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ABSTRACT
In many collaborative systems it is useful to automatically
estimate the quality of new contributions; the estimates can
be used for instance to flag contributions for review. To
predict the quality of a contribution by a user, it is useful
to take into account both the characteristics of the revision
itself, and the past history of contributions by that user.
In several approaches, the user’s history is first summarized
into a number of features, such as number of contributions,
user reputation, time from previous revision, and so forth.
These features are then passed along with features of the
current revision to a machine-learning classifier, which out-
puts a prediction for the user contribution. The summariza-
tion step is used because the usual machine learning models,
such as neural nets, SVMs, etc. rely on a fixed number of
input features.We show in this paper that this manual selec-
tion of summarization features can be avoided by adopting
machine-learning approaches that are able to cope with tem-
poral sequences of input.

In particular, we show that Long-Short Term Memory
(LSTM) neural nets are able to process directly the variable-
length history of a user’s activity in the system, and produce
an output that is highly predictive of the quality of the next
contribution by the user. Our approach does not eliminate
the process of feature selection, which is present in all ma-
chine learning. Rather, it eliminates the need for deciding
which features from a user’s past are most useful for predict-
ing the future: we can simply pass to the machine-learning
apparatus all the past, and let it come up with an estimate
for the quality of the next contribution.

We present models combining LSTM and NN for predict-
ing revision quality and show that the prediction accuracy
attained is far superior to the one obtained using the NN
alone. More interestingly, we also show that the prediction
attained is superior to the one obtained using user reputa-
tion as a feature summarizing the quality of a user’s past
work. This can be explained by noting that the primary
function of user reputation is to provide an incentive to-
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wards performing useful contributions, rather than to be a
feature optimized for prediction of future contribution qual-
ity. We also show that the LSTM output changes in a nat-
ural way in response to user behavior, increasing when the
user performs a sequence of good quality contributions, and
decreasing when the user performs a sequence of low-quality
work. The LSTM output for a user could thus be usefully
shown to other users, alongside the user’s reputation and
other information.

CCS Concepts
•Computing methodologies →Machine learning ap-
proaches; Sequential decision making; Neural networks;

Keywords
Reputation; Machine Learning; Wikipedia; LSTM; Neural
Networks

1. INTRODUCTION
In many collaborative systems, users can contribute con-

tent, and the content can be subsequently edited, rated,
or commented upon by other users. The Wikipedia, Stack
Overflow, Yelp, and Quora are examples in which the user
contributions can be thus modified or rated. After a con-
tribution has been present in the system for some time, it
is possible to observer how other users have interacted with
it, and thus, In these systems, it is very useful to be able
to estimate the quality of a user contribution as soon as the
contribution is entered, before other users have had the pos-
sibility of interacting with it. An estimate of contribution
quality can be used to flag some contributions for review,
as well as for producing initial rankings of new content. For
the Wikipedia, there has been a large body of work on au-
tomated methods for detecting vandalism and flagging re-
visions for review [17, 18, 20, 5, 16, 14]. These methods
generally rely on a mix of machine learning and natural lan-
guage processing; a yearly competition (PAN) compares the
performance of such detection methods.

To predict the quality of a contribution by a user, it is use-
ful to take into account the past history of contributions by
that user, as well as more generally the history of all activ-
ity by that user on the system. Indeed, several approaches
take into account factor such as the number of contributions,
their timing, and so forth [20, 1]. In these approaches, the
past activity of a user is first summarized into a number of
features, such as number of contributions, user reputation,
time from previous revision, and so forth. These features are



then passed along with features of the current revision to a
machine-learning classifier, which outputs a prediction for
the user contribution. The summarization step is necessary
because the usual machine learning models, such as neural
nets, support vector machines, or tree-based classifiers, rely
on a fixed number of input features. This requires summa-
rizing the variable-length history of user activity into a fixed
feature set. Choosing which summary features to include is
a trial and error process.

We show in this paper that this manual selection of sum-
marization features can be avoided by adopting machine-
learning approaches that are able to cope with temporal
sequences of input. In particular, we show that Long-Short
Term Memory (LSTM) neural nets [12, 9] are able to pro-
cess directly the variable-length history of a user’s activity
in the system, and produce an output that is highly pre-
dictive of the quality of the next contribution by the user.
LSTMs are to neural nets (NNs) what sequential are to com-
binatorial logic circuits: LSTMs include memory elements
that can store information about the input sequence they
have seen, in order to produce their output. Our approach
does not eliminate the process of feature selection, which is
present in all machine learning. Rather, it eliminates the
need for deciding which features from a user’s past are most
useful for predicting the future: we can simply pass to the
machine-learning apparatus all the past, and let it come up
with an estimate for the quality of the next contribution.

