.yaml]):

apiVersion: v1

kind: Pod

metadata:

 name: albums-db

 labels:

 app: music1983

 role: db

 tier: backend

spec:

 containers:

 - name: mysql

 image: mysql:5.6

 env:

 - name: MYSQL_ROOT_PASSWORD

 value: REDACTED

 ports:

 - containerPort: 3306

 volumeMounts:

 - name: mysql-persistent-storage

 mountPath: /var/lib/mysql

 volumes:

 - name: mysql-persistent-storage

 gcePersistentDisk:

 pdName: albums-disk

 fsType: ext4

This specification can be used to create a deployment of
the music store database:

5 of 24

acmqueue | may-june 2016 6

component technologies

$ kubectl create –f albums-db-pod.yaml

Figure 2 illustrates a deployment of this pod, which has
the name albums-db and a pod IP address of 10.240.0.5.
It runs on the Google Compute Engine VM called
kubernetes-minion-917k, contains a Docker image of
a MySQL instance, and uses a persistent disk on Google
Compute Engine called albums-disk. Three labels identify
the application music1983, the role db, and the tier backend.
The pod exposes the port 3306 serviced by the MySQL
Docker instance for use by other components in the same
cluster through the address 10.240.0.5:3306.

Inside the Kubernetes cluster, you can connect to this
database, populate it, and make queries. For example:

6 of 24

FIGURE 2: A deployment of the MySQL albums database

acmqueue | may-june 2016 7

component technologies

The logs for a pod can be extracted using the Kubernetes
command-line tool:

This command fetches the logs for the currently running
MySQL Docker image. You can ask Kubernetes to report
the Docker container ID for the running MySQL instance:

Does this solve the problem of collecting logs from
an application deployed on a Kubernetes cluster? One
problem is that during the lifetime of a pod the underlying
Docker container (or containers) that is deployed may

7 of 24

$ mysql --host=10.240.0.5 --user=NAME --password=REDACTED albums
mysql> select * from pop where artist = ‘Pink Floyd’;
+------------+-----------------------+-----------+----------+
| artist | album | inventory | released |
+------------+-----------------------+-----------+----------+
| Pink Floyd | Dark Side of the Moon | 57 | 1973 |
| Pink Floyd | The Wall | 103 | 1983 |
+------------+-----------------------+-----------+----------+
2 rows in set (0.08 sec)

$ kubectl logs albums-db
…
2016-03-01 00:43:20 1 [Note] InnoDB: 5.6.29 started; log sequence
number 1710893
2016-03-01 00:43:20 1 [Note] Server hostname (bind-address): ‘*’;
port: 3306
2016-03-01 00:43:20 1 [Note] IPv6 is available.
…

$ kubectl describe pod albums-db | grep “Container ID”

 Container ID: docker://38ab5c9e9aa8004e9b61f19885…

acmqueue | may-june 2016 8

component technologies

terminate and new replacement containers created (e.g.,
to deal with a container that has failed in some way). The
following induces a failure by sabotaging the MySQL
container and seeing how Kubernetes responds. This is
done by SSH’ing to the Google Compute Engine VM that
is running the container in order to kill the MySQL Docker
container.

$ gcloud compute --project “kubernetes-6502”

ssh --zone “us-central1-b” “kubernetes-minion-

9l7k”

$ sudo –s

docker ps

CONTAINER ID IMAGE

38ab5c9e9aa8 mysql:5.6

docker kill 38ab5c9e9aa8

38ab5c9e9aa8

docker ps

CONTAINER ID

abdfca342daa mysql:5.6

Soon after, an agent running on the node that is part
of the Kubernetes system noticed the container was no
longer running. In order to drive the current state of the
system to the desired state, a new Docker instance of
MySQL is created with a container ID that starts with
abdfca342daa. Checking the logs of albums-db now
reveals:

8 of 24

acmqueue | may-june 2016 9

component technologies

The logs are now for the currently running container
(abdfca342daa), and the logs for the previous instance of
the MySQL container (38ab5c9e9aa8) have been lost. The
lifetime of these logs is determined from the lifetime of the
underlying Docker container rather than the lifetime of the
pod. What is really needed is a mechanism for collecting
and storing all the log information that was generated by
every container instance that runs as part of this pod’s
execution lifecycle.

