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Two common criticisms of Nash equilibrium are its dependence on very de-
manding epistemic assumptions and its computational intractability. We study
the computational properties of less demanding set-valued solution concepts
that are based on varying notions of dominance. These concepts are intuitively
appealing, always exist, and admit unique minimal solutions in important sub-
classes of games. Examples include Shapley’s saddles, Harsanyi and Selten’s
primitive formations, Basu and Weibull’s CURB sets, and Dutta and Laslier’s
minimal covering set. Based on a unifying framework proposed by Duggan and
Le Breton, we formulate two generic algorithms for computing these concepts
and investigate for which classes of games and which properties of the under-
lying dominance notion the algorithms are sound and efficient. We identify
two sets of conditions that are sufficient for polynomial-time computability and
show that the conditions are satisfied, for instance, by saddles and primitive
formations in normal-form games, minimal CURB sets in two-player games,
and the minimal covering set in symmetric matrix games. Our positive algo-
rithmic results explain regularities observed in the literature, but also apply to
several solution concepts whose computational complexity was unknown.

1 Introduction

Saddle points, i.e., combinations of actions such that no player can gain by deviating, are
among the earliest solution concepts considered in game theory (see, e.g., von Neumann
and Morgenstern, 1944). In two-player zero-sum games (henceforth matrix games), every
saddle point happens to coincide with the optimal outcome both players can guarantee in
the worst case and thus enjoys a very strong normative foundation. Unfortunately, however,
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not every matrix game possesses a saddle point. In order to remedy this situation, Borel
(1921) introduced mixed—i.e., randomized—strategies and von Neumann (1928) proved
that every matrix game contains a mixed saddle point (or equilibrium) that moreover
maintains the appealing normative properties of saddle points. The existence result was
later generalized to arbitrary normal-form games by Nash (1951), at the expense of its
normative foundation. Since then, Nash equilibrium has commonly been criticized for
resting on very demanding epistemic assumptions.1

Shapley (1953a,b) showed that the existence of saddle points (and even uniqueness in
the case of matrix games) can also be guaranteed by moving to minimal sets of actions
rather than randomizations over them.2 Shapley defines a generalized saddle point (GSP)
to be a pair of subsets of actions for each player that satisfies a simple external stability
condition: Every action not contained in a player’s subset is dominated by some action in
the set, given that the other player chooses actions from his set. A GSP is minimal if it does
not contain another GSP. Minimal GSPs, which Shapley calls saddles, also satisfy internal
stability in the sense that no two actions within a set dominate each other, given that the
other player chooses actions from his set. While Shapley was the first to conceive GSPs,
he was not the only one. Apparently unaware of Shapley’s work, Samuelson (1992) uses
the very related concept of a consistent pair to point out epistemic inconsistencies in the
concept of iterated weak dominance. Also, weakly admissible sets as defined by McKelvey
and Ordeshook (1976) in the context of spatial voting games and the minimal covering
set as defined by Dutta (1988) in the context of majority tournaments are GSPs (Duggan
and Le Breton, 1996). In a regrettably unpublished paper, Duggan and Le Breton (2014)3

extend Shapley’s approach to normal-form games and define a D-solution as a tuple of sets
that is internally and externally stable with respect to a so-called dominance structure D.
Depending on D, a number of different solution concepts can be defined. The framework is
rich enough to not only cover Shapley’s saddles, but also other common set-valued solution
concepts such as rationalizability (Bernheim, 1984; Pearce, 1984) and CURB sets (Basu
and Weibull, 1991); see Section 3.2 for details.