Precisely, given a sequence of past contributions
w1, w2, . . . , wn−1 by a user, and a current contribution wn,
we predict the quality of wn as follows. We extract from
w1, w2, . . . , wn the feature vectors f1, f2, . . . , fn, each fea-
ture vector corresponding to one contribution. The vectors
f1, f2, . . . , fn are fed to an LSTM, whose output is in turn
fed to a standard neural net which has as inputs the LSTM
output, alongside the feature vector g for wn. The NN then
outputs the prediction for the quality of wn. The reason
for this architecture is that the contributions w1, w2, . . . , wn

have already occurred, and for them we can compute feature
vectors that are much richer than we can compute for wn:
they can include, for instance, the number of positive or neg-
ative ratings of the contribution, how it was then modified
by others, and so forth. Furthermore, this approach enables
us to measure accurately how much information about the
user’s past activity is required to attain a precise prediction
for the quality of the latest contribution. We will provide
comparisons between different ways for training the LSTM
and the NN for the task.

We show that the prediction accuracy attained by using
both the LSTM and the NN is far superior to the one ob-
tained using the NN alone. This is unsurprising, and con-
firms that the past history of user contributions is highly
useful to predict the quality of future contributions, an ob-
servation already made, e.g., in [1, 20]. More interestingly,
we show that the prediction attained is superior to the one
obtained using user reputation as a feature summarizing the
quality of a user’s past work [1, 3]. This can be explained
by noting that the primary function of user reputation is
to provide an incentive towards performing useful contribu-
tions, rather than to be a feature optimized for prediction
of future contribution quality.

We observed that in order to attain good precision in our
predictions, using LSTMs with only one output (but possi-
bly many memory cells) is almost as good as using LSTMs

with many outputs. Most of the information about a user’s
past activity, in other words, can be summarized in a single
floating-point number. In this sense, the output of single-
output LSTMs can be regarded as a “learned” notion of user
reputation. Indeed, we show that the LSTM output is highly
predictive of the quality of future contributions by the user,
and it changes in a natural way in response to user behavior,
increasing when the user performs a sequence of good qual-
ity contributions, and decreasing when the user performs a
sequence of low-quality work. The LSTM output for a user
could thus be usefully shown to other users, alongside the
user’s reputation and other information.

The LSTM output differs however from a traditional no-
tion of reputation in two respects. First, it is not explain-
able: the rules are encoded in the LSTM parameters, and
there is no simple way to explain to users why their rep-
utation increased or decreased by some amount when they
perform an edit. Second, is is highly sensitive to recent
history. In usual reputation systems, high-reputation users
would need to do much damage before losing their reputa-
tion. The LSTM output is trained for predictability, and
reflects changes in behavior patterns far faster.

While our results are presented in the context of the
Wikipedia, we believe that our LSTM-based approach can
provide a blueprint for applying machine learning to the ac-
tivity of users in collaborative systems.

After an overview of previous work, we present in Section 3
the machine learning setup we use. Results are given in
Section 5, and the features we use in the machine learning
are detailed in Section 6.

2. RELATED WORK
The problem of predicting the quality of a newly-entered

Wikipedia revision has been considered in detail by many
authors: indeed, a competition was held to compare various
approaches to the problem [6]. The best approaches of that
competition were based on timing analysis of revisions [20],
language features [16], and user reputation [1]; the three
approaches were then unified in [3].

Long-Short Term Memory neural nets were introduced in
[12], and have been applied to a long list of problems, in-
cluding learning sequence timing [8], recognizing handwrit-
ing [11], and speech [10]; a good overview can be found in [9].
Their main advantage over recurrent neural nets (RNNs) is
that the memory can be much more long-lived, as it is held
in special memory elements with their own reset and ap-
plication networks, rather than being simply forward-fed at
each time step.

