
Illinois Wesleyan University

From the SelectedWorks of Andrew Shallue

2016

Tabulating pseudoprimes and tabulating liars
Andrew Shallue

This work is licensed under a Creative Commons CC_BY-NC International License.

Available at: https://works.bepress.com/andrew_shallue/7/

http://www.iwu.edu
https://works.bepress.com/andrew_shallue/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://works.bepress.com/andrew_shallue/7/


Tabulating Pseudoprimes and Tabulating Liars

Andrew Shallue

1 Abstract

This paper explores the asymptotic complexity of two problems related to the Miller-Rabin-
Selfridge primality test. The first problem is to tabulate strong pseudoprimes to a single
fixed base a. It is now proven that tabulating up to x requires O(x) arithmetic operations
and O(x log x) bits of space. The second problem is to find all strong liars and witnesses,
given a fixed odd composite n. This appears to be unstudied, and a randomized algorithm
is presented that requires an expected O((log n)2 + |S(n)|) operations (here S(n) is the set
of strong liars). Although interesting in their own right, a notable application is the search
for sets of composites with no reliable witness.

2 Introduction

A common way to prove that a positive integer n is composite is to demonstrate that a
necessary condition for primality fails. For example, by Fermat’s Theorem we know that
if p is prime and a is not divisible by p, then ap−1 ≡ 1 mod p. The converse of Fermat’s
Theorem fails, inspiring the following definition.

Definition 2.1. Let n be a positive, composite integer. If an−1 ≡ 1 mod n we call a a
Fermat liar with respect to n, and we call n a Fermat a-pseudoprime or a-psp for short. If
a 6≡ 0 mod n and an−1 6≡ 1 mod n then a is a Fermat witness for n.

If a ≡ 0 mod n then a is neither a witness nor a liar.

Due to the existence of composite numbers with many Fermat liars, a stronger condition
was developed by Selfridge, Miller, Rabin and others. Let n > 1 be odd, and write n − 1
as 2sd where d is odd. Then if n is prime and gcd(a, n) = 1 we have that either

1. ad ≡ 1 mod n, or

2. a2
id ≡ −1 mod n for some 0 ≤ i ≤ s− 1.

We call this the strong pseudoprime condition. An algorithm built around this condition
is known as the Miller-Rabin-Selfridge test, and it inspires a similar definition of liar.

1



Definition 2.2. Let n be an odd, positive, composite integer. If a satisfies the strong
pseudoprime condition, we call a a strong liar with respect to n, and we call n a strong
a-pseudoprime or a-spsp for short. If a 6≡ 0 mod n and a does not satisfy the condition
then a is a strong witness for n.

If a ≡ 0 mod n then a is neither a strong witness nor a strong liar.

Note that 1 and n − 1 are strong liars for any odd composite n. Excluding the case
when gcd(a, n) = n, if gcd(a, n) 6= 1 then a must be a strong witness. Since 1,−1 are units
modulo n and a is not, no power of a could result in 1 or −1 modulo n.

If n fixed we denote the set of Fermat liars by F (n) and the set of strong liars by S(n).
From [20] we have exact formulae for the size of these sets, namely

|F (n)| =
∏
p|n

gcd(n− 1, p− 1) |S(n)| =

(
1 +

2νω(n) − 1

2ω(n) − 1

)∏
p|n

gcd(n′, p′)

where ω(n) is the number of distinct primes dividing n, ν = minp|nν2(p− 1), and n′ is the
odd part of n− 1.

Some authors in defining a liar a insist upon a < n, a reflection of the obstruction
they pose to identifying composite numbers. In this paper we seek to classify the set of all
positive integers, and will allow a > n. It is natural in this case to work with a modulo n,
and the definition given requires no modification to allow for it.

This paper will focus on the asymptotic complexity of two tabulation problems related
to strong liars. First, given a fixed a, tabulate all a-spsp up to a given bound x. Second,
given a fixed odd composite n, determine all 1 ≤ a < n for which a is a strong liar. While
many authors have performed pseudoprime searches or pseudoprime tabulations (especially
pseudoprimes to multiple bases), fewer analyze algorithms for these problems in terms of
their asymptotic complexity. In fact, the literature seems to lack algorithms for tabulating
strong witnesses and liars. The naive complexity to beat is that of simply applying the
strong pseudoprime condition, either to each odd composite up to x or to each potential
liar a. This method requires the equivalent of a single modular exponentiation for each
integer, which totals to O(x log x) multiplications.

There has been interest in tabulating pseudoprimes since a variety of primality tests
were first developed. A significant piece of prior work is [24], which contains a tabulation of
2-Fermat pseudoprimes up to 25 · 109. The key algorithmic idea was to restrict the search
to certain equivalence classes. In particular, if n is a 2-psp with p | n then `2(p) | n − 1
(here `2(p) is the multiplicative order of 2 modulo p). This tabulation was extended to 1013

in [22]. Pinch added a pre-computation that matched integers f with all primes q such
that `a(q) = f , then looped over pre-products P , factors f of P − 1, and primes q with
`a(q) = f in search of pseudoprimes Pq. A method similar to Pinch’s has been used to
tabulate all 2-psp up to 264−1 [12]. One contribution of the present work is demonstrating
that `a(q) can be computed for all prime powers q ≤ x at a cost of O(x) multiplications.

