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ABSTRACT
Implicit feedback is a key source of information for many rec-
ommendation and personalization approaches. However, us-
ing it typically requires multiple episodes of interaction and
roundtrips to a recommendation engine. This adds latency
and neglects the opportunity of immediate personalization
for a user while the user is navigating recommendations.

We propose a novel strategy to address the above problem
in a principled manner. The key insight is that as we observe
a user’s interactions, it reveals much more information about
her desires. We exploit this by inferring the within-session
user intent on-the-fly based on navigation interactions, since
they offer valuable clues into a user’s current state of mind.
Using navigation patterns and adapting recommendations in
real-time creates an opportunity to provide more accurate
recommendations. By prefetching a larger amount of con-
tent, this can be carried out entirely in the client (such as a
browser) without added latency. We define a new Bayesian
model with an efficient inference algorithm. We demonstrate
significant improvements with this novel approach on a real-
world, large-scale dataset from Netflix on the problem of
adapting the recommendations on a user’s homepage.

1. INTRODUCTION
Recommender systems are particularly important for ser-

vices with large numbers of items. They rely on the promise
that through effective algorithmic use of collected data, they
can help the user discover novel content by presenting per-
sonalized, relevant items to the user [18]. Recommendation
is fundamental to many places, such as news readers [5, 8],
blogs [10], homepages [4], search engines [12], and streaming
video [11]. Click models are often used to model the viewing
behaviors and estimate intrinsic relevance [12, 5].

A key challenge in such approaches is that a user’s in-
tention can vary significantly between sessions in ways that
cannot be captured by prior knowledge. For instance, movie
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consumption preferences are context-dependent: whether a
viewer watches alone, with friends, with a romantic love in-
terest, or with children. Likewise, they are situation de-
pendent (dedicated viewing vs. background entertainment
during a chore), depend on the available time (short episode
vs. full movie) and can even depend on mood.

Context-aware recommendation approaches try to address
this problem by leveraging supplemental information such
as time of day or (geo)location to provide insight about the
potential per-session user intent [20, 3]. However, contex-
tual recommendations do not fully address the problem since
they only offer a prior over the likely attributes using ob-
servable context prior to the start of a session. Likewise,
the use of multiple viewer profiles such as those offered by
Netflix, only captures a small facet of this information.

In short, it is difficult to predict a user’s intention when
recommendations are typically generated — before their ses-
sion has begun. We argue that the problem of understanding
intent is inherent to recommendation, that it is compounded
in cold-start situations, and that observable context can only
partially mitigate it. We propose a way to overcome this
problem by using navigation behavior as instant implicit rel-
evance feedback.

Relevance Feedback in Search
A wide variety of user interaction signals have been consid-
ered to understand user intent. For example, [14] studies
interactions on touch-enabled devices, [19] studies model-
ing of mouse cursor movements, and [26] uses text selection
events in search. In particular, recent work has studied eye
gaze positions and mouse cursor movements, and shows that
they are able to indicate user preference or attention [15, 16,
13, 23]. However, all work uses such data to infer a poste-
riori what the user’s intent and interests might have been,
rather than using it immediately.

In contrast to search systems, understanding the current
user intent and using it effectively is even more pertinent
in lean back recommendation experiences (e.g. Android TV,
Playstation, Apple TV, Roku) where the primary mode of
interaction is to navigate and select items. In contrast, in
search, the user can rewrite queries if the results did not
match their current intent, e.g. by specializing “apple” to
“apple tree”. The analysis of query chains [7] has been used
extensively to improve relevance. Augmenting a page of rec-
ommendations on the fly in the way described in this paper
gives the recommender system designer a chance to infer the

341

http://dx.doi.org/10.1145/2959100.2959174
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2959100.2959174&domain=pdf&date_stamp=2016-09-07


current user intent, and thereby guide them towards items
that better match their current desires.

Recently, the search engine Surf Canyon offered an exten-
sion that is able to alter the result page dynamically based
on user’s interaction with the page. Based on clicks in pre-
vious search queries, the system is able to alter results for
future queries in the same session. [17] shows that with the
dynamic adaptation users consume more results and spend
a longer time searching. This strategy is natural for search
engines since people can search multiple times for the same
goal, and previous queries thus give valuable information.