Reputation systems for the Wikipedia were proposed in
[2], and extended to ways of measuring author contributions
in [4]. The formula we use for computing the quality of
an individual contribution (or edit) to the Wikipedia is de-
rived from this work. Methods for computing the quality
of Wikipedia articles on the basis of an analysis of the in-
teraction between the contributors have been proposed and
evaluated in [13]. A related approach based on the study
of cooperation on each article has been presented in [22].
Lifecycle-based methods have also been applied to the prob-
lem of Wikipedia article quality estimation in [23]. The
problem of estimating article quality has been studies in
[7], which advocates the construction of information-quality
models tailored to various categories of Wikipedia articles.



3. LEARNING FROM THE PAST

3.1 The Wikipedia Data
A page p of Wikipedia evolves through a sequence of revi-

sions r0, r
p
1 , r2, . . ., where each revision ri has author ai, for

i > 0. For each revision ri, we have a set of data, including
for instance the timestamp of ri and the comment entered as
ri was entered. We are interested in measuring the quality
qi of revision ri. For this, we follow the approach of [2, 4].
Let d be a metric between revisions, so that d(ri, rj) is the
distance between ri and rj . The metric d can be obtained
as a version of edit distance; see [2] for the details. Then,
the quality of ri as measured from a later revision rj of the
same page, for 0 < i < j, is given by

q(ri | rj) =
d(rj , ri−1)− d(rj , ri)

d(ri−1, ri)
, (1)

where ri−1 is the revision preceding ri on the page. The nu-
merator of (1) represents how much closer the revision be-
came to rj due to ri; the denominator represents the amount
of change involved in producing ri. The ratio thus expresses
the fraction of change in producing ri that goes in the direc-
tion of the future rj ; in other words, how much the author of
rj agrees with the change ri−1 → ri. The ratio is bounded
between −1 and +1: when q(ri | rj) = −1, it indicates that
the revision has been reverted, and when q(ri | rj) = +1,
it indicates that the change ri−1 → ri was preserved in rj .
We then compute a value qi for ri by averaging q(ri | rj)
over several rj following ri on the same page, taking care
of considering only “reference” revision rj that are by a dif-
ferent author than ri. This method for assessing revision
quality was shown to closely associate with reversions and
good revisions [4].

3.2 Neural nets and LSTMs
Our ingredients for learning are neural nets (NNs) and

long-short term memory nets (LSTMs). An NN can be
thought of as a learning element that takes a fixed-size vector
of input features 〈x1 · · ·xn〉, and produces a fixed-size vector
of output features 〈y1 · · · ym〉, for some n,m > 0. The NN is
trainable: by defining a loss function between the obtained
output and a desired target output, and back-propagating
the derivative of the loss, the parameters of the neural net
can be tuned using gradient descent to minimize the loss,
and the net can learn the desired function. In our work, we
use NNs trained with the AdaDelta algorithm [24].

An LSTM takes as input a sequence of vectors
〈x11 · · ·x1n〉, . . . , 〈xk1 · · ·xkn, for some k > 0. Each input vector
〈xi1 · · ·xin〉 yields an output 〈yi1 · · · yim〉, for 0 < i ≤ k, and
the final vector 〈yk1 · · · ykm〉 produced once all the input has
been consumed is taken to be the output of the LSTM in
response to the sequence of the input vectors. The details
can be found, e.g., in the overview [9]. Again, the output of
the LSTM can be trained by backpropagation; also in this
case we use AdaDelta for the backpropagation step. The
backpropagation is more involved, as it is necessary to back-
propagate across the sequence of input vectors (an example
of backpropagation through time [19]). LSTMs have internal
memory elements, so that their output can depend on inputs
at any time in the sequence of input vectors. We note that
an LSTM with M memory elements will in general produce
M outputs, one per memory cell. However, it is possible
to discard some of those outputs, measuring the loss of the

Figure 1: Model using an LSTM combined with
Neural Net and trained in chain. Error back-
propagates through both Neural Net and LSTM.
Output from Neural Net represents the final pre-
dicted quality.

LSTM only according to the difference between a subset of
output (possibly only one) and their target values. We will
often talk about “LSTMs with one output”: the LSTMs we
use can have multiple memory cells, but only one of their
outputs is used as the overall output and trained with re-
spect to the target values.

3.3 Applying NNs and LSTMs to user activity
We will apply neural nets and LSTMs to the work done by

users across the Wikipedia pages they edited. Let r1, . . . , rl
be the revisions entered by a user; note that these revisions,
unlike those considered in Section 3.1, do not in general
belong to the same page. For each of these revisions, we
can produce a feature vector for consideration in machine
learning; the vector can contain features related for instance
to the number of words added, the time at which the revision
was added, and so forth. The details of the features we
extract are not of primary importance; a list of the features
can be found in Section 6.