2



More recent tabulations have focused on the search for ψk, defined as the smallest
composite which is a strong pseudoprime to all of the first k prime bases. The resulting
specialized algorithms take advantage of the fact that pseudoprimes to several bases fall into
an even more restricted set of congruence classes. Jaeschke in [17] utilized this technique
to tabulate n ≤ 1012 which are simultaneously 2-spsp, 3-spsp, and 5-spsp. Zhang [31]
further restricted the search to pseudoprimes with two prime factors related by a single
parameter, finding all such pseudoprimes to 1036. In the process, upper bounds or exact
values were given for ψk with k ≤ 19. The authors of [18] tabulated pseudoprimes to
the first eight prime bases and provably determined ψ11. An algorithm developed in [6]
tabulates pseudoprimes to two or more bases up to x and has a heuristic complexity of
O(x9/11+o(1)). Recently, Sorenson and Webster improved this toO(x2/3+o(1)) and computed
ψ12 and ψ13 [28].

Two main results will be discussed in later sections. First, an algorithm is presented
in Section 6 that returns all a-spsp up to x. For the first time it is proven that tabulat-
ing strong pseudoprimes to a single fixed base a requires O(x) arithmetic operations and
O(x log x) bits of space. The second new result is an algorithm which tabulates all strong
liars for a given odd composite n in factored form. Presented as Theorem 8.2 in Section 8,
we first use a randomized algorithm to compute the structure of F (n) at an expected cost
of O((log n)2) operations, after which tabulating S(n) requires O(|S(n)|) operations.

3 Notation and model of computation

For a in the unit group (Z/nZ)×, `a(n) will denote the multiplicative order of a modulo
n. That is, `a(n) is the least integer e such that ae ≡ 1 mod n. By Lagrange’s Theorem
`a(n) | φ(n), where φ(n) is Euler’s function.

The largest power of p that divides n will be notated by νp(n). Note that one way
to compute `a(n) is to compute νp(`a(n)) for all primes p dividing φ(n). The number of
distinct prime factors of an integer n is denoted ω(n) and the largest prime factor of n by
P (n).

In this paper log will stand for the natural logarithm, though log2 will occasionally be
used in describing algorithms.

The computational model used assumes all arithmetic operations take constant time,
though the space complexity of algorithms will always be measured in bits. In particular,
if x is the bound on the tabulation being performed, all integers considered have O(log x)
bit size, and we assume arithmetic operations on such integers take constant time. See [10,
Section 2] for further details and justification.

3



4 Reliable witnesses

The inspiration for the present work comes from a question posed in [1]: find the smallest
integer x for which there is no reliable strong witness for the set of odd composites up to
x. This seems difficult, but if we change the problem to “no reliable witness less than or
equal to x” it becomes more tractable.

Definition 4.1. Let C be a set of composite integers. We call positive integer a a reliable
Fermat witness for C if it is a Fermat witness for every composite n ∈ C. We similarly
define reliable strong witness, and use simply “reliable witness” if the test is clear from
context.

A little computation reveals that the answer to the modified question is 2047. For the
first 2-spsp is 2047, so 2 is a reliable witness for the odd composites less than 2047. Looking
at a < 2047, the smallest a-spsp is always smaller than 2047, except for the fact that the
smallest 1320-spsp is 4097. However, 1320 is not a reliable witness, because it has odd
composite divisors. For such an odd composite divisor n, we have 1320 ≡ 0 mod n and
thus 1320 is neither a witness nor a liar. We conclude that the odd composites up to 2047
have no reliable witness ≤ x, and that this is the smallest bound with that property.

A natural extension is to construct a small set of odd composites ≤ x with no reliable
witness ≤ x for arbitrary x. By work of Monier [20] and others, we know that the maximum
number of strong liars a composite n can possess is φ(n)/4. By using n that reach the
maximum we should have a set of composites with few reliable witnesses. For each such
reliable witness a, add the smallest a-spsp until the set no longer has a reliable witness.
Note that implementing this construction requires algorithms for the two problems under
consideration, namely tabulating all a-spsp up to a given bound x and determining all
1 ≤ a < n for which a is a strong liar.

There are known theoretical bounds on the count of a-pseudoprimes up to x, denoted
by Pa(x). Since every Carmichael number relatively prime to a is an a-pseudoprime, [2]
gives a lower bound of x2/7. Combined with an upper bound from [23], we have

x2/7 ≤ Pa(x) ≤ x/
√

exp(log x · log log log x/ log log x)

for large enough x.
Useful theoretical results are also available on counts of Fermat liars and strong liars

(here we restrict to liars a with 1 ≤ a ≤ n − 1). Carmichael numbers are composite
integers n that are a-psp for all a relatively prime to n. Thus by [2] there are infinitely
many composite n with φ(n) Fermat liars. The size of φ(n) depends on how many prime
factors n possesses. For each fixed k, there are infinitely many Carmichael numbers n with
no prime factor below (log n)k. For such n, the probability that gcd(a, n) 6= 1 is at most
(log n)−k+1, where 1 ≤ a ≤ n− 1 is chosen uniformly at random [1, Section 2]. See [13] for
more results and conjectures on counts of Carmichael numbers with a specified number of

4



prime factors. Bounds on the normal order and average order of the set of strong liars can
be found in [11].

Related to reliable witnesses is the notion of the least strong witness for an odd
composite n, denoted W (n). Making explicit a result of Miller, Bach in [4] showed
that W (n) < 2(log n)2 under the Extended Riemann Hypothesis. For a lower bound,
W (n) > (log n)1/(3 log log logn) for infinitely many Carmichael numbers n [1]. More gener-
ally, the authors showed that for x sufficiently large and for any set of potential witnesses
not too large, there are Carmichael numbers smaller than x with no witness in the set.
Thus asymptotically there cannot be a reliable witness for the set of odd composites up to
x.