Logging Pods Managed by Replication Controllers
Although a single pod in a Kubernetes cluster can be
specified and deployed, it is far more idiomatic to specify
a replication controller that creates many replicas of a
pod. Here is an example of a replication controller that

9 of 24

$ kubectl logs albums-db
2016-03-01 01:33:25 0 [Note] mysqld (mysqld 5.6.29) starting as
process 1 ...
…
2016-03-01 01:33:25 1 [Note] InnoDB: The log sequence numbers
1710893 and 1710893 in ibdata files do not match the log se-
quence number 1710903 in the ib_logfiles!
2016-03-01 01:33:25 1 [Note] InnoDB: Database was not shutdown
normally!
2016-03-01 01:33:25 1 [Note] InnoDB: Starting crash recovery.
…
2016-03-01 01:33:25 1 [Note] InnoDB: 5.6.29 started; log sequence
number 1710903
2016-03-01 01:33:25 1 [Note] Server hostname (bind-address): ‘*’;
port: 3306

acmqueue | may-june 2016 10

component technologies

specifies the deployment of two Redis slave pods (redis-
slave-controller.yaml [https://github.com/satnam6502/
logging-acm-queue/blob/master/redis-slave-controller.
yaml]):

apiVersion: v1

kind: ReplicationController

metadata:

 name: redis-slave

 labels:

 app: music1983

 role: slave

 tier: backend

spec:

 replicas: 2

 template:

 metadata:

 labels:

 app: music1983

 role: slave

 tier: backend

 spec:

 containers:

 - name: slave

 image: redis

 resources:

 requests:

 cpu: 300m

 memory: 250Mi

 ports:

 - containerPort: 6379

10 of 24

acmqueue | may-june 2016 11

component technologies

This specification declares a replication controller
called redis-slave, which has three user-defined labels
of metadata that are attached to each pod it creates.
The labels identify the name of the overall application
music1983, the role of the Redis instance slave, and this
pod as being a member of the backend tier. The initial
number of replica pods is set to two, although this number
may be dialed up or down later. Each pod to be replicated
consists of a Redis Docker container, an exposed port
6379 over which the Redis protocol operates, and some
resource requests for CPU and memory utilization that
are communicated to the scheduler. This specification can
be given to the Kubernetes command-line tool to bring the
Redis slave pods to life:

$ kubectl create –f redis-slave-controller.yaml

Figure 3 shows a sample deployment of such a Redis
slave controller with two pods running on two different
Google Compute Engine VMs. The pods have automatically
generated names: redis-slave-tic4b and redis-slave-yazzp.
Do not get too attached to the name of any specific pod,
since pods may come and go as a result of failure or
changes in the cardinality of the replication controller.

Logging Pods Captured by a Service Specification
Each pod has its own IP address, and the IP address of the
host VM is also shown, although this address is never of
any interest to the Kubernetes application running on the
cluster. If you can’t utter the name of a specific pod, then
how can you interact with it? Label selectors can define an

11 of 24

acmqueue | may-june 2016 12

component technologies

entity called a service, which introduces a stable name for a
collection of resources. Requests sent to the stable name
provided by the service are automatically routed to a pod
that matches the net cast by the service label selectors.
Here is the definition of a service identifying pods that
provide the Redis slave functionality (redis-slave-service.
yaml [https://github.com/satnam6502/logging-acm-queue/
blob/master/redis-slave-service.yaml]):

apiVersion: v1

kind: Service

metadata:

FIGURE 3: Deployment of the Redis slave replicated pods

12 of 24

acmqueue | may-june 2016 13

component technologies

 name: redis-slave

 labels:

 app: music1983

 role: slave

 tier: backend

spec:

 ports:

 - port: 6379

 selector:

 app: music1983

 role: slave

 tier: backend

The deployment of this service is illustrated in figure
4. The service defines a DNS (Domain Name System)-
resolvable name within the cluster redis-slave, which
accepts requests on port 6379 and then forwards them to

FIGURE 4: Service mapping requests to Redis read slaves

13 of 24

acmqueue | may-june 2016 14

component technologies

any pod that matches its label selectors (i.e., any pod that
has the app label set to music1983, the role label set to
slave, and the tier label set to backend). Now consumers
of the redis-slave-read-replicated pods are insulated
from the names of the specific pods that are used to
service their requests as well as the names of the specific
nodes on which these pods are running.