We distinguish, however, two different types of feature
vectors for each revision r: the foresight feature vector f(r),
and the hindsight feature vector h(r). The foresight feature
vector f(r) includes features known up to the time immedi-
ately after r has been performed. These features include, for
instance, the text composition of r itself, but not how r is
subsequently altered by other users. The hindsight feature
vector h(r) includes all features of the foresight vector, as
well as features that can be measured about a revision only



after some time has passed, and most importantly among
them, the quality of r.

3.4 Strategies for learning from the past
We have experimented with two strategies for learning

from the user behavior history. Let n be the number of
features in a hindsight vector, and m < n the number of
features in a foresight vector.

3.4.1 Training the LSTM alongside the NN
The first strategy is illustrated in Figure 1. We build

an LSTM that can take as input a sequence of hindsight
feature vectors. The output of the LSTM is then fed to a
NN that has as input the LSTM output, alongside a single
foresight feature vector, and only one output. For a user
with edit history r1, . . . , rl, we feed the hindsight vectors
h(r1), . . . , h(rl−1) to the LSTM. Then, we feed the output
of the LSTM along with the foresight vector f(rl) to the
NN. We train this LSTM-NN composite using as target for
the NN the quality q(rl) of revision rl (the LSTM is then
trained by backpropagating the loss derivative through the
NN, as in any multi-stage neural model).

In this way, we train the NN to give as output its best
guess of the quality of the revision rl. In turn, the back-
propagation through the NN will cause the LSTM to try
to provide the most helpful features about the past history
of a user in order to predict the quality of a newly-made
revision. If we restrict the LSTM to have only one output
feature, that feature will consist in the real-valued variable
that contains the most informative summary about a user’s
previous work, for the purpose of predicting the quality of a
future revision.

3.4.2 Training the LSTM in isolation
The second strategy is illustrated in Figure 2. In this

strategy, we build an LSTM that can take as input the se-
quence of hindsight vectors corresponding to r1, . . . , rl−1, as
before. The LSTM has one output only, which is directly
trained according to the quality q(rl) of the next revision
rl. Thus, the LSTM is directly trained to be a predictor of
quality of work for a user.

3.4.3 Training data
We construct the training sequences as follows. We select

users randomly on the Wikipedia, and for each user, we con-
sider the sequence r1, . . . , rN of all work performed by the
user, ending with the last revision rN for which we are still
able to measure the quality. We then consider the subse-
quences [r1], [r1, r2], [r1, r2, r3], . . . , [r1, r2, . . . , rN ], and for
each of these N sequences [r1, r2, . . . , rl] with 1 ≤ l ≤ N , we
apply the training methods above. In this way, we use a sin-
gle sequence of user work to train our models to predict the
quality of future revisions all all points along that sequence.
This increases the amount of training data available to us.

3.5 Comparing LSTMs with user reputation
In order to compare the effectiveness of LSTMs and user

reputation as ways of summarizing the past, we compute a
notion of reputation which essentially coincides with that of
[2, 1]. Let r1, r2, . . . , rn be the revisions performed by a user,
and let q1, q2, . . . , qn be their qualities. Let also di be the
distance between revision ri and the immediately preceding
revision on the same page, for 1 ≤ i ≤ n; in other words, di

Figure 2: Model for using only LSTM and passing
all revision features to it. Output from the LSTM
alone represents predicted quality

is the amount of work performed by the user in producing
ri. The reputation of the user after producing r1, r2, . . . , rn
is then computed as:

n∑
i=1

qi
√
di

where the square root is used in place of an identity function
to boost the weight of short revisions, following [2]. We
note that our experimental results would hold also for the
alternative form of reputation

∑n
i=1 qidi.

4. WIKIPEDIA DATA
For our experiments, we used data from the English

Wikipedia [21]. The data was collected by randomly select-
ing a large number of authors on the Wikipedia using API
provided by the MediaWiki Foundation [15]. For each ran-
domly selected author, we collected a list of their contribu-
tions (edits) on Wikipedia starting from the very first. Since
the paradigm of user participation might change drastically
over time, we limited our users to the ones that started con-
tributing to Wikipedia from January 1st, 2012. We did not
consider any users who started contributing before that date.
For our experiments, we used upto 50 contributions by each
user starting from the very first. MediaWiki API provides
an interface to obtain the content of any revision along with
some meta data including pageid, parent revision, times-
tamp, revision comment, etc. As detailed in section 6, we
extracted a large number of features directly from the con-
tent, and used meta data to extract additional features.