We push this strategy to its logical conclusion — rather
than waiting for a click to expand and clarify results, we
can do this while the user is still exploring a page, i.e. we
propose to dynamically modify the result page, based on a
user’s behavior on that page.

Context in Recommender Systems
Using context is a popular strategy for recommendation.
Factorization-based linear models, for example, are among
the most effective and popular recommendation approaches
[21, 24]. A rich line of work has been proposed in jointly
modeling multiple sources of information to alleviate these
problems, such as ratings and item meta-data [1], text fea-
tures [2], and reviews [9].

On the other hand, joint models of content consumption
and navigation signals are still lacking in recommender sys-
tems. One challenge is that navigation signals are usually
very noisy [23]. The data is also usually not publicly avail-
able. By working with a proprietary dataset from Netflix
containing a large amount of logged navigation events, we
are able to show that updating a page of recommendations
based on within-session navigation behavior has the capabil-
ity to help users find items of interest more effectively. Such
updates can be done with negligible latency by computing
within a browser without a roundtrip to a backend server.

Specifically, we propose to supply additional relevant rec-
ommendations by reordering rows of items, since each row
typically contains a thematically coherent set of recommended
content. Many online services use rows of recommendations
to organize content and facilitate user navigation [6], though
the technique can be adapted to other displays.

Probabilistic user model. Our model jointly captures nav-
igation and consumption through a latent interest vari-
able for the purpose of generating online recommenda-
tions based on the current user intent. To the best of
our knowledge, this is the first principled attempt to
capture both effects jointly.

Hybrid Inference. The algorithm uses both offline infer-
ence to learn static user preferences as well as online
inference through Expectation Maximization in order
to incorporate user navigational information as it be-
comes available.

Cold-start Experiments. We provide empirical validation
that this approach can be effective for updating user
recommendations on-the-fly by augmenting the recom-
mendations on the Netflix homepage with better rows
of thematically coherent videos. We also present ex-
periments showing how the method is effective in deal-
ing with user cold-start.

We support the model design through insights we obtained
from the datasets in question. They make a clear case for
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Figure 1: The user interface deployed on the Sony PS3 in
the Netflix app in 2015. Note the distinct rows of movies in
the UI. Each row is thematically or contextually coherent.

advanced session modeling to improve user satisfaction and
engagement. Our contributions are both conceptual in the
form of instant navigation-based relevance feedback and also
statistical in the form of a novel user interest model. Both
are justified experimentally and can be used individually.

2. USER INTERFACE
Netflix is an online video streaming service that provides

(e.g. on its homepage) a personalized collection of videos.
In this paper, we consider the problem of optimizing the
positions of these videos. The specific user interface (UI)
considered is illustrated in Figure 1. A page is composed of
a list of rows, each of which is composed of a list of videos.
Videos in a row are topically or contextually coherent to
ease user navigation (e.g. ”TV Comedies” or “Popular on
Netflix”). The UI has one row in focus at a time. A user can
either scroll vertically to see other rows, scroll horizontally to
see more videos in a row, or select a video to play. Depending
on the device, typically one or more rows are displayed above
or below the current selection.

We assume that we have a base recommender system that
selects about 40 rows from all possible rows types, and each
of which selects 75 personalized candidate videos from our
full catalog. Our goal is to optimize the ranking of the rows
and also the ranking of videos within each of them. While
users navigate within a page, we want to model the nav-
igation signals and perform real-time adaptation online to
further improve the ranking of the rows.

While we conduct experiments on a dataset of homepages
generated for a specific device UI, our model is completely
general and can be directly applied to homepages on many
devices, including websites, tablets, smartphones, and smart
TVs. This model can also be applied to other applica-
tions that have similar structure to the row layout, such
as Google Shopping, Google Express, YouTube, and Ama-
zon.com. Also note that it is not our goal to design a novel
UI layout but rather to demonstrate that implicit feedback
from navigation can be incorporated in a principled fashion
within a given, real-world UI.