Figure 5 shows the deployment of a music store website
made up of several front-end microservices that accept
external requests and render a web user interface.
These front-end services store information in a key/value
store implemented by several instances of the Redis key/

FIGURE 5: A Kubernetes deployment of a music store service

14 of 24

acmqueue | may-june 2016 15

component technologies

value store. The system is designed to make it easy to
independently scale up the capacity for (a) serving web
traffic; (b) reading from the key/value storage system;
(c) writing to the key/value storage system. As more
users connect to the music store website, the number of
front-end microservices can be dialed up. Typically, you
expect many more relatively cheap read operations than
expensive write operations to the key/value store. To
process read operations as quickly as possible, reads from
Redis slave instances (two in this case) are serviced and a
separate pool of Redis microservices deployed as masters
that perform write operations (initially just one in this
case).

Collecting the logs of the front-end service pods brings
up another life-cycle issue. It is not enough to just collect
the logs from each of the three currently running pods
(even when collecting the logs of multiple invocations of
the front-end Docker image), because pods themselves
may be terminated and then reborn (possibly on a different
host machine). In certain situations, there may briefly be
more than three front-end pods or perhaps fewer than
three. If this occurs, the Kubernetes orchestration system
will notice and create or kill pods to drive the system to
the declared state of having just three front-end pods. As
front-end pods come and go, you want to collect all of their
logs, so the log-collection activity has a lifetime that is
associated with the front-end replication controller rather
than the lifetime of a specific pod.

Using Fluentd to collect node-level logs
The open-source log aggregator Fluentd is used to collect

15 of 24

http://www.fluentd.org/

acmqueue | may-june 2016 16

component technologies

the logs of the Docker containers running on a given
node. Trying to run an instance of a Fluentd collector
process directly on each node (i.e., GCE VM) generates the
same deployment problems that pods were created to
solve (e.g., dealing with failure and performing updates).
Consequently, node-level log aggregation of Docker
containers is actually implemented from a Docker
container that runs as part of a pod specification. This
meta-approach allows the logging layer to benefit from
the same advantages afforded to the application layers by
the Kubernetes model for managing deployment and life
cycle events. For example, the rolling update mechanism
of Kubernetes can update the pods running on each node
so they use an updated version of the log-aggregation
software while the cluster is still running.

The Fluentd collectors do not store the logs
themselves. Instead they send their logs to an
Elasticsearch cluster that stores the log information
in a replicated set of nodes. Again, rather than running
this Elasticsearch cluster directly “on the metal,” you
can define pods that specify the behavior of a single
Elasticsearch replica, then define a replication controller
to specify a collection of Elasticsearch nodes that contain
the replicated log information and provide a query
interface, and finally define a service that provides a stable
name for balancing queries to the Elasticsearch cluster.

The complete specification of the Fluentd node-level
collector pods is shown here (fluentd-es.yaml [https://
github.com/kubernetes/kubernetes/blob/master/cluster/
saltbase/salt/fluentd-es/]):

16 of 24

https://github.com/kubernetes/kubernetes/blob/master/cluster/saltbase/salt/fluentd-es/fluentd-es.yaml

acmqueue | may-june 2016 17

component technologies

apiVersion: v1

kind: Pod

metadata:

 name: fluentd-elasticsearch

 namespace: kube-system

spec:

 containers:

 - name: fluentd-elasticsearch

 image: gcr.io/google_containers/fluentd-

elasticsearch:1.11

 resources:

 limits:

 cpu: 100m

 args:

 - -q

 volumeMounts:

 - name: varlog

 mountPath: /var/log

 - name: varlibdockercontainers

 mountPath: /var/lib/docker/containers

 readOnly: true

 terminationGracePeriodSeconds: 30

 volumes:

 - name: varlog

 hostPath:

 path: /var/log

 - name: varlibdockercontainers

 hostPath:

 path: /var/lib/docker/containers

This specifies a node-level collector that runs a

17 of 24

acmqueue | may-june 2016 18

component technologies

specially built Fluentd image configured to send logs to
an Elasticsearch cluster using the DNS name and port
elasticsearch-logging:9200 (which is itself implemented
as a Kubernetes service). The specification also describes
how the location of the Docker logs on the node-level file
system are mapped to the file system inside the Docker
container run by the pod. This allows the logs of all the
Docker containers on the node to be collected by this
Fluentd instance running inside this container.