In order to obtain this data from Wikipedia, we contacted
the MediaWiki API using the REST interface. This API
provides different types of queries for properties and lists.
To get a random list of users, we contacted the list inter-
face. Using each author’s username from the list then, we
contacted the list interface holding user contributions. This
provided us with a list per user for the contributions con-
taining each revision’s ID in the Wikipedia database. Then
using this ID for each revision, we contacted the properties
interface for revision. This provided us with revision’s con-
tent and associated meta-data. In the process of extracting



Table 1: Evaluation of Different Learning Models
Precision Recall F-score

NNet only 0.655 0.291 0.403
Reputation + NNet 0.659 0.744 0.699
LSTM in isolation 0.769 0.788 0.778
LSTM-NNet combined 0.795 0.821 0.808
Trained LSTM with NN 0.735 0.712 0.723

features, we also needed to compare a revision with several
other revisions on the same page. The properties interface
for revisions allowed us to fetch consecutive revisions on a
page along with added parameters.

This data containing list of authors and revisions was
stored locally in a database. Before storing a revision into
the Database, we performed an entire round of feature col-
lection per revision and stored the revision along with its
measured features into the database. For purpose of training
and testing our learning model, we generated JSON files con-
sisting of normalized feature data from this database, and
split it randomly to get separate training and test datasets.

5. RESULTS
As explained above in Section 3.4, we implemented differ-

ent training approaches on our data targeted at predicting
the quality, q(rl) of revision rl. Along with the two models
mentioned, we also implemented two additional combina-
tions where we, (a) used a pre-trained LSTM as a func-
tion while training a neural network, and (b) where we just
trained a neural net by sending each revision as an individ-
ual entry. In our process, we used over 5000 random users
from Wikipedia. For each user, we collected up to their
first 50 contributions(revisions) on Wikipedia. Further we
also ensured to balance the inputs to our learning models in
order to maintain equivalent probability of labels. The qual-
ity q(rl) of each revision is a continuous value in the range
[−1, 1]. To evaluate our models, we categorized this value
into high and low quality by taking the values of q(rl) > 0
to be high quality and q(rl) < 0 to be low quality. These
classification labels (high and low) were then used to mea-
sure precision, recall and F-score for each training model. A
summary of our results is provided in Table 1. Among the
methods we used to predict revision quality, the first two
methods are trained with history of user through an LSTM
and provide useful value representing user’s history. The
third method uses a pre-trained LSTM to generate an in-
put from user’s history while training the Neural Net. The
fourth method simply uses a Neural Net and considers ev-
ery revision individually, with no past information and no
LSTM use. In comparison with reputation of user, we also
tested an additional model where instead of deriving history
using LSTM, we measured user’s reputation as described in
Section 3.

5.1 Training the LSTM in isolation
The first history based model we used was a separate

LSTM where the predicted quality q(rl), for revision rl relies
entirely on user’s edit history r1, . . . , rl. This model there-
fore, takes as input the hindsight vectors h(r1), . . . , h(rl−1)
and does not use foresight vector f(rl) for revision rl. As
discussed in Section 3.4, this LSTM has only one output and
we trained it using quality q(rl). After training for multiple

iterations, the LSTM produced an F-score of around 0.77 on
the test data. This result in comparison to the Neural Net
model shows significant improvement in the prediction for
quality of a revision. A trained LSTM model for predicting
quality q(rl) can be represented as :

H(rl) = h(r1), . . . , h(rl−1) (1)

q(rl) = LSTM(H(rl)) (2)