3. MODEL
We now design a statistical model that addresses many

aspects of user interaction with an online content recom-
mendation service: First and foremost we need to predict
play probabilities (Section 3.1). This is followed by a per-
session user intent model (Section 3.2) and finally the full
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graphical model (Section 3.3). The ranking procedure is de-
scribed in Section 3.4. We also discuss some domain-specific
user behavior we found (e.g. fatigue) and how to incorporate
them for improved accuracy (Section 3.5).

Note that the choice of the model is largely independent of
the function class. That is, we could use inner product rec-
ommenders, factorization machines, deep networks, decision
trees or anything else. Instead, the model is tightly coupled
with the UI design, since we aim to encode the way a user in-
teracts with an application in quantifiable terms. Moreover,
the insight of instant implicit feedback can be used in any
model where the entire interface does not fit on a single dis-
play (e.g. maps, search results, messages) and the model can
incorporate navigation data. We use the following symbols
below:

Symbol Definition
ti i-th video of a row
ri i-th row in a page
ρr Row type of row r
ψ∗ Parameters for play probability model
v∗ Factorization-based parameters for interest model
w∗ Feature-based parameters for interest model
ft ∈ Rd+, vector of d features of video t

f
(row)
r ∈ Rd+, vector of d features of row r

S ∈ {0, 1}, scroll indicator
C ∈ {0, 1}, play indicator
I ∈ {0, 1}, interest indicator

3.1 Play Prediction
An accurate estimate of the play probability of each video

is essential to optimizing pages full of video recommenda-
tions. We begin by considering the problem of estimating
play probabilities of videos in one row at a time. Subse-
quently we generalize this model to incorporate user intent
model on multiple rows. Some of our design choices are in-
spired by the “Fair and Balanced” model of [5]. That is, we
use the notion of submodularity to estimate the relevance of
any term, given the previously presented results. Note that
a function f defined on a set X is submodular if it satisfies

f(X ∪ {A})− F (X) ≤ f(X ′ ∪ {A})− F (X ′) for X ′ ⊆ X.

In other words, the benefit from adding A to X is less than
or equal to when we add it to a subset X ′. Whenever equal-
ity holds throughout, we call f modular (i.e. linear in the
parameters). In the context of movies this means that the
added benefit from recommending a movie is not determined
in isolation but in terms of how novel it is relative to the
previous recommendations. This models typical user brows-
ing behaviors to achieve diversity and personalization at the
same time. To convert scores into probabilities we employ a
logistic transform σ(x) = 1

1+e−x :

P(Ci = 1) = σ(g(t0:i,Ψ)) (1)

g(t0:i,Ψ) = 〈ψ, fti〉+
〈
ψ̃, q(t0:i)− q(t0:i−1)

〉
(2)

Here the coordinates of q are given by

[q (t0:i)]j := h

(
i∑

k=0

[ftk ]j

)
where h is a suitably chosen concave function. The vectors ψ
and ψ̃ denote modular and submodular parameters respec-
tively. Each qj is a submodular function of a set of videos
that captures the diminishing returns effect of feature j. In-
tuitively, we assume users become“tired”of a certain feature

if they see it in many videos. Taking this into consideration,
maximizing play probability leads to a page that has diver-
sity. Each ψ̃j models the strength of the diminishing return
in each feature j.

Unlike [5], we have full access to a user’s viewing behavior:
Since the viewport of our user interface consists of only 5
titles, users can easily glance at all of them. Hence we do
not need to model views as latent variables, which can be
computationally costly.

For the purpose of personalization and to share statistical
strength, we adopt a hierarchical decomposition of parame-
ters: ψ = ψ0 +ψu +ψρ,0 +ψρ,u, where the the terms denote
shared, user-specific, row-specific, and {row, user}-specific
latent factors respectively. We use a similar decomposition
for the submodular parameters ψ̃.

3.2 User Intent
While users generally have relatively stable tastes, they

often have different intents in different sessions. This un-
observed aspect is hard to estimate from general behavior
but is much easier once the user interacts with a service.
Failing to consider variations in user intent can lead to in-
accurate recommendations, even when they match a user’s
overall taste profile. Here we describe our model that jointly
models plays, navigation signals and user intents. A key dis-
tinction in this work is the ability to infer and respond to
a specific user’s preferences without any meaningful penalty
in terms of latency and computational cost.