5 Preliminaries

The algorithms developed in later sections will require access to the factorization of any
integer in a given range. The goal is to create an array that stores in position i the smallest
prime factor of i. Then, one can retrieve the full factorization of any n withO(log n) division
steps through finding the prime factor p and recursively finding the smallest prime factor
of n/p.

A factor table for integers up to x can be created with O(x log log x) arithmetic oper-
ations using the Sieve of Eratosthenes [9, Section 3.2.3]. There is an extensive literature
on linear and sublinear prime sieves one can turn to for an improvement [10, 25, 26]; the
following theorem only adds the idea of a static wheel to the Sieve of Eratosthenes.

Lemma 5.1. Given a bound x, there exists an algorithm that outputs an array A of size
x that contains at position i the smallest prime factor of i. This algorithm requires O(x)
arithmetic operations and O(x log x) bits of space.

Proof. For an introduction to the wheel datastructure, see [10, Section 2]. In our case, in
addition to storing the distance to the next integer relatively prime to the first k primes,
we need to compute and store the smallest prime factor for the integers up to the wheel size
m =

∏k
i=1 pi which are divisible by one of the first k primes. If we pick k so that

∏k
i=1 pi is

at most
√
x, this can be done using the Sieve of Eratosthenes in time O(

√
x log log log x) or

even in time O(
√
x) [10, Lemma 1]. Let array W store the distance to the next relatively

prime integer, and array R store the smallest prime factor for integers up to m.
Now, as a first step, for each i < n set A[i] = R[i mod m]. As a second step, for each

prime p > pk, and for each f relatively prime to m, set A[pf ] = p if p is smaller than the
previous entry of A[pf ].

This algorithm is correct, since if the smallest prime factor of i is p ≤ pk, then p is also
the smallest prime factor of i mod m. If the smallest prime factor of i is greater than pk,
it is caught in Step 2.

5



Step 1 requires O(x) arithmetic operations. Step 2 uses the wheel to step through the
integers relatively prime to m in linear time. The number of such integers is

x · φ(m)

m
= x

k∏
i=1

(
1− 1

pi

)
= O

(
x

log log x

)
[5, Theorem 8.8.6] and so the cost of Step 2 in operations is

O

( ∑
pk<p<x

⌊
x

p log log x

⌋)
≤ O

(
x

log log x

∑
p<x

1

p

)
= O(x)

[5, Theorem 8.8.5].

In what follows, we will assume that such an algorithm has been run, and hence that
we have access to any prime factorization.

To apply sieve techniques we need a characterization of strong pseudoprimes that de-
pends upon properties of their prime factors. This first proposition shows that strong
pseudoprimes are not much harder to identify than Fermat pseudoprimes.

Proposition 5.2 ([1]). Let n be a positive, odd composite integer. Then n is a strong
pseudoprime to the base a if and only if an−1 ≡ 1 mod n and there exists an integer e
such that, for every prime factor p of n, ν2(`a(p)) = e.

We now extend the idea in [24], characterizing a Fermat pseudoprime n by the prime
powers that divide it.

Proposition 5.3. Suppose the factorization of n is
∏k
i=1 p

ri
i . Then an−1 ≡ 1 mod n if

and only if n− 1 is a multiple of `a(p
ri
i ) for all 1 ≤ i ≤ k.

Proof. Suppose that an−1 ≡ 1 mod n. Then since prii | n, an−1 ≡ 1 mod prii , and by
group theory `a(p

ri
i ) | n− 1.

Conversely, if n − 1 is a multiple of `a(p
ri
i ), then an−1 ≡ 1 mod prii , and since the

factorization of n is
∏
i p
ri
i , we use the Chinese Remainder Theorem to conclude that

an−1 ≡ 1 mod n.

This gives a restricted set of equivalence classes to which pseudoprimes belong.

Proposition 5.4. Assume that gcd(pr, `a(p
r)) = 1, so that `a(p

r) | p− 1. Then pr | n and
`a(p

r) | n− 1 both hold if and only if n ≡ pr mod pr · `a(pr).

Proof. First assume that n ≡ 0 mod pr and n ≡ 1 mod `a(p
r). Then `a(p

r) | p−1 implies
`a(p

r) | pr−1, and it follows that `a(p
r) | (n−1− (pr−1)). So `a(p

r) divides n−pr. Since
pr also divides n− pr and gcd(pr, `a(p

r)) = 1, the product divides n− pr and we conclude
that n ≡ pr mod pr · `a(pr).

Now suppose that n ≡ pr mod pr · `a(pr). Then pr divides n− pr, and thus pr divides
n. We also have `a(p

r) | (n− 1− (pr − 1)) and so `a(p
r) divides n− 1.

6



We will need to compute `a(p
r) for all prime powers pr up to x. With access to the

factorization of φ(pr), the preferred algorithm is a known method that determines the
power of each prime dividing the order [19, Algorithm 4.79].

Algorithm 1: Computing multiplicative order

Input : positive integers n, a, and factorization φ(n) = pr11 · · · prww
Output: `a(n)

1 for 1 ≤ i ≤ w do

2 Compute αi = aφ(n)/p
ri
i mod n ;

3 Compute α
pei
i mod n for 0 ≤ e ≤ ri until the result is 1. Let qi be the first such

power pei ;

4 return
∏w
i=1 qi

As Sutherland notes in [29, Section 7.3], line 2 in Algorithm 1 requires w exponentiations
while line 3 requires O(log n) multiplications over the entire loop. Since we are repeatedly
powering the same base a in the same group, it makes sense to apply precomputation to
reduce the number of multiplications required.