We are mainly interested in D-cores, which are (inclusion-)minimal D-solutions. For
the case of strict dominance (S), Shapley (1964) showed that every matrix game admits
a unique S-core. Duggan and Le Breton (2014) extend this uniqueness result to other
dominance structures and to a larger class of games by showing, among other things, that
equilibrium safe games (a class of n-player games that includes matrix games) have a unique
core with respect to strict dominance, mixed strict dominance (S∗), and Börgers dominance
(B) (Börgers, 1993). Furthermore, Duggan and Le Breton (1996) proved uniqueness of the
core with respect to weak dominance (W ) and very weak dominance (V ) in a subclass of

1See, e.g., Luce and Raiffa (1957, pp. 74–76), Fishburn (1978), Bernheim (1984), Pearce (1984), Myerson
(1991, pp. 88–91), Börgers (1993), Aumann and Brandenburger (1995), Perea (2007), Jungbauer and
Ritzberger (2011), Barelli (2009) and Bach and Tsakas (2014).

2The main results of the 1953 reports later reappeared in revised form (Shapley, 1964).
3An earlier version of the paper by Duggan and Le Breton has been circulating since 1996 under the title

“Dominance-based Solutions for Strategic Form Games.”
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S B S∗ CM CD V V ∗

normal-form games poly poly poly

matrix games unique unique unique

symmetric matrix games unique unique exp

confrontation games unique exp

tournament games unique unique

Table 1: Summary of results. For a given dominance structure D and a class of games
(ordered by set inclusion), the table shows bounds on the asymptotic number of
D-cores (unique, polynomial, or exponential). If a cell is highlighted in dark gray,
the greedy algorithm finds all D-cores in the given class in polynomial time. If
it is highlighted in light gray, the analogous statement holds for the sophisticated
algorithm. If a cell spans several columns, the corresponding D-cores coincide
within the respective class of games. Covering (CM ) and deep covering (CD) are
only defined for symmetric matrix games.

symmetric matrix games that we refer to as confrontation games. While it is easy to see
that a matrix game can have multiple V -cores, Brandt et al. (2016) showed that V -cores in
matrix games are—just like pure and mixed saddle points—interchangeable and equivalent.

In recent years, the computational complexity of game-theoretic solution concepts has
come under increasing scrutiny. One of the most prominent results in this stream of research
is that the problem of finding Nash equilibria in bimatrix games is PPAD-complete (Chen
et al., 2009; Daskalakis et al., 2009) and thus unlikely to admit an efficient algorithm. This
result has sparked the search for alternative, computationally tractable, solution concepts.
Despite the fact that Shapley’s saddles were devised as early as 1953 (Shapley, 1953a,b)
and are thus almost as old as Nash equilibrium (Nash, 1951), surprisingly little is known
about their computational properties. Common notions of dominance have widely been
studied from a computational perspective in the form of iterated dominance (Knuth et al.,
1988; Gilboa et al., 1993; Conitzer and Sandholm, 2005; Brandt et al., 2011a). D-cores
are “refinements” of iterated D dominance and cannot be found by iterated elimination of
dominated actions.

In this paper, we propose two generic algorithms (a greedy and a sophisticated one)
for computing D-cores and study their soundness and efficiency for various dominance
structures D and subclasses of games. In addition to the dominance structures mentioned
above, we study their mixed counterparts (denoted by D∗ for a given dominance struc-
ture D) (Duggan and Le Breton, 2014), covering (CM ) (McKelvey, 1986; Dutta and Laslier,

3



1999), and deep covering (CD) (Duggan, 2013). We then define abstract properties that,
when satisfied by a dominance structure within a particular class of games, allow for our
algorithms to be sound and efficient. Our results yield

• greedy algorithms for computing all S-cores (aka saddles), S∗-cores (aka primitive
formations or mixed saddles and equivalent to CURB sets in two-player games), and
B-cores of a given normal-form game, and

• sophisticated algorithms for computing the unique CM -core and the unique CD-core
of a given symmetric matrix game. Within the subclass of confrontation games, these
algorithms coincide and also yield the W -core and the V -core (aka weak saddle).