We assume that in each session a user is only interested
in some subset of rows. We use Is,r ∈ {0, 1} to indicate
a user’s interest in row r of session s. As before we use a
logistic transform to define a probability:

P(Is,r = 1|w, v, vρ) = σ(g′(r)) (3)

where g′(r) = 〈w, fr〉+ 〈v, vρ〉 . (4)

Here 〈w, fr〉 is linear with features fr and parameters wr ∈
Rn, and 〈v, vρ〉 is factorization-based with row-type ρ based
latent factors vρ and v. This captures latent co-consumption
patterns that are not captured by features. Again, we de-
compose w = w0 +wu +ws, where w0 is shared, wu is user-
specific, and ws is session-specific parameters, and similarly
for v = v0 + vu + vs.

We focus on horizontal scrolls as navigation signals. Fig-
ure 2 shows the play probability of a row, given different
numbers of horizontal scrolls on that row. The fact that the
play probability is increasing as a function of scrolls within
a row suggests that scrolls are a rich source of information
about user intent. The fact that the biggest increase occurs
between zero and one scroll means that a binary scrolling
indicator might suffice to capture most of the information
about whether a user is interested in a row. We thus in-
troduce Ss,r ∈ {0, 1}, which indicates whether a row r was
scrolled. As before, we use a logistic transform to connect
probabilities to scores:

P(Ss,r = 1|Is,r = 1, δρr ) = σ(δρr ) (5)

Note that P(Ss,r = 1|Is,r = 0, δρr ) = 0 by definition since
users won’t click on something they are not interested in
(Is,r = 0). We use ρr to denote the row type of r and δρr
governs the likelihood of scrolling on each row type.

Similarly, the play probability of the i-th video of r follows

P(Cs,r,i = 1|Is,r = 1,Ψ) = σ(g(t0:i,Ψ)) (6)
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Figure 2: Play probability within a row as a function of
videos scrolled to on that row. Each line represents a differ-
ent row type. Remarkably the conditional play probability
increases as the user delves into the list. To protect propri-
etary data we rescaled the numbers [0, 1] so that only the
relative magnitudes can be compared.

and likewise P(Cs,r,i = 1|Is,r = 0,Ψ) = 0. Here g(t0:i,Ψ)
is as defined in Equation (2). Again, we assume users only
play videos from the rows that they are interested in.

3.3 Graphical Model
Our design choices are best illustrated in the graphical

model of Figure 3. Throughout we assume that all the pa-
rameters are drawn i.i.d. from normal distributions, since
they are merely auxiliary latent variables used to capture the
randomness in the observed user behavior. The generative
process is as follows:

1. Sample v0 ∼ N (0, λvI) and w0 ∼ N (0, λwI).
2. For each row type ρ,

(a) Sample δρ ∼ N (0, λδ).
(b) Sample vρ ∼ N (0, λvI).

3. For each user u,

(a) Sample vu ∼ N (0, λvI), wu ∼ N (0, λwI).
(b) For each session s of u,

i. Sample vs ∼ N (0, λvI), ws ∼ N (0, λwI).
ii. For each row r with row type ρ:

A. Sample Is,r via (3).
B. Sample Ss,r|Is,r via (5).
C. For i-th video in r sample Cs,r,i via (6).

Figure 3 provides the plate notation of this model. For con-
ciseness we set Θ(∗) :=

{
v(∗), w(∗)

}
. The plates inside a

session are understood to be rows, and the plates inside the
rows correspond to videos. In other words, we have a prin-
cipled mapping of the user interface hierarchy directly into
a graphical model.