5.2 LSTM and NN combined model
The primary model in our experiments, as explained in

Section 3.4 as well, constituted of both the Neural Net and
LSTM connected to each other and trained together. In
this model, for each user i, we passed the user’s edit history
h(r1), . . . , h(rl−1) through an LSTM, whose output b(rl) was
directly sent to the Neural Network. From the m output val-
ues produced by LSTM, we used only one output and passed
it to the Neural Net. This output is a measure for user’s
history on Wikipedia. Along with this output, we fed the
foresight vector f(rl) to the Neural Net. This LSTM-NN
composite model was trained using quality q(rl) for revi-
sion rl as target for the Neural Net. LSTM was trained
by backpropagating the loss derivative through the Neural
Net. This model trained the LSTM along with the Neural
Net and therefore the LSTM was providing a representa-
tion of user’s history instead of predicting the quality itself.
The value predicted by the LSTM in this model was fur-
ther used along with foresight features f(rl) of revision rl
and their combined relation predicted quality. Based on our
results we discovered that this value b(rl) generated in the
combined model was inversely proportional to the predicted
quality. On an average, through this model, we achieved an
F-score of around 0.78 with it reaching even upto 0.808 in
some cases. The complete model generated here is a com-
bination of the trained LSTM followed by a trained Neural
Net for providing the final predicted quality. It can be rep-
resented as:

H(rl) = h(r1), . . . , h(rl−1) (1)

b(rl) = LSTM(H(rl)) (2)

q(rl) = NNet(b(rl), f(rl)) (3)

5.3 LSTM trained in isolation with Neural
Net

With the LSTM trained for predicting quality of a revi-
sion, we tried another model that used the same trained
LSTM and used it as an input generator for a Neural Net
(Figure 3). In order to predict quality q(rl), for revision
rl of a user, we trained a Neural Net with it’s input be-
ing the foresight vector f(rl) along with an output, b(rl)
from the trained LSTM, derived by passing hindsight vec-
tors h(r1), . . . , h(rl−1) to it. In this model, we only trained
the Neural Net and used the pre-trained LSTM as a function
to derive value b(rl) from user’s edit history. The Neural Net
was trained with target q(rl) for revision rl. Backpropaga-
tion in this model was also performed using AdaDelta. The
primary difference exhibited by this model was the use of
user’s history through a separately trained model. Instead
of using LSTM to provide a measure of user’s past, we used
the LSTM trained for predicting quality q(rl) itself in this
model. Using this model, we achieved on an average, an



Figure 3: Model using a trained LSTM to get history input along with revision’s features into the Neural
Network. Output from Neural Net represents the predicted quality

F-score of around 0.72. The trained model for this combi-
nation can be represented as:

H(rl) = h(r1), . . . , h(rl−1) (1)

b(rl) = LSTMT(H(rl)) (2)

q(rl) = NNet(b(rl), f(rl)) (3)

5.4 Neural Network only
In this model we tested the predictive power of a Neural

Network by using only the foresight features, f(rl), of a revi-
sion rl as input data. For each revision ri in our dataset, we
passed the foresight features f(ri) through the Neural Net,
and compared the output with it’s quality q(ri). We mea-
sured the loss L(ri) for each revision and used it to perform
backpropagation through the net. We used AdaDelta [24]
for backpropagation We trained the Neural Net by repeat-
ing this process for multiple iterations. At each iteration
we shuffled our data. After several variations in iterations,
a well trained system generally produced an F-score rang-
ing between 0.3-0.4 on the test data. The trained model
generated from this approach can be represented as:

q(rl) = NNet(f(rl)) (4)

5.5 Comparing LSTMs with user reputation
As discussed earlier in Section 3, we also evaluated our

model against user reputation instead of LSTM output. In
this model, for revision rl of user, we passed the foresight
features f(rl) to the Neural Net along with the reputation
µ of the user. The Neural Net was then trained over entire
data using this model and it’s result was observed in com-
parison to the result provided by LSTM based models. In

this model, for a well trained Neural Net, the system gener-
ally produced an F-score around 0.68 on the test data which
is less than our

5.6 Relevance of LSTM output
The output b(rl) discovered from the LSTM constituting

user’s history information is the primary entity we derive
from history in our approach. We believe this value con-
solidates user’s performance on Wikipedia into a significant
value which, in association with revision rl’s foresight vector
f(rl), helps predict the quality q(rl) of revision rl. As seen
in the comparison between using Neural Net for each revi-
sion individually, and models using user’s edit history, user’s
history value b(rl) creates a significant impact on accuracy
of determining the revision’s quality. We further tested this
value b(rl) generated by the LSTM in LSTM-NN combined
model and checked its impact on the resulting quality. As
shown by multiple trials, the predicted quality q(rl) is in-
versely proportional to the value of b(rl) produced by the
LSTM. Also we checked the monotonicity of this value and
derived that NN(0) > NN(b) > NN(1),∀b ∈ (0, 1). An ex-
ample of relation between history value b(rl) and predicted
quality q(rl) can be seen in figure 4 Moreover, in most cases
the value b(rl) generated by LSTM also shows a very strong
correlation with many hindsight features, particularly the
quality q(rl−1) of previous revision.