Lemma 5.5 ([7]). Let g be an element of a group of order N . If O(logN/ log logN) powers
are precomputed, then we may compute gn using only

(1 + o(1))
log2N

log2 log2N

group operations.

As a corollary, the asymptotic running time of Algorithm 1 is

O

(
log n+ ω(n)

log n

log log n

)
multiplications.

Next, it is necessary to know how many distinct prime factors φ(pr) = pr−1(p− 1) has
on average.

Lemma 5.6. The following sum is over prime powers. We have∑
pr≤x

ω(φ(pr)) = O

(
x log log x

log x

)
.

Proof. From [15] we know that∑
p≤x

ω(p− 1) = O

(
x log log x

log x

)
.

7



Note that since φ(pr) = pr−1(p−1) we have ω(φ(pr)) = ω(p−1)+1 and hence
∑

p≤x ω(φ(pr)) =
O(x log log x/ log x).

Now consider prime powers pr with r > 1. Then

∑
pr≤x
r≥2

ω(p− 1) + 1 =

log2 x∑
r=2

∑
p≤x1/r

ω(p− 1) + 1 = O

(
log x ·

√
x log log x

log x
+

√
x

log x
log x

)

which is asymptotically smaller. This completes the proof.

6 Computing a-pseudoprimes

This section presents a new algorithm for finding all a-spsp up to a bound x. As a corollary,
an easy modification gives an algorithm with the same running time that computes all a-
psp up to x. The authors of [24] used one direction of Proposition 5.3 to reduce the number
of pseudoprime tests required. Our improvement is to consider all prime powers, and the
key observation is that computing `a(p

r) for all prime powers does not spoil the asymptotic
complexity. Pinch in [22] considered a similar sieving strategy, but computed orders in a
different way that is hard to analyze. Computing strong pseudoprimes rather than Fermat
pseudoprimes does not add much difficulty; since Fermat pseudoprimes are rare we simply
apply the strong pseudoprime test to each Fermat pseudoprime.

Note that on average the number of distinct prime factors of n is O(log log n), and
so a worst case analysis of the loop in line 12 would be O(x log log x) operations. The
success of this algorithm depends upon the fact that most composites are not pseudoprimes,
and that non-pseudoprimes will be discovered rather rapidly, so that on average only a
constant number of factors need to be checked before an obstruction to a composite integer’s
pseudoprimality is found. The author is grateful to Jonathan Sorenson for this insight.

Theorem 6.1. Given base a and bound x, Algorithm 2 correctly computes all a-spsp up
to x. The algorithm has a time complexity of O(x) arithmetic operations and requires
O(x log x) bits of space.

Proof. In lines 4 and 5 the algorithm discards cases where n is prime, n is even, or a is
not a unit modulo n. If n fails Proposition 5.3 and is thus not a Fermat pseudoprime it
is caught at line 14, while at line 16 we catch composites which are Fermat pseudoprimes
but not strong pseudoprimes. Thus if Algorithm 2 sets P [n] = 0, n is indeed not a strong
pseudoprime.

Conversely, if P [n] = 1 at the end of the algorithm, then n is a strong pseudoprime to
the base a. For if n has passed the line 12 while loop, then `a(p

r) | n − 1 for all prime
powers pr dividing n, making n an a-psp by Proposition 5.3. Since P [n] = 1, we know that
n also passed the strong pseudoprime test at line 16.

8



Algorithm 2: Tabulating strong pseudoprimes

Input : positive integer a, bound x
Output: boolean array P [] where P [n] = 1 if n is a spsp(a)

1 Use Lemma 5.1 to create an array containing smallest prime factors ;
2 Initialize a boolean array P [] of size x with all entries as 1 ;
3 for primes p ≤ x do
4 Set P [p] = 0 ; // primes are not pseudoprimes

5 if p | a or p == 2 then
6 set P [n] = 0 for all multiples n of p ; // require gcd(n, a) = 1, n odd

7 for prime powers q = pr do
8 Factor φ(q) using array from line 1 ;
9 Compute `a(q) using Algorithm 1 ;

10 for n = 2 to x with P [n] == 1 do
11 Set q = pr to be the prime power dividing n with smallest p ;
12 while n ≡ 1 mod `a(q) do
13 Set q to be the prime power dividing n with the next smallest p ;

14 if n 6≡ 1 mod `a(q) for some q | n then
15 Set P [n] = 0 ;

16 else if n fails the strong pseudoprime test then
17 Set P [n] = 0 ;

9



For complexity, line 1 requires O(x) operations and O(x log x) space. As noted, Algo-
rithm 1 factors n and computes `a(n) using O(log n+ω(n) log n/ log logn) multiplications.
By applying Lemma 5.6 we calculate the total cost in multiplications of all order compu-
tations as

O

∑
q≤x

log φ(q) + ω(φ(q))
log φ(q)

log log φ(q)

 = O

x+
log x

log log x

∑
q≤x

ω(φ(q))

 = O(x) .

Note that
∑

q≤x 1 = O(x/ log x).
Focusing now on line 12, finding the next prime power dividing n and testing a con-

gruence are both single operations. Define α(n) as i if the ith prime power is the smallest
obstruction to n being a Fermat pseudoprime, and define α(n) = ω(n) if n is a Fermat
pseudoprime. Then the complexity of the loop at line 12 over all n is

∑
n≤x α(n).

We gain insight into this sum if we consider how much work a single prime power
q = pe will create across all n. A prime power q will fail to cross off a non-pseudoprime and
thus create an extra operation if q | n and n ≡ 1 mod `a(q). By Proposition 5.4, unless
gcd(q, `a(q)) 6= 1 such n are exactly those in the arithmetic progression n ≡ q mod q ·`a(q).
An upper bound on the number of operations needed for all n is thus

O(x) +
∑
q≤x

⌊
x

q`a(q)

⌋
≤ O(x) +

∑
p≤x

x

p`a(p)
+
∑
pr≤x
r>1

x

pr
.

The first sum is O(x) by [22, Proposition 3] and the second is O(x) by [16, proof of Theorem
430].

Finally, the strong test at line 16 is only performed on Fermat pseudoprimes. Since
there are most x/

√
exp(log x · log log log x/ log log x) Fermat pseudoprimes up to x [23] and

the strong test takes O(log x) operations, the total is O(x) operations.

An alternate method of sieving for Fermat pseudoprimes is given in [22, Section 7].
Initialize a table of real numbers indexed by integers, and for each prime p add log p to the
entries in the arithmetic progression n ≡ p mod p`a(p). Then n is a pseudoprime if the
total at the end of sieving is log n. An advantage of Algorithm 2 is that all operations are
integer arithmetic, obviating the need to track precision.

7 Finding primitive roots and tabulating Fermat liars

Rather than fixing a and looking for n that are a-pseudoprimes, we next fix a composite n
and ask for all a that are liars (or witnesses) for n. It is sufficient to restrict the tabulation
to 1 ≤ a < n, since by definition a is a liar for n if (a mod n) is a liar.

Throughout the next two sections we assume n is a positive, odd, composite integer
and that the factorizations of both n and φ(n) are given. Let n = q1 · · · qk, where qi = prii

10



with pi prime. Our strategy will be to first show how to find primitive roots modulo qi, and
then demonstrate how to tabulate the elements of (Z/nZ)× of order dividing f , where f is
an arbitrary positive integer. This solves the problem of tabulating the set of Fermat liars
F (n), but the situation with the set of strong liars is different since S(n) is not generally a
subgroup. In the next section we overcome this obstruction through the use of Proposition
5.2. In some sense S(n) is “almost” a subgroup of the group of units.

It is well-known that for prime power q, (Z/qZ)× is cyclic. A generator is called a
primitive root. Finding a primitive root is in general a hard problem, but with factorizations
of n, φ(n) on hand there is a straightforward strategy. Take a subset S of (Z/qZ). For each
s ∈ S, compute `s(q) using Algorithm 1. If it equals φ(q) we know s is a primitive root.
The remaining difficulty comes from choosing a small S that contains a primitive root.

We will consider two straightforward methods. One good method is to simply check
all integers up to some bound. Define g(p) to be the smallest positive integer which is
a primitive root modulo p. Burgess [8] and Wang [30] proved independently that g(p) =
O(p1/4+ε). The best explicit result is that g(p) < p0.499 for p − 1 ≥ exp(exp(24)) [14].
Under the assumption of the Extended Riemann Hypothesis, we have the stronger result
that g(p) = O((log p)6) [27].

If g is a primitive root modulo a prime p, the following lemma makes it easy to find a
primitive root modulo a prime power pr.

Lemma 7.1. Let p be an odd prime.

1. If a ∈ Z is a primitive root modulo p, then one of a or a+p is a primitive root modulo
p2.

2. If a ∈ Z is a primitive root modulo pr with r ≥ 2, then a is a primitive root modulo
pr+1.

Proof. See [3, Section 10.6].

An alternative method is to simply choose residues at random. From group theory
we know that a cyclic group of order m has φ(m) generators, and thus the probability of
choosing a generator with a single trial is φ(m)/m. We have the following lemma.

Lemma 7.2 ([21], Theorem 2.9). For all n ≥ 3,

φ(n) ≥ (c+ o(1))n

log logn

where c is a known absolute constant.

The probability of choosing a primitive root with a single trial is then

φ(φ(q))

φ(q)
≥ (c+ o(1))φ(q)

log log(φ(q))

1

φ(q)
≥ c+ o(1)

log log q
.

11



So a primitive root modulo q will be found after an expected O(log log q) trials.
With this work we can construct a basis of (Z/nZ)×, which we modify to form a basis

for the subgroup of elements of order dividing f . Denote that subgroup by Hf .

Definition 7.3. A tuple ~g = [g1, . . . , gk] will be called a basis for a finite abelian group

G if every b ∈ G can be expressed uniquely as b = ~g~t = gt11 · · · g
tk
k with 0 ≤ ti < |gi| for

1 ≤ i ≤ k.

Suppose G = Cm1 × · · · × Cmk
is a finite abelian group written as a direct product of

cyclic groups, with gi a generator for Cmi . Then we write ĝi = (1, 1, . . . , gi, . . . , 1) where
the non-identity element occurs at the ith place in the tuple. Note that by the theory of
direct product groups, {ĝi} forms a basis for G.

Proposition 7.4. Let G = Cm1 ×Cm2 × · · · ×Cmk
, where each Cmi is a cyclic group with

generator gi. Then a basis for Hf is {ĝimi/ gcd(mi,f)}.

Proof. Let xi = mi/ gcd(mi, f), and note that (gxii )f = (gmi
i )

f
gcd(mi,f) = 1. Thus the set

{ĝixi} at least generates a subgroup of Hf .
Now, focus on a particular cyclic component Cmi . Since gi has order mi, g

xi
i has order

gcd(mi, f). If b is an arbitrary element of Cmi which is also in Hf , then the order of b
divides both f and mi, and hence divides gcd(mi, f). But Cmi is cyclic, so there is a unique
subgroup of order gcd(mi, f) that contains all elements of order dividing gcd(mi, f), and
as seen a generator is gxii .

By group theory, the set {ĝixi} is thus a basis for Hf .

Algorithm 3 applies these ideas to compute the structure of the subgroup Hf of
(Z/nZ)×. We find primitive roots modulo q for each prime power q dividing n, use them
to create a basis for (Z/nZ)×, then modify them to create a basis for Hf .

Theorem 7.5. Algorithm 3 correctly computes the structure of the subgroup Hf of (Z/nZ)×,
given n and φ(n) in factored form. If primitive root candidates are chosen uniformly at
random from the residues modulo pi, Algorithm 3 has an expected complexity of O((log n)2)
operations.

Proof. Line 2 will eventually result in primitive roots being found modulo pi for each
prime dividing n. Then by Lemma 7.1, line 3 finishes with g a primitive root modulo
qi = pr1i . The Chinese Remainder Theorem is then used to construct a basis for the
product group Cφ(q1) × · · · × Cφ(qk). By Proposition 7.4, raising these elements to powers
xi = φ(qi)/ gcd(φ(qi), f) results in a basis for Hf .

For complexity, the length of time needed to find a primitive root depends upon the
method used, and whether we assume the Extended Riemann Hypothesis. Let |Sp| be the
number of trials before a primitive root modulo p is found. Algorithm 1 has complexity
O(log p + ω(p − 1) log p

log log p), while the Chinese Remainder Theorem takes O((log n)2) bit

12



Algorithm 3: Computing the structure of Hf ⊆ (Z/nZ)×

Input : Positive integer n in factored form q1 · q2 · · · qk, φ(n) in factored form
Output: A basis {ĝ1, ĝ2, . . . , ĝk} for Hf along with |ĝi|
/* First create {ĝi} as a basis for (Z/nZ)×. */

1 for 1 ≤ i ≤ k do
2 Pick primitive root candidate g and compute `g(pi) using Algorithm 1 until

`g(pi) = pi − 1 ;
3 if qi = prii with ri ≥ 2 then
4 Use Algorithm 1 to compute `g(p

2
i ) ;

5 Set g ← g + pi if `g(p
2
i ) 6= pi(pi − 1) ;

6 Use the Chinese Remainder Theorem to find ĝi such that ĝi ≡ 1 mod qj for
j 6= i and ĝi ≡ g mod qj for j = i ;

/* Now modify {ĝi} to be a basis for Hf. */

7 for 1 ≤ i ≤ k do
8 return ĝi ← ĝi

xi where xi = φ(qi)/ gcd(φ(qi), f), along with |ĝi| = gcd(φ(qi), f);

operations or O(log n) ring operations [5, Corollary 5.5.3]. So the complexity in ring
operations of the loop at line 1 is

O

∑
p|n

|Sp|
(

log p+ ω(p− 1)
log p

log log p

)
+ log n

 = O((log n)2) +O

∑
p|n

|Sp|
(log p)2

log log p

 .

If we choose Sp at random, its expected size is O(log log p). Note that

∑
p|n

(log p)2 ≤

∑
p|n

log p

2

≤ (log n)2

and so the complexity of the loop at line 1 is an expected O((log n)2).
At line 7, k = O(log n), and for each 1 ≤ i ≤ k we do a gcd, a division, and an

exponentiation which takes O(log n) multiplications. The total cost of this step is thus
O((log n)2) operations as well.

If we would prefer a deterministic algorithm, the complexity is greater. Assuming the
Extended Riemann Hypothesis, we have

∑
p|n

|Sp|
(log p)2

log log p
≤
∑
p|n

(log p)8 ≤

∑
p|n

(log p)

8

= O((log n)8)

13



while unconditionally this is instead∑
p|n

|Sp|
(log p)2

log log p
=
∑
p|n

p1/4+ε ≤ P (n)1/4+ε + n1/8+ε

where P (n) is the largest prime factor of n.
Once the structure of Hf is computed, tabulating the elements involves generating

(ĝ1
t1 , . . . , ĝk

tk) for each tuple ~t = (t1, . . . , tk) with 0 ≤ ti < gcd(φ(qi), f). If we prefer the
elements to be integers, we can update an integer value as we cycle. So if the power of ĝi
is incremented by one, the stored integer is multiplied by ĝi modulo n.

As a corollary, this gives us a sub-linear time algorithm for tabulating Fermat liars.

Corollary 7.6. Assume n and φ(n) are given in factored form. Tabulating F (n) re-
quires at most O(P (n)1/4+ε + n1/8+ε + |F (n)|) operations deterministically, or an expected
O((log n)2 + |F (n)|) operations if using a randomized method for generating primitive roots
modulo p.

Proof. Apply Algorithm 3 with f = n− 1 to compute the structure, then cycle through all
the elements.

In fact, since elements of (Z/nZ)× have order dividing φ(n), we could compute F (n)
by instead taking f = gcd(n−1, φ(n)). This observation is due to Noah Lebowitz-Lockard.

8 Tabulating strong liars

The set of strong liars does not form a group, since if ν2(`a(p)) = ν2(`b(p)) then ν2(`ab(p))
might not have the same value. Instead we explicitly characterize the subset of F (n) with
ν2(`a(p)) equal for all p | n. After precomputation, tabulating S(n) will require exactly
S(n) operations. The author is grateful to an anonymous referee for providing the key idea
of this section, improving upon the original algorithm.

We continue to assume n is odd, and that the factorizations of n and φ(n) are known.
Specifically let n = q1 · · · qk. Let {ĝ} be the basis for F (n) computed by Algorithm 3.
Recall that ĝi = gxii , where gi is a primitive root modulo qi = prii and xi = φ(qi)/ gcd(n−
1, pi − 1). For a prime p dividing n, decompose p − 1 = 2sd where d is odd, and let
v(p) = ν2(gcd(n − 1, p − 1)). Since the order of ĝi is gcd(n − 1, pi − 1), the power of 2
dividing the order is at most v(p). Thus if an−1 ≡ 1 mod n and ν2(`a(p)) = e for all p | n,
we must have e ≤ minp|nv(p).

Proposition 8.1. The set of a ∈ (Z/prZ)× with a ∈ F (n) and ν2(`a(p
r)) = ν2(`a(p)) = e

is given by
{ĝt : t ≡ 2v(p)−e mod 2v(p)−e+1} .

if 0 < e ≤ v(p). If e = 0 the set is instead the subgroup generated by ĝ2
v(p)

.

14



Proof. The group we are working with is cyclic, so we again use Proposition 7.4 to charac-
terize the subgroup of elements which are Fermat liars and whose order divides 2ed. Since
ĝ generates a subgroup of order gcd(n − 1, p − 1), the subgroup we want is generated by
ĝy where

y =
gcd(n− 1, p− 1)

gcd(gcd(n− 1, p− 1), 2ed)
=

gcd(n− 1, p− 1)

gcd(n− 1, 2ed)
.

By definition d is the odd part of p−1 and hence y is a power of 2. Specifically, y = 2v(p)−e.
Similarly, the subgroup of elements which are Fermat liars and whose order divides 2e−1d
is generated by ĝ2

v(p)−e+1
.

For e > 0, ν2(`a(p)) = e if and only if `a(p) | 2ed and `a(p) - 2e−1d. By the work above,
such a are exactly ĝt where t is a multiple of 2v(p)−e but not of 2v(p)−e+1, i.e. t ≡ 2v(p)−e

mod 2v(p)−e+1. If e = 0 we simply have the subgroup generated by ĝ2
v(p)

.

A consequence of Proposition 8.1 is that the set of a ∈ (Z/nZ)× with ν2(`a(p)) = e for all
p | n is exactly (ĝ1

t1 , . . . , ĝk
tk) where tuples (t1, . . . , tk) satisfy ti ≡ 2v(pi)−e mod 2v(pi)−e+1

for 1 ≤ i ≤ k. If we repeat this for all 0 ≤ e ≤ minp|nv(p), we will have tabulated all strong
liars at a marginal cost of one operation per liar.

Algorithm 4: Tabulating strong liars

Input : odd composite n in factored form q1 · · · qk, where qi is a prime power of
the prime pi, φ(n) in factored form

Output: list of strong liars

1 Use Algorithm 3 with f = n− 1 to construct a basis {ĝi} of F (n) ;
/* Start with the e = 0 subgroup case */

2 Compute ĥi = ĝi
2v(pi) mod n for 1 ≤ i ≤ k;

3 Cycle through all tuples (ĥ1
t1
, . . . , ĥk

tk
) where 0 ≤ ti < gcd(n′, p′i), writing

∏
i ĥi

ti
to

the list ;
/* Now for the other cases */

4 for e = 1 to v = miniv(pi) do
5 for i = 1 to k do

6 precompute ĝi
2v(pi)−e+1

mod n;

7 Cycle through all tuples (ĝ1
t1 , . . . , ĝk

tk) where ti ≡ 2v(pi)−e mod 2v(pi)−e+1,
writing

∏
i ĝi

ti to the list;

Theorem 8.2. Assume n and φ(n) are given in factored form. Then Algorithm 4 correctly
returns S(n). Computing the structure of F (n) takes O(P (n)1/4+ε + n1/8+ε) operations
deterministically or an expected O((log n)2) operations using a randomized algorithm, after
which tabulating S(n) requires O(|S(n)|) operations.

15



Proof. By Theorem 7.5, Algorithm 3 correctly returns a basis for F (n). Thus every element
a constructed during the cycle is a Fermat liar.

By Proposition 8.1, ĝi
ti with ti ≡ 2v(pi)−e mod 2v(pi)−e+1 creates all ai ∈ (Z/qiZ)×

with ν2(`ai(qi)) = e if e > 0 and lines 2-3 accomplish the same task in the e = 0 case.
Then ν2(`a(p)) = e for all p | n if and only if a = (a1, . . . ak) in (Z/nZ)×. By Proposition
5.2, ν2(`a(p)) = e for some e and for all p | n if and only if a is a strong liar for n. If
e > miniv(pi), we cannot have an−1 ≡ 1 mod n and ν2(`a(pi)) = e for some i. Thus by
looping over all 0 ≤ e ≤ miniv(pi) we generate all strong liars for n.

Line 1 takesO(P (n)1/4+ε+n1/8+ε) operations deterministically or an expectedO((log n)2)
by Theorem 7.5. The precomputation on line 6 requires

miniv(pi)∑
e=1

k∑
i=1

v(pi)− e+ 1 ≤
k∑
i=1

v(pi)
2 ≤

∑
p|n

(log p)2 = O((log n)2)

operations. Once the precomputation is complete, incrementing ti by one step means

multiplying by ĝi
2v(pi)−e+1

mod n, which is only a single operation.

9 Conclusions and acknowledgements

We have shown that tabulating all a-spsp up to x requires linear time in the Big-Oh sense,
as does tabulating all strong liars for a given odd composite n.

The literature on prime sieving suggests a host of potential improvements, including
wheel datastructures, segmentation to save space, sieving in parallel computing models,
and their combinations. Any or all of these might apply to the problems of tabulating
pseudoprimes and liars. In particular, using a wheel datastructure would certainly speed
up the tabulation of pseudoprimes [25], though analyzing the gain asymptotically is chal-
lenging. Perhaps the most promising route to achieving sublinear complexity for tabulating
a-spsp lies in analyzing the algorithm laid out in [22].

Many thanks to two anonymous referees for helpful comments and to Jonathan Soren-
son for helpful discussions. In particular, the original version of this paper had complexity
results with extra log log x factors, and the referees suggested improvements for both prob-
lems.

References

[1] W. R. Alford, Andrew Granville, and Carl Pomerance, On the difficulty of finding
reliable witnesses, Algorithmic number theory (Ithaca, NY, 1994), Lecture Notes in
Comput. Sci., vol. 877, Springer, Berlin, 1994, pp. 1–16.

[2] , There are infinitely many Carmichael numbers, Ann. of Math. (2) 139 (1994),
no. 3, 703–722.

16



[3] Tom M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York-
Heidelberg, 1976, Undergraduate Texts in Mathematics.

[4] Eric Bach, Explicit bounds for primality testing and related problems, Math. Comp.
55 (1990), no. 191, 355–380.

[5] Eric Bach and Jeffrey Shallit, Algorithmic number theory. Vol. 1. Eefficient algorithms,
Foundations of Computing Series, MIT Press, Cambridge, MA, 1996.

[6] Daniel Bleichenbacher, Efficiency and security of cryptosystems based on number the-
ory, Ph.D. thesis, Swiss Federal Institute of Technology Zurich, 1996.

[7] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and David B. Wilson,
Fast exponentiation with precomputation: algorithms and lower bounds, Advances in
Cryptology – Proceedings of Eurocrypt ’92, Lecture Notes in Computer Science, vol.
658, Springer, Berlin, 1992, pp. 200–207.

[8] D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc. (3)
12 (1962), 179–192.

[9] Richard Crandall and Carl Pomerance, Prime numbers: a computational perspective,
Springer-Verlag, New York, 2001.

[10] Brian Dunten, Julie Jones, and Jonathan Sorenson, A space-efficient fast prime num-
ber sieve, Inform. Process. Lett. 59 (1996), no. 2, 79–84.

[11] Paul Erdős and Carl Pomerance, On the number of false witnesses for a composite
number, Math. Comp. 46 (1986), no. 173, 259–279.

[12] Jan Feitsma, The pseudoprimes below 264, 2013, http://www.janfeitsma.nl/math/
psp2/index.

[13] Andrew Granville and Carl Pomerance, Two contradictory conjectures concerning
Carmichael numbers, Math. Comp. 71 (2002), no. 238, 883–908.

[14] E. Grosswald, On Burgess’ bound for primitive roots modulo primes and an application
to Γ(p), Amer. J. Math. 103 (1981), no. 6, 1171–1183.

[15] H. Halberstam, On the distribution of additive number-theoretic functions. III, J. Lon-
don Math. Soc. 31 (1956), 14–27.

[16] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, sixth ed.,
Oxford University Press, Oxford, 2008, Revised by D. R. Heath-Brown and J. H.
Silverman, with a foreword by Andrew Wiles.

17



[17] Gerhard Jaeschke, On strong pseudoprimes to several bases, Math. Comp. 61 (1993),
no. 204, 915–926.

[18] Yupeng Jiang and Yingpu Deng, Strong pseudoprimes to the first eight prime bases,
Math. Comp. 83 (2014), no. 290, 2915–2924.

[19] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of applied
cryptography, CRC Press Series on Discrete Mathematics and its Applications, CRC
Press, Boca Raton, FL, 1997, with a foreword by Ronald L. Rivest.

[20] Louis Monier, Evaluation and comparison of two efficient probabilistic primality testing
algorithms, Theoret. Comput. Sci. 12 (1980), no. 1, 97–108.

[21] Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Clas-
sical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge Uni-
versity Press, Cambridge, 2007.

[22] Richard G. E. Pinch, The pseudoprimes up to 1013, Algorithmic number theory (Lei-
den, 2000), Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 459–
473.

[23] Carl Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981),
no. 156, 587–593.

[24] Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff, Jr., The pseudoprimes to
25 · 109, Math. Comp. 35 (1980), no. 151, 1003–1026.

[25] Paul Pritchard, Explaining the wheel sieve, Acta Inform. 17 (1982), no. 4, 477–485.

[26] , Linear prime-number sieves: a family tree, Sci. Comput. Programming 9
(1987), no. 1, 17–35.

[27] Victor Shoup, Searching for primitive roots in finite fields, Math. Comp. 58 (1992),
no. 197, 369–380.

[28] Jonathan P. Sorenson and Jonathan Webster, Strong pseudoprimes to twelve prime
bases, http://arxiv.org/abs/1509.00864, 2015.

[29] Andrew V. Sutherland, Order computations in generic groups, ProQuest LLC, Ann
Arbor, MI, 2007, Thesis (Ph.D.)–Massachusetts Institute of Technology.

[30] Yuan Wang, On the least primitive root of a prime, Acta Math. Sinica 9 (1959),
432–441.

[31] Zhenxiang Zhang, Two kinds of strong pseudoprimes up to 1036, Math. Comp. 76
(2007), no. 260, 2095–2107.

18


	Illinois Wesleyan University
	From the SelectedWorks of Andrew Shallue
	2016

	Tabulating pseudoprimes and tabulating liars
	tmp3DLC6S.pdf