When a Kubernetes cluster is configured to use
logging with Elasticsearch as the data store, the cluster
creation process instantiates a log-collector pod on each
node. These pods can be observed in the kube-system
namespace:

A special process on each node makes sure that one
of these log-collection pods is running on each node.
If a log-collector pod fails for any reason, a new one is
created in its place. These pods collect the logs of the
locally running Docker containers and ingest them into
an Elasticsearch Kubernetes service running in the kube-
system namespace.

18 of 24

$ kubectl get pods --namespace=kube-system
NAME READY STATUS RESTARTS AGE
fluentd-elasticsearch-kubernetes-minion-08on 1/1 Running 0 16d
fluentd-elasticsearch-kubernetes-minion-7i2t 1/1 Running 0 16d
fluentd-elasticsearch-kubernetes-minion-9l7k 1/1 Running 0 16d
fluentd-elasticsearch-kubernetes-minion-ei9f 1/1 Running 0 16d
…

acmqueue | may-june 2016 19

component technologies

Using Elasticsearch to Store and Query Cluster Logs
A cluster created using Elasticsearch for the storage
of logs will by default instantiate two Elasticsearch
instances. The specification for these Elasticsearch logging
pods can be found at es-controller.yaml [https://github.
com/kubernetes/kubernetes/blob/master/cluster/addons/
fluentd-elasticsearch/es-controller.yaml], which describes
a replication controller for the Elasicsearch instances
as well as the actual configuration of the Elasticsearch
logging pods. These can be observed in the kube-system
namespace:

The node-level log-collection Fluentd pods do not speak
directly to these Elasticsearch pods. Instead, they connect
to the DNS name and elasticsearch-logging:9200, which is
implemented by an Elasticsearch Kubernetes service es-
service.yaml [https://github.com/kubernetes/kubernetes/
blob/master/cluster/addons/fluentd-elasticsearch/es-
service.yaml]:

apiVersion: v1

kind: Service

metadata:

 name: elasticsearch-logging

 namespace: kube-system

19 of 24

$ kubectl get pods --namespace=kube-system

NAME READY STATUS RESTARTS AGE

elasticsearch-logging-v1-7rmo3 1/1 Running 0 16d

elasticsearch-logging-v1-v7lmv 1/1 Running 0 16d

…

https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/fluentd-elasticsearch/es-controller.yaml
https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/fluentd-elasticsearch/es-service.yaml
https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/fluentd-elasticsearch/es-service.yaml

acmqueue | may-june 2016 20

component technologies

 labels:

 k8s-app: elasticsearch-logging

 kubernetes.io/cluster-service: “true”

 kubernetes.io/name: “Elasticsearch”

spec:

 ports:

 - port: 9200

 protocol: TCP

 targetPort: db

 selector:

 k8s-app: elasticsearch-logging

You can observe this service running in the kube-system
namespace:

Elasticsearch can be queried for the logs of all pods
that are captured by the label selectors for the front-
end service. A local proxy allows you to connect to the
cluster with administrator privileges, which are required to
retrieve the logs of running containers. You query for just
the logs of containers that are marked with a container_
name field of frontend-server.

20 of 24

$ kubectl get services --namespace=kube-system
NAME CLUSTER_IP EXTERNAL_IP PORT(S)
elasticsearch-logging 10.0.8.117 <none> 9200/TCP
…

acmqueue | may-june 2016 21

component technologies 21 of 24

$ kubectl proxy
<elsewhere>
$ curl -XGET “http://localhost:8001/api/v1/proxy/namespaces/
kube-system/services/elasticsearch-logging/_search?q=container_
name:frontend-server&_source=false&fields=log&pretty=true”
…
 }, {
 “_index” : “logstash-2016.02.26”,
 “_type” : “fluentd”,
 “_id” : “AVMa-C0pcuStSsThK0M4”,
 “_score” : 2.8861463,
 “fields” : {
 “log” : [“Slow read for key k103: 192 ms”]
 }
…
 }, {
 “_index” : “logstash-2016.02.26”,
 “_type” : “fluentd”,
 “_id” : “AVMa-C0pcuStSsThK0NE”,
 “_score” : 2.8861463,
 “fields” : {
 “log” : [“[negroni] Started GET /lrange/k336”]
 }
…
 }, {
 “_index” : “logstash-2016.02.26”,
 “_type” : “fluentd”,
 “_id” : “AVMa-C_fcuStSsThK0Op”,
 “_score” : 2.8861463,
 “fields” : {
 “log” : [“Slow write for key k970: 187 ms”]
 }
 }, {
…

acmqueue | may-june 2016 22

component technologies

Since the Elasticsearch cluster is a collection of
pods managed by a replication controller, it can deal
with an increased query load to the logging system by
simply increasing the number of replica nodes for the
Elasticsearch logging instances. Each pod contains a
replica of the ingested logs so if one pod dies for some
reason (e.g., the machine it is running on fails), then a new
pod will be created to replace it, and it will synchronize
with the running pods to replicate the ingested logs.

VIEWING LOGS WITH KIBANA
The aggregated logs in the Elasticsearch cluster can
be viewed using Kibana. This presents a web interface,
which provides a more convenient interactive method for
querying the ingested logs, as illustrated in figure 6.

The Kibana pods are also monitored by the Kubernetes

FIGURE 6: Querying ingested logs using Kibana

22 of 24

acmqueue | may-june 2016 23

component technologies

system to ensure they are running healthily and the
expected number of replicas are present. The life cycle
of these pods is controlled by a replication-controller
specification similar in nature to how the Elasticsearch
cluster was configured. The following output shows the
cluster configured to maintain two Elasticsearch instances
and one Kibana instance. If system load increases, a
simple command can be issued to dial up the number of
Elasticsearch and Kibana replicas. Furthermore, the number
of Elasticsearch replicas can be scaled up independently of
the number of Kibana instances, allowing you to respond to
increases in different kinds of loads by scaling up only the
subcomponents needed to meet that demand.

SUMMARY
Collecting the logs of containers running in an
orchestrated cluster presents some challenges that are
not faced by manually deployed software components.
In particular, we cannot explicitly identify by name a
particular container (or the name of the pod in which it
is contained), nor the node that container is running on,
because both of these may change during the lifetime
of the deployed application. As application components
(microservices) come and go, we need to gather and
aggregate all the logs of the containers that work as part
of the application during its life cycle. This challenge is
addressed by the use of label-selector queries to identify
which running activities belong to the application of
interest at any given moment. Then these queries can be
used (by way of a Kubernetes service) to query the logs of a
dynamically evolving application.

23 of 24

acmqueue | may-june 2016 24

component technologies

The basic infrastructure needed to implement log
aggregation and collection can itself be implemented using
the same abstractions used to compose and manage the
applications which need to be logged: pods, replication
controllers, and services. This allows for adapting the
capacity of the logging system and updating it while it is
running as well as robustly dealing with failure. This also
provides a model for developing other cloud computing
system infrastructure components in a modular, flexible,
reliable, and scalable manner.

References
1. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes,

J. 2016. Borg, Omega, and Kubernetes. Acmqueue 14(1);
http://queue.acm.org/detail.cfm?id=2898444.

2. Docker; www.docker.com.
3. Elasticsearch. Elastic; https://www.elastic.co/products/

elasticsearch.
4. Fluentd; http://www.fluentd.org/.
5. Google Compute Engine; https://cloud.google.com/

compute/.
6. Google Container Engine; https://cloud.google.com/

container-engine/.
7. Kibana. Elastic; https://www.elastic.co/products/kibana.
8. Kubernetes; http://kubernetes.io/.
9. Logstash. Elastic; https://www.elastic.co/products/

logstash.

Satnam Singh (s.singh@acm.org) is a software engineer
at Facebook working on mobile performance. Previously he
worked at Google on the Kubernetes project.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

24 of 24

http://queue.acm.org/detail.cfm?id=2898444
http://www.docker.com
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
http://www.fluentd.org/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://www.elastic.co/products/kibana
http://kubernetes.io/
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
mailto:s.singh@acm.org