3.4 Online Page Adaptation
Our goal is to optimize both positions of rows on a page

and videos within a row such that the user finds interesting
content with minimal effort. It follows from (1) that the
play probability is maximized when g(t0:i,Ψ) is maximized.
Thus, our goal is to find the set of videos that maximizes
total gain

∑
i g(t0:i,Ψ). Note that by telescoping with (2),

Θ0 Θρ δρ

Ss,r

Θs Is,r

Cs,r,i ψρ

session

Θu ψu ψ0
user

Figure 3: User interaction model. Shaded circles correspond
to observed variables, namely play indicators and scroll indi-
cators. For clarity of illustration we omitted the associated
hyperparameters from the diagram. Θ models interest and
ψ models the play probabilities.

we can see that this sum is a submodular function. Here we
use a greedy procedure to optimize this sum:

ti = argmax
t∈Tr

g(t0:i−1 ∩ t,Ψ)

where Tr is the set of candidate videos in a row. Properties of
submodularity tell us that this greedy procedure guarantees
(1− 1

e
)-optimality.1

Similarly, to ease navigation we rank the rows according
to the probability of play for any of the videos in the row.
So the j-th row is selected by

rj = argmax
r∈Rs,r 6∈r0:j−1

P(Ir = 1|v, w)
∑
i

P(Cr,ti |Ir = 1). (7)

where Rs is the set of rows preselected for session s.
Since we cannot predict user intent beforehand, we infer it

on the fly as we observe navigation signals online to update
our estimation of session parameters in real time. That is, we
first present the page with Θs sampled from prior, and keep
updating the posterior as we observe more navigation signals
for session s. From (7), we can see this in turn updates
P(Ir = 1|v, w) and thus the rank of the rows. A detailed
description about updating vs and ws is presented in Section
4.2.

Users expect a video to be fixed in a position once they
see it. Similar behavior can also be found in the informa-
tion retrieval literature: [25] shows that change of search
results can hinder users finding what they are looking for.
Therefore, to provide a consistent experience to users, we
fix a row once it is seen and only rearrange the rows that a
user has yet to see. This still provides great opportunity for
improvement since when a user has not played any videos
in the observed portion, the user is likely to consume from
the unobserved part. Experiments show that already after

1Note that the gain is transformed by a logistic function,
hence submodularity of click probabilities is not guaranteed.
That said, maximizing the total gain is efficient in practice.
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observing navigation signals from only 2 rows, online adap-
tation can improve the result quality considerably.

We believe that dynamic result adaptation is widely appli-
cable. Firstly, the computation tends to be fairly lightweight
and can be carried out on a client device. Hence it does not
add any meaningful latency caused by another roundtrip to
a server. Moreover, the same strategy could be applied to
retrieving and presenting search results, or to games, where
the environment is being generated dynamically in accor-
dance to the player’s interest and abilities.

3.5 Impression fatigue and repeated plays
Beyond a generic relevance and diversity model for rec-

ommendation, we also need to take into account impression
fatigue and repeated plays. That is, we need to control for
the fact that a user might have seen a recommendation pre-
viously or watched the movie before on the service.

We observe significant impression fatigue in our dataset,
similar to what is described in [3]. That is, the more a video
is presented to a user, generally the less likely the user plays
it (when ignoring repeated plays): Repeated display is not
causal in reducing the play probability, as is evident from
the fact that previous plays are a conditioning variable.

As can be seen in Figure 4, most videos have stronger than
exponential fatigue effects. It is also worth noting that for
less popular videos, e.g. the lowest two curves in Figure 4,
repeated impressions initially do increase play probability.
We conjecture that it is due to “advertisement” effects: as
we repeatedly present a less-known video to a user, a user
becomes aware of and possibly even interested in the video.
For already well-known videos, this effect is relatively mi-
nor and dominated by fatigue effects. Also, most curves
can be approximated by piecewise linear functions in log-
probability space. We thus add the following term to (2):

fatigue(xt) =

{
atxt + bt if xt < k.

atk + bt + dt(x− k) otherwise
(8)

Here at, bt, dt ∈ R control slope, offset and secondary slope of
the fatigue function. k ∈ Z+ determines the position of the
slope change, and xt is the number of previous impressions.
As before we can decompose at (similarly for bt, dt) into
au,t + a0,t to prevent overfitting.

Also of interest is the high probability of repeated play.
This applies to both episodic content (e.g. TV shows), for
which many users continue watching subsequent episodes af-
ter watching some of them and, quite surprisingly, to stan-
dalone videos (e.g. movies). See Figure 5 for details.