Our algorithms subsume existing algorithms for computing saddles in matrix games
(Shapley, 1964), the (unique) minimal covering set in symmetric win-lose-tie games (Brandt
and Fischer, 2008), and minimal CURB sets in two-player games (Benisch et al., 2010).
Interestingly, the sophisticated algorithms rely on the repeated computation of Nash equi-
libria via linear programming, even though most of the corresponding solution concepts
are purely ordinal. For the remaining combinations of dominance structures and classes of
games, we show that these classes admit an exponential number of D-cores. This renders
the computation of all D-cores infeasible.4 Our results are summarized in Table 1.

2 Preliminaries

A (finite) game in normal form is a tuple Γ = (N, (Ai)i∈N , (ui)i∈N ), where N = {1, . . . , n}
is a nonempty finite set of players, Ai is a nonempty finite set of actions available to player
i ∈ N , and ui : (

∏
i∈N Ai)→ R is a function mapping each action profile (i.e., combination

of actions) to a real-valued utility for player i.
A two-player game Γ = ({1, 2}, (A1, A2), (u1, u2)) is a matrix game (or zero-sum game)

if u1(a1, a2) + u2(a1, a2) = 0 for all (a1, a2) ∈ A1 × A2. It is symmetric if A1 = A2

and u1(a1, a2) = u2(a2, a1) for all (a1, a2) ∈ A1 × A1. Whenever we are concerned with
symmetric matrix games, we slightly deviate from the notation used in the rest of the
paper for notational convenience: The set A1 = A2 of actions is denoted by A, the utility
function of player 1 is denoted by u, and the game itself is denoted by (A, u). A symmetric
matrix game can be conveniently represented by a skew-symmetric matrix containing the
utilities of player 1. For a subset B ⊆ A of actions, Γ|B denotes the subgame of Γ = (A, u)
restricted to B, i.e., Γ|B is the symmetric matrix game (B, u|B×B).

Confrontation games are symmetric matrix games characterized by the fact that the two
players receive the same utility if and only if they play the same action (Duggan and Le
Breton, 1996). Formally, a symmetric matrix game Γ = (A, u) is a confrontation game if

4In the case of very weak dominance, it has also been shown that finding some V -core is computationally
intractable in two-player games (Brandt et al., 2011b). Whether some V -core (or some V ∗-core) can be
computed efficiently in matrix games remains an open problem.
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for all a, b ∈ A, u(a, b) = 0 if and only if a = b.5 A win-lose-tie game is a matrix games in
which all payoffs are either −1, 0, or 1. A confrontation game that is also a win-lose-tie
game is called a tournament game.6 Tournament games generalize the well-known game
of rock-paper-scissors and are surprisingly rich (see, e.g., Fisher and Ryan, 1992; Laffond
et al., 1993; Fisher and Ryan, 1995; Fisher and Reeves, 1995). Many interesting game-
theoretic phenomena already appear in tournament games. In fact, finding Nash equilibria
in tournament games may be as hard as finding Nash equilibria in general zero-sum games.7

Let ∆(M) denote the set of all probability distributions over a finite set M . A (mixed)
strategy of a player i ∈ N is an element of ∆(Ai). Utility functions are extended to profiles
of strategies in the usual way. A Nash equilibrium is a strategy profile such that no player
can benefit by unilaterally deviating from his strategy. The essential set ES(Γ) is the set of
all actions that are played with positive probability in some Nash equilibrium of Γ (Dutta
and Laslier, 1999). As every normal-form game contains a Nash equilibrium (Nash, 1951),
the essential set is never empty.

3 Dominance-Based Solution Concepts

In this section, we formally define the dominance structures and solution concepts consid-
ered in this paper. Furthermore, we introduce a number of properties that will be critical
for our algorithmic results.