These relations show that the value derived from LSTM
is a useful combined representation of user’s past. Figure 5
shows the changes in the output from LSTM in the isolated
trained LSTM with changes in quality of user’s revisions.
Along with each LSTM output, we show the previous revi-
sion’s quality. It can be seen here that the quality of previ-
ous revision displays high correlation with the output from
LSTM. Parts (a) and (b) represent users with mostly high



Figure 4: Variations of LSTM output from LSTM-
NN combined model with predicted revision’s qual-
ity q(rl).

quality edits, and (c) and (d) represent users with mostly
low quality edits. In all four cases we can see strong relation
between output and the quality.

In the LSTM-NN combined model, we observed that as
the quality stays high, the value of output keeps on improv-
ing. Similarly, for a consistently low quality, the output in
many cases tends to move in the opposite direction. This im-
pact of consistent quality on the LSTM output adds support
to the likeliness of this value being a measure of reputation.
As mentioned earlier, this value alone is not explainable as
reputation but it’s growth is related to continued user per-
formance. In all parts of Figure 5, the trend is similar. While
a clear demonstration of LSTM output with quality is not
achievable, in some cases we do observe the above discussed
relation.

6. FEATURES AND QUALITY
In this section, we discuss the features that we extracted

from our data and used them as entries in hindsight vectors
h(r1), . . . , h(rl−1) and foresight foresight vector f(rl). In
order to get these features, we use both content and meta-
data of the revision. The features we used are divided into
four categories:

6.1 Time Features
These features correspond to the time differences of revi-

sion under concern with other revisions on the page as well
as with other revisions by the user. The values we derive
here are:

6.1.1 Time interval to previous revision on page
This value refers to the interval from current revision on

this page to previous revision on this page by any user. This
is essentially the time difference between a revision and its
parent revision. We consider this time difference to be an
important feature since reversion of spam edits is performed
very quickly on Wikipedia.

6.1.2 Time interval to previous revision by user
This value refers to the interval from user’s previous edit

on any page. This value is a measure of user’s activity on

Wikipedia in general. Since regular contributors usually es-
tablish time routines to work on edits and vandals might
be active on multiple pages very quickly, it can be a helpful
feature.

6.1.3 Time interval to previous revision on page by
user

This value refers to the interval from user’s last edit on
this page. We believe this value is important to under-
stand user’s dedication to a particular page. Several con-
tributors dedicate their contributions to a particular page
on Wikipedia.

6.2 Character Features
We obtain a large set of features from the content updated

by the user in an edit. When a user performs an edit on a
page, there can be either deletion or addition of content or
movement of pieces. The character features help measure
the character based changes performed in this edit in com-
parison with the parent revisions. In order to measure these
features we compare contents of this revision and its par-
ent revision. Features derived from this comparison are the
following:

6.2.1 Characters Added
In order to measure the amount of contribution by the

user on page, we need to get the amount of characters that
have been added to the page. We compare the content with
parent revision and gather the characters that have been
added. The size then obtained is the amount of charac-
ters added in that revision. For the purpose of training our
model, we normalize this value by using Z-value of the char-
acters added clipped into the interval of [−3,+3]. Since our
training model requires each value to be in the range [0, 1],
we transform the value thus obtained to be in this range. We
believe that the size of contribution is a significant indicator
of user’s activity.

6.2.2 Characters Removed
Similar to characters added, we also measure the charac-

ters removed from previous revision. This value is obtained
similarly by comparing with parent revision and then nor-
malizing the value. The importance of this feature lies in the
fact that a good contribution might need to remove a large
amount of incorrect information, and a bad revision might
attempt to delete a large amount of text from the page.

6.2.3 Spread of change within the page
The distribution of change within a page can be an im-

portant feature as well. For this purpose, we measure the
spread of changes on a page. The value is obtained by get-
ting a list of all positions where changes (addition, deletion
or movement) have been performed, and then measuring the
spread of change around the page. We measure this by cal-
culating standard deviation of positions with changes and
normalizing it by dividing by the size of page. We believe
that an estimate of distribution of contribution on a page
might be a good indicator of user’s overall actions on that
page.