Nonetheless, the curves clearly form two groups, one for
episodic videos (with a higher repeated-play probability)
and one for standalone ones. The curves within each group
are very similar. This suggests that binary indicators of pre-
vious play and episodic videos are sufficient (see Section 5.4).

4. INFERENCE
Given this rather complex statistical model, we need to de-

sign efficient inference algorithms for both offline and online
adaptation of the model. In particular, the online updates
need to be very lightweight to run on consumer devices.

We choose the negative log-posterior of the data such that
we can obtain a maximum-a-posteriori (MAP) estimate.

L := − log P(S, C|rest) + Ω(Θ,Ψ, δ), (9)

Here the first term maximizes the likelihood while the second
term is a regularizer that penalizes complex models.

log P(S, C|rest) =
∑
s

∑
r

log P(Ss,r, Cs,r,:|rest) (10)

P(Ss,r, Cs,r,:|rest) =
∑

j∈{0,1}

P(Is,r = j|Θ)P(Ss,r|Is,r = j, δ)

∏
i

P(Cs,r,i|Is,r = j,Ψ) (11)

Unfortunately the summation over inspection states is in-
side the logarithm, rendering the problem non-convex. For
tractability, we design an efficient EM procedure using vari-
ational inference.

4.1 Offline training
The key to offline training is that if Is,r is known then the

full model decomposes nicely. Thus, we propose a stochastic
EM algorithm to efficiently solve this inference problem. In
the E-step we estimate Is,r with all other parameters fixed,
and in the M-step we optimize all parameters with Is,r fixed.

E-step Here we estimate the posterior probability of I with
fixed {Φ,Θ, δ}. We define

Q(Is,r)j :=P(Is,r = j|Ss,r, Cs,r,:)

∝
∏
i

P(Cs,r,i|Is,r = j,Ψ)P(Ss,r|Is,r = j, δ)

P(Is,r = j|Θ) (12)

M-step Next we optimize Ψ, Θ, and δ with Is,r weighted
by the posterior Q(Is,r)j . Define

J(Q,Ψ,Θ, δ) :=
∑

j∈{0,1}

Q(Is,r)j log
P(Is,r = j,Ss,r, Cs,r,:)

Q(Is,r)j

{Ψ,Θ, δ} = argmin
Ψ,Θ,δ

−J(Q,Ψ,Θ, δ) + λ ‖(Ψ,Θ, δ)‖22

In experiments we use stochastic gradient descent for
offline inference. It randomly picks a session from
training set and performs a gradient step with gradient

∂ΨJ =∂Ψ

∑
j∈{0,1}

Q(Is,r)j log P(Cs,r,:|Is,r = j,Ψ)

∂δJ =∂δ
∑

j∈{0,1}

Q(Is,r)j log P(Ss,r|Is,r = j, δ)

∂ΘJ =∂Θ

∑
j∈{0,1}

Q(Is,r)j log P(Is,r = j|Θ)

We can view the updates with regard to Ψ as videos being
weighted by Q(Is,r)j . This matches intuition: a play/non-
play decision made on videos from a row that a user is in-
terested in should be more important than a decision made
on other rows. For example, when a user is looking for an
exciting movie, we should not penalize a video from “Kids’
Movies” too much when it is not played. Experiments show
that by modeling interests, we are able to obtain a more
accurate estimates of play probabilities.

4.2 Online Updates
We now proceed to describe the updates in a per-session

context. Note that online does not refer to online learning
in the traditional sense but rather to an online response
and parameter update due to user behavior in the current
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Figure 4: Novel-play probability as a function of non-play
impressions for 10 videos. With exception of some rather
unpopular videos the log-popularity decreases piecewise lin-
early. We renormalize them to provide relative magnitudes
(the absolute numbers are proprietary).
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Figure 5: Play probability as function of number of previ-
ous plays. Episodic refers to content with multiple episodes,
Standalone defaults to a single video (or movie). As be-
fore, probabilities are renormalized to protect proprietary
information.

session. When a user scrolls or skips to the next row without
scrolling we update the MAP estimate of Θs accordingly:

P(Θs|rest) ∝
∏

r∈Rseen

∑
j∈{0,1}

P(Ss,r|Is,r = j, δ) (13)

P(Is,r = j|vs, ws, rest)N (vs|λv)N (ws|λw).

