
96 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

Concordia

This Java mobile agent technology offers
security and persistence while maintaining
a record of an agent’s travels.

Reuven Koblick

The scale of applications now being considered for net-
work environments requires security and reliability pre-
viously available only in large transaction processing
systems. To be viewed as a realistic development alter-
native for such applications, mobile agent systems have
to provide highly secure and reliable environments. Mit-
subishi’s Concordia, introduced in 1998, is designed for
such complex, secure, reliable, real-world enterprise
applications.

Concordia offers features specially suited for these
applications, including extensive security, reliable
transmission of agents, access to legacy and native
applications, remote administration, and agent debug-
ging. It also includes several forms of interagent com-
munication (for more detail, go to www.meitca.
com/HSL/Products/Concordia).

Concordia provides a rich security model for protect-
ing servers, agents, and Concordia itself from attack or
unauthorized access. Agent protection is the process of
protecting an agent’s contents from tampering or
inspection during transmission across a network con-
nection or when stored on disk. Such protection ensures
the privacy and integrity of the agent and the poten-
tially sensitive information it carries.

Agent users need assurance that sensitive data car-
ried by an agent cannot be compromised and that the
agent cannot be redirected to perform unwanted
actions. So, prior to transmission, Concordia encrypts
an agent’s bytecodes, member data, and state infor-
mation through a combination of symmetric and public-
key cryptography. Concordia servers also authenticate
each other by exchanging digital certificates.

Concordia encrypts an agent’s on-disk representa-
tion. For added reliability, it uses a persistent object
store to periodically checkpoint an agent; in case of
system failure and restart, the agent executes from its
last checkpoint. Since the object store saves an agent
and its state information, it could also be a potential
security risk. So Concordia further secures this on-disk
representation through encryption.

Agent authorization. Server resource protection

ensures that an agent performs only the server tasks for
which it is authorized and for no others. Concordia’s
server resource protection follows two design concepts:
agent identification and resource permission. An agen-
t’s user identity uniquely represents the user who
launched the agent. It consists of a user name identify-
ing a particular individual, a group name identifying a
group of individuals, and a password. Within the user
identity, the password is always stored in a secure form
and is never represented in clear text.

An agent roaming the network carries its own iden-
tity. At each stop in its travels, the agent’s identity is
verified against a list of the system’s valid users. Each
server includes a list of users as well as the correspond-
ing resource-access permissions allowed for that user.
Default permissions may also be configured and
assigned to unknown users.

Resource permissions can be used to allow or deny
fine-grain access to machine resources. For example, a
resource can be constructed to allow read-access to a
machine’s file system. Another resource can deny such
access. And a third can specify read-access only to a
particular file on the machine. Concordia’s resource
permission mechanism is built atop the standard Java
security classes, ensuring that agents use only the
server resources to which they are granted access.

If a system’s source code can be tampered with, no
security policies can guarantee agent or server protec-
tion. Hence, class protection ensures that Concordia
code is not compromised. Concordia’s bytecodes are
digitally signed. When an agent executes, Concordia
guarantees the agent has not been altered in any way by
verifying its digital signature.

Concordia’s reliability features include transactional
message queuing for guaranteed delivery of agents to
remote systems, proxies to shield agents from the
effects of system and network failures, and the object
store.

Transmission across the network. The Concordia
infrastructure provides reliable transmission of agents
across the network by way of an underlying message-
queuing subsystem. Concordia’s queuing support is a
natural fit for the disconnected operational mode of the
mobile agent paradigm, providing a store-and-forward
mechanism. Prior to transmission, an agent is stored in
the local system’s message queue and remains there
until it has been received by the remote host. Agents
can also be stored on the message queue of a local sys-
tem while a remote host undergoes repair or is merely

http://crossmark.crossref.org/dialog/?doi=10.1145%2F295685.295879&domain=pdf&date_stamp=1999-03-01

COMMUNICATIONS OF THE ACM March 1999/Vol. 42, No. 3 97

being moved to a different physical location. When the
remote server comes back online, the local server then
forwards the agent to the server that was offline.

The message queuing subsystem provides additional
reliability by maintaining a copy of the agent to be
transmitted in an on-disk queue until the recipient of
this agent transmission acknowledges receipt via the
two-phase commit protocol.

Proxies increase Concordia reliability by shielding
agents and other objects from the effects of server and
system failures. Concordia provides proxies for compo-
nents supporting potentially long-lived connections.
Proxies transparently attempt to reestablish connec-
tions when they are unable to communicate with their
original counterparts.

Concordia includes an extensive remote administra-
tion facility that starts up, shuts down, and configures
Concordia nodes, or the places where agents execute. It
also manages changes in the security profile of agents,
as well as servers. The administration facility also mon-
itors the progress of agents throughout the network and
maintains agent and system statistics.

Concordia’s “service bridge” component gives
agents controlled access to native applications (such
as legacy databases). It uses the system’s security fea-
tures to ensure that agents do not exceed the permis-
sions granted them by the administration component.
Instances of a service bridge can be located through
lookup in Concordia’s directory service.

A notable difficulty in agent development is tracking
the progress of an agent through the network. Concor-
dia’s agent debugger monitors, controls, and modifies
an agent as it travels and executes throughout the net-
work. The agent debugger helps track an agent at all
times.

Reuven Koblick (reuven@meitca.com) is assistant laboratory director
at the Mitsubishi Electric Information Technology Center America in
Waltham, Mass.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

© 1999 ACM 0002-0782/99/0300 $5.00

c

requests the agent manager transport it to the cor-
rect location.

The security manager protects the host and the
mobile agents against unauthorized access. All
other mobile agent system components interact
with it to authenticate and authorize mobile
agents. The security manager also may protect
agents by encrypting them before transmission
and before they are saved to persistent storage. In
highly secure systems, the security manager may
digitally sign agents, and mobile agent systems
may authenticate each other through an exchange
of certificates. The security manager also allows
authorized agents to pass through firewalls.

The reliability manager ensures the robustness
of the mobile agent system. In highly reliable sys-
tems, it shields agents from the effects of server
and system crashes. One of its main tasks is to
guarantee the persistence of state associated with
agents as well as with the mobile agent system. In
addition, the reliability manager may use transac-
tional queuing, possibly with a two-phase com-
mit, to ensure agents reach their destination, even
during system crashes.

The interagent communications manager in
Java and other systems facilitates communication
between mobile agents dispersed throughout a
network. All but the simplest of applications use
multiple agents to perform their computations,
and the existence of multiple associated agents
mandates interagent communication. Mobile
agent systems typically offer messaging or distrib-
uted events. Some systems include more sophisti-
cated forms of interagent communication, such as
Concordia, which enables affiliated agents to
cooperatively solve a complex problem that can be
partitioned into smaller subtasks.

The application gateway serves as a secure entry
point through which agents can interact with
application servers (such as legacy databases).
Agents may use the JNDI-based directory man-
ager to identify the location of an application
server and then migrate to the host on which the
server is located. An arriving agent accesses resi-
dent servers through this gateway. The security
manager has to authorize the agent’s use of the
gateway and the application server.

Although this generic architecture is sufficient
for most application domains, certain extensions
to it and improvements in basic distributed com-
puting technology would make mobile agents
more efficient and practical for e-commerce appli-
cations. The current generation of agent frame-
works implements abstractions supporting