3.1 Dominance Structures

The following notation will be used throughout the paper. Let AN denote the n-
tuple (A1, . . . , An) containing all action sets. An n-tuple X = (X1, . . . , Xn) is said to
be nonempty, denoted X 6= ∅, if Xi 6= ∅ for all i ∈ N . For a nonempty n-tuple
X = (X1, . . . , Xn), we write X ⊆ AN if Xi ⊆ Ai for all i ∈ N . To simplify the expo-
sition, we will frequently abuse terminology and refer to an n-tuple X ⊆ AN as a “set.”
For every player i, we furthermore let X−i denote the set

∏
j∈N\{i}Xj of all opponent

action profiles in which each opponent j ∈ N \ {i} plays an action from Xj ⊆ Aj .
Consider a player i ∈ N . Whether an action (or a set of actions) in Ai dominates

another action ai ∈ Ai naturally depends on which actions the other players have at their
disposal. This is reflected in the following definition, in which a dominance structure D
is defined as a mapping from sets X−i of opponent action profiles to dominance relations
D(X−i) for player i. A dominance relation for a player relates subsets of actions of this

5Duggan and Le Breton (1996) refer to this property as the off-diagonal property.
6The term tournament game refers to the fact that such a game Γ = (A, u) can be represented by

a tournament graph with vertex set A and edge set {(a, b) : u(a, b) = 1}. In a similar fashion, a
confrontation game can be represented by a weighted tournament graph.

7Brandt and Fischer (2008) pointed out that computing Nash equilibria in symmetric win-lose-tie games—
which are slightly more general than tournament games—is P-complete (under log-space reductions) and
therefore at least as hard as any problem in P.
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player to individual actions of the same player, i.e., D(X−i) ⊆ 2Ai × Ai. Intuitively,
(Xi, ai) ∈ D(X−i) signifies that subset Xi ⊆ Ai is “preferable” to action ai given X−i. We
require that if Xi is preferable to ai, then so is every superset of Xi.

8

Definition 1. Let Γ = (N, (Ai)i∈N , (ui)i∈N ) be a game in normal form and X ⊆ AN . For
each player i ∈ N , a dominance structure D maps X−i to a subset of 2Ai × Ai such that
(Xi, ai) ∈ D(X−i) implies (Yi, ai) ∈ D(X−i) for all Yi with Xi ⊆ Yi ⊆ Ai.

For Xi ⊆ Ai and ai ∈ Ai, we write Xi D(X−i) ai if (Xi, ai) ∈ D(X−i). In this case, we
say that Xi D-dominates ai with respect to X−i. If Xi consists of a single action xi, we
write xi D(X−i) ai instead of {xi} D(X−i) ai to avoid cluttered notation.

We go on to define the main dominance structures considered by Duggan and Le Breton
(2001, 2014).9

Definition 2. Let Γ = (N, (Ai)i∈N , (ui)i∈N ) be a game in normal form and i ∈ N . Fur-
thermore, let X ⊆ AN and ai ∈ Ai.

• strict dominance (S): Xi S(X−i) ai if there exists xi ∈ Xi with ui(xi, x−i) >
ui(ai, x−i) for all x−i ∈ X−i.

• weak dominance (W ): Xi W (X−i) ai if there exists xi ∈ Xi with ui(xi, x−i) ≥
ui(ai, x−i) for all x−i ∈ X−i and the inequality is strict for at least one x−i ∈ X−i.

• very weak dominance (V ): Xi V (X−i) ai if there exists xi ∈ Xi with ui(xi, x−i) ≥
ui(ai, x−i) for all x−i ∈ X−i.

• Börgers dominance (B): Xi B(X−i) ai if Xi W (Y−i) ai for all ∅ 6= Y−i ⊆ X−i.
10

• mixed strict dominance (S∗): Xi S∗(X−i) ai if there exists si ∈ ∆(Xi) with
ui(si, x−i) > ui(ai, x−i) for all x−i ∈ X−i.

• mixed weak dominance (W ∗): Xi W ∗(X−i) ai if there exists si ∈ ∆(Xi) with
ui(si, x−i) ≥ ui(ai, x−i) for all x−i ∈ X−i and the inequality is strict for at least
one x−i ∈ X−i.