Here Rseen is the set of displayed rows. We adopt a similar
EM strategy. The E-step remains unchanged, while in the
M-step we make an update with gradient

∂ΘsJ(Q,Ψ,Θ, δ) = ∂Θs

∑
j∈{0,1}

Q(Is,r)j log P(Is,r = j|Θ)

Once we update our estimation on Θs and in turn Is,r, we
can then adapt the page. This is computationally inexpen-
sive because we only need to reorder a small (typically <
40) subset of rows. This is easily feasible by most modern
browsers and devices. Most of the terms in (12) and (13)
can be precomputed, and computing (and updating) P(Is,r)
only involves a logarithm and an inner product of sparse
feature vectors.

5. EXPERIMENT
We use a real-world dataset from Netflix and show that:

1. Online adaptation improves recommendations at a row
level in both mean reciprocal rank (MRR) and Preci-
sion@5. (Section 5.2)

2. Our model is able to address cold-start. Even for users
with no previous data and using no context, our model
provides personalized recommendations. (Section 5.3)

3. Modeling impression fatigue and repeated play behav-
iors significantly improves recommendations in both
MRR and Precision@5 (Section 5.4).

Comparing the performance with other production systems
or other sophisticated models is out of the scope of this
paper, since after all, our goal is to investigate the possibility
of real-time online updates and to explore new methods to
jointly model plays and navigation signals.

5.1 Dataset
The dataset consists of homepage sessions, collected by

Netflix for a particular type of playback device from 57,386
distinct profiles pre-computed for members from a single
country. For each video on the page, the dataset also con-
tains an indicator about whether the video was displayed to
the user, and whether it was played. The dataset consisted
of sessions collected over a three-month period in 2015. Ses-
sions from April and May are used for training, while those
from June are split into validation (for hyperparameter tun-
ing) and test sets (to report performance).

We are interested in cases where users are navigating the
page to discover new content to watch instead of continuing
to watch previously watched shows. We thus filter out ses-
sions where users choose from Continue Watching, Recently
Watched or My List rows. This leaves approximately 294k
training and 59k testing sessions.

Each homepage in the dataset consists of 40 rows that
were chosen according to a production personalized recom-
mender system that selects and orders the rows in a person-
alized fashion for each profile. Thus, for this dataset, the
method in this paper already has the space of rows filtered
down to a set that are deemed to be relevant. Each row con-
sists of up to 75 videos placed horizontally in the row. The
videos are placed in what appears to be a two-dimensional
grid, but, in fact, a page is a series of rows on which the user
has the ability to scroll individually in a horizontal fashion.
When a row comes into the viewport, five videos appear
horizontally. In light of this, we only consider a row to be
scrolled on when a user has viewed more than five videos
horizontally in that row.

While a comparison using publicly available datasets would
be ideal, there are no such datasets available that form a
page of recommendations that are comparable to the one
described above. Instead, the purpose of this paper is to
present a novel method and show the improvement in rele-
vance metrics with the online adaptation strategy.

5.2 Online Updates
We examine the contribution of the online adaptation
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Figure 6: Gains in MRR (left) and Precision@5 (right) as
a function of the number of rows visited. We see a clear
improvement even just after 2 rows. The Factorization Ma-
chine baseline is provided for reference.
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Figure 7: Gain in MRR (left) and Precision@5 (right) com-
pared to offline-only model. For users with few training ses-
sions, the benefit gained from online update is the greatest.

strategy. We first generate pages with the model trained
using only previous sessions. During testing, we simulate
the online adaptation procedure by looking at one row at a
time, and update the page according to navigation signals
(scroll or no scroll). To control the causal effects, we must
use navigation signals from rows in the order from the orig-
inal page instead of the reordered page. We thus evaluate
using the following procedure: only use navigation signals up
to a certain row (the 10th row in experiments) on a page,
and only reorder the rows below that row. We then compare
the adapted pages with the pages without adaptation.