6.2.4 Position in page
We also measure a weighted position of edits on the page.

This value is weighted average of additions and deletions on



Figure 5: Variations of LSTM output from LSTM Trained in Isolation with previous revision’s quality. (a)
and (b) represent users with mostly higher quality edits, (c) and (d) represent users with mostly low quality
edits.



the page weighted by the size of change at each position.
This value gives an estimated position on the page where
most of the action has been performed. Particular positions
on a page can be indicators of positions requiring consistent
edits or positions with increased vandal possibilities in some
cases.

6.2.5 Upper Case/ Lower Case Ratio
Apart from position and size based features, we also eval-

uate the contribution done by the user individually. From
the text added by the user on a revision, we calculate the
ratio of upper case and lower case letters. It is often possible
that an incorrect edit might contain a larger proportion of
upper case letters than generally required.

6.2.6 Digit/ Total Ratio
Similar to the upper and lower case ration, we also mea-

sure the ratio of digits in total contribution. Numerical val-
ues are often changed frequently on a page as they might be
to update some values changing with time. Ratio of digits
can therefore be helpful in estimating revision’s quality.

6.3 Action Features
Along with the time and character features, we also calcu-

late few features which determine the action performed by
user rather than the resulting contribution. These features
are about the act of writing a revision. The features we use
are:

6.3.1 Revision Comment Length
We measure the length of comment left by the editor on

a revision. We assume that a genuine edit tends to have a
longer revision comment than a vandal entry.

6.3.2 Time in Day
Based on the timestamp of the edit, we use the time of the

day when this edit was performed. The timestamp provides
value in UTC. Therefore, this value can be helpful individu-
ally per user as it might indicate a pattern in user’s activity.
Dedicated users might work on edits during a particular time
of the day. This value is normalized for use in our system
by taking a sin of the Hour. t = sin(2πH/24)

6.3.3 Day of Week
Calculated from the timestamp, we also use the day of

week when this edit was made. An author might have a
weekly pattern of contribution which might be helpful in
generating a correlation with quality of revision.

6.4 Future Features
All the previously mentioned features are available right

after an edit has been made. Those features compare revi-
sion to previous revisions and do not use any future values.
Wherever available, we also measure some features for each
revision relying on future revisions on the page. We calcu-
late the following two future features:

6.4.1 Time to next revision on page
This feature is similar to time features, but it measures

the time interval from this revision to the next revision on
page. We believe it can be an important feature since an
incorrect edit tends to be reverted or modified very quickly
while a good edit might stay unedited for a longer duration.

6.4.2 Measured Quality of Revision
As described in Section 3.1, the quality q(rl) was an im-

portant part of a revision’s hindsight features. Quality of
each revision in user’s history helped serve as an important
feature in determining a useful value from the LSTM.

7. DISCUSSION
We have presented a machine-learning approach for pre-

dicting the quality of Wikipedia revisions that can lever-
age the complete contribution history of users when making
predictions about the quality of their latest contribution.
Rather than using ad-hoc summary features computed on
the basis of user’s contribution history, our approach can
take as input directly the information on all the edits per-
formed by the user. Our approach leverages the power of
LSTMs (long-short term memory neural nets) for processing
the variable-length contribution history of users. We present
several approaches for combining LSTMs to process the re-
vision history, and neural nets for combining the history in-
formation with features from the latest revision; we provided
a detailed experimental comparison of the approaches. We
show that our LSTM-based techniques are superior both to
techniques that do not consider the contribution history of
users, and to techniques that summarize each user’s history
into a single value of reputation.

We also show that the relevant information from a user’s
past that we extract via LSTMs can be quite small: one out-
put (one floating-point number) contains most of the useful
information. This single output is highly predictive of the
quality of the next contribution by the user, and it can be
understood as a notion of user reputation that is learned,
rather than computed via a user-defined set of rules.

While we have presented our results in the context of
Wikipedia, we believe that our joint use of LSTMs and
neural nets can provide a general blueprint for applying
machine-learning to the activity history of users in collabo-
rative systems.
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[23] T. WÃűhner and R. Peters. Assessing the quality of
Wikipedia articles with lifecycle based metrics. In
Proceedings of the 5th International Symposium on
Wikis and Open Collaboration, page 16. ACM, 2009.

[24] M. D. Zeiler. ADADELTA: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701, 2012.