• mixed very weak dominance (V ∗): Xi V ∗(X−i) ai if there exists si ∈ ∆(Xi) with
ui(si, x−i) ≥ ui(ai, x−i) for all x−i ∈ X−i.

8We remark that our definition of a dominance structure differs from the one by Duggan and Le Breton
(2014), who define dominance structures as mappings from X to binary relations on Ai, and mixed
dominance structures as mappings from X to relations from ∆(A) to A. Importantly, for all dominance
structures D considered in this paper, all definitions give rise to the same notion of a D-solution.

9Duggan and Le Breton (2014) use a different terminology: strict, weak, and very weak dominance are
referred to as Shapley, weak Shapley, and Nash dominance, respectively.

10More formally, Xi W (Y−i) ai needs to hold for all Y ⊆ AN with ∅ 6= Yj ⊆ Xj for all j ∈ N \ {i}.
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Börgers dominance has a mixed counterpart as well, requiring that Xi W
∗(Y−i) ai for

all Y−i ⊆ X−i. However, mixed Börgers dominance coincides with mixed strict domi-
nance (Duggan and Le Breton, 2014).

The following dominance structures are only defined for symmetric matrix games; we
sometimes refer to them as symmetric dominance structures.

Definition 3. Let (A, u) be a symmetric matrix game, X,Y ⊆ A, and a ∈ A.

• covering (CM ): X CM (Y ) a if there exists x ∈ X ∩ Y with

– u(x, a) > 0 and

– u(x, y) ≥ u(a, y) for all y ∈ Y .

• deep covering (CD): X CD(Y ) a if there exists x ∈ X ∩ Y with

– u(x, a) > 0,

– u(x, y) ≥ u(a, y) for all y ∈ Y , and

– u(x, y) > u(a, y) for all y ∈ Y with u(a, y) = 0.

Covering was introduced by McKelvey (1986) and later generalized by Dutta and Laslier
(1999), and deep covering is a generalization of a notion by Duggan (2013). Covering and
deep covering are equivalent in confrontation games.

For two dominance structures D and D′, we write D ⊆ D′ and say that D is coarser
than D′ and that D′ is finer than D, if D(X−i) ⊆ D′(X−i) for all X ⊆ AN . The following
relations follow immediately from the respective definitions:

S ⊆ B ⊆W ⊆ V , CD ⊆ CM , and D ⊆ D∗ for all D ∈ {S,W, V }.

3.2 D-Solutions and D-Cores

Generalizing a classic cooperative solution concept by von Neumann and Morgenstern
(1944), a set of actions X can be said to be stable if it consists precisely of those alternatives
not dominated by X (see also (Wilson, 1970)). This fixed-point characterization can be
split into two conditions of internal and external stability: First, there should be no reason
to restrict the selection by excluding some action from it; second, there should be an
argument against each proposal to include an outside action into the selection.

Definition 4. Let D be a dominance structure and Γ = (N, (Ai)i∈N , (ui)i∈N ) a game in
normal form. A tuple X ⊆ AN is a D-solution in Γ if for every i ∈ N ,

Xi \ {xi} D(X−i) xi for no xi ∈ Xi, and (1)

Xi D(X−i) ai for all ai ∈ Ai \Xi. (2)

We refer to (1) and (2) as internal and external D-stability, respectively. We are mainly
interested in inclusion-minimal D-solutions. Following Duggan and Le Breton (2014),
these will be called D-cores.
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a1 a2 a3 a4 a5 a6 a7 a8

a1 0 2 −2 1 2

a2 −2 0 2 1 2

a3 2 −2 0 1 1 3
a4 −1 −1 −1 0 1

a5 −2 −2 −1 −1 0

a6 0 3 −3

a7 −3 −3 0 3

a8 3 −3 0

D D-core

S ({a1, a2, a3, a4, a5}, {a1, a2, a3, a4, a5})
W,V,B ({a1, a2, a3, a4}, {a1, a2, a3, a4})
S∗,W ∗, V ∗ ({a1, a2, a3}, {a1, a2, a3})

b1 b2 b3 b4 b5 b6 b7 b8

b1 0 0 0 0 1 1 1 1

b2 0 0 1 −1 0 1 1 −1

b3 0 −1 0 1 1 1 −1 1

b4 0 1 −1 0 0 −1 1 1

b5 −1 0 −1 0 0 1 1 1

b6 −1 −1 −1 1 −1 0 −1 1

b7 −1 −1 1 −1 −1 1 0 −1

b8 −1 1 −1 −1 −1 −1 1 0

D D-core

CD ({b1, b2, b3, b4, b5}, {b1, b2, b3, b4, b5})
CM ({b1, b2, b3, b4}, {b1, b2, b3, b4})
V ({b1}, {b1})

Figure 1: Example games with unique D-cores for several dominance structures D. The
game on the left is a confrontation game and the game on the right is a symmetric
win-lose-tie game.

Definition 5. A D-core is a D-solution X such that there does not exist a D-solution Y
with Y ⊆ X and Y 6= X.

Figure 1 contains examples of D-cores for all dominance structures considered in this
paper.

Various set-valued solution concepts that have been proposed in the literature can be
characterized as D-cores for some dominance structure D. An action profile (a1, . . . , an) ∈∏

i∈N Ai is a Nash equilibrium in pure strategies if and only if ({a1}, . . . , {an}) is a V -core.
Shapley’s (1964) saddles and weak saddles for matrix games correspond to S- and V -cores,
respectively, Dutta and Laslier’s (1999) minimal covering set for symmetric matrix games
corresponds to the CM -core, and Duggan’s (2013) deep covering set for symmetric win-
lose-tie games corresponds to the CD-core. Furthermore, mixed refinements of Shapley’s
saddles, as proposed by Duggan and Le Breton (2001) for symmetric win-lose-tie games,
correspond to S∗- and W ∗-cores.

Two further solution concepts that fit into this framework are Harsanyi and Selten’s
(1988) formations and Basu and Weibull’s (1991) CURB sets. The respective dominance
structures are defined in terms of best response sets. An action ai is rationally dominated
with respect to a set X−i of opponent action profiles if it is not a best response to any
mixed opponent strategy with support in X−i. A subtle difference occurs if there are more
than two players (and therefore more than one opponent). While in correlated rational
dominance (Rc), opponents are allowed to play joint, i.e., correlated, mixtures (and thus
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to act like a single opponent), uncorrelated rational dominance (Ru) restricts opponents to
independent mixtures.

A tuple of sets is a CURB set if and only if it is externally stable with respect to Ru, and
minimal CURB sets coincide with Ru-cores. Similarly, a tuple of sets is a formation if and
only if it is externally stable with respect to Rc, and primitive formations are Rc-cores.
Since it is well known that an action is not a best response to some correlated opponent
strategy if and only if it is strictly dominated by a mixed strategy (see, e.g., Pearce, 1984,
Lemma 3), the dominance structures Rc and S∗ coincide. As a consequence, all our results
concerning S∗-cores directly apply to primitive formations as well. The same is true for
minimal CURB sets in two-player games, due to the equivalence of Rc and Ru for n = 2.11

3.3 Properties of Dominance Structures

We now define a number of properties in order to formalize for which dominance structures,
D-cores can be computed efficiently. An action ai ∈ Ai is said to be D-maximal with respect
to X−i if it is not D-dominated by Ai.

Definition 6. Let D be a dominance structure and X ⊆ AN . The set of D-maximal
elements of Ai with respect to X−i is defined as

max(D(X−i)) = Ai \ {ai ∈ Ai : Ai D(X−i) ai}.

Definition 7. Let X ⊆ AN and ai ∈ Ai. A dominance structure D satisfies

• monotonicity (MON) if Xi D(X−i) ai implies Xi D(Y−i) ai for all ∅ 6= Y−i ⊆