We evaluate performance by two standard metrics: mean
reciprocal rank (MRR) and precision at 5 (P@5). MRR
measures how early we place the relevant (played) rows on
a page. P@5 measures the fraction of relevant rows in the
next 5 rows. Figure 6 shows MRR and P@5 vs. number of
rows observed. We see on both metrics that online adap-
tation provides a significant improvement over non-adapted
pages. Not surprisingly, as we observe more rows, online
adaptation provides greater improvements. We already see
improvements with only 2 rows. This means users only need
to scroll 2 rows to have a benefit from this strategy, which
is often the case when users are exploring for new videos.

Without a known row ordering baseline, we compared
against ordering the rows on the page via Factorization Ma-
chines (FMs) using libFM [22]. The FM was trained and
tested on the same data as our model. For features we used:
user ID and row type identifier; we sampled played rows as
positives and unplayed rows within one row of the played
rows as negatives. The best FM model was trained with
MCMC optimization and latent dimension 15. We show rel-
ative MRR and P@5 metrics in Figure 6.

5.3 Coldstart
The coldstart problem is the bane of many recommender

systems. It occurs whenever a new user or a new video
comes to the service. In such cases, we have relatively little
data to infer the preferences of the user or the properties of
the video: For new users we often only have basic context
information such as device type and location. This makes
recommending an initial set of videos exceedingly difficult,
yet it is this first impression that matters a lot when it comes
to convincing a new user to continue using a service.

Our online adaptation strategy helps alleviate the user
coldstart problem. Figure 7 shows MRR and P@5 scores as
a function of the number of training sessions available. We
see that users with fewer training sessions (coldstart users)
benefit most from online adaption. Quite remarkably, it
works well even for users with no previous sessions. This
opens a new avenue to address the coldstart problem: even
when there is no previous data and using no context infor-
mation, with online modeling navigation signals, we are able
to personalize recommendations within the first page. We
are effectively observing the user in a live environment and
adjusting recommendations to reduce the amount of naviga-
tion needed to find something interesting to watch.

5.4 Fatigue
We discussed the importance of impression fatigue and

repeated viewing in Section 3.5. To illustrate the effect we
examine the horizontal MRR and P@5 within a row to eval-
uate the play probability estimates. Relative improvements
compared to the model without them are shown in Figure 8.
We can see that each provides clear improvement and using
a combination is best. This gain is achieved by only using a
small number of model parameters.

6. CONCLUSION AND FUTURE WORK
We proposed inferring user intent through in-session navi-

gation information and then updating pages of recommenda-
tions based on that intent. To accomplish this, we defined a
probabilistic model capable of incorporating current session
navigational information as well as logged navigation and
consumption data. The model infers interest in candidate
rows of recommended items based on homepage navigation
to a certain point on the page, and can populate the remain-
ing rows on the page with more relevant content that reflects
the current likely intent as predicted by the model.

This is the first work of its kind that performs online up-
dating of recommendations based on user navigation within
a single page. Thus, it is the intention of this paper to
demonstrate feasibility of such a method, which we do on
real-world dataset from Netflix. The model not only im-
proves the relevancy of future recommendations on the page,
but also helps to alleviate the user coldstart problem by us-
ing navigation information, yielding improved recommenda-
tions even within the first page. For users without any offline
training sessions, i.e. with online navigation signal alone, we
are able to provide personalized recommendations. We ar-
gue that this approach addresses the coldstart problem in a
more effective manner than traditional approaches, though
could be combined with them as well.

This work opens a new avenue for future work on online
page adaptation. While we use binary horizontal scrolls in
experiments, the online adaptation strategy is completely
general. We can easily change the emission function of nav-
igation signals to fit navigation signals in many domains,
such as mouse hover, section expansion, or text selection.
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Figure 8: Gain in MRR (Top) and Precision@5 (Bottom) ob-
tained by modeling impression fatigue and repeated plays.
Performance compared to the model without modeling im-
pression fatigue and repeated plays.

Extending it to model multiple sources of signals is also
straightforward. Also, while we focus on reranking rows,
a similar model could also be applied to reranking items
within each row. It can likewise be adapted to model other
UI designs.
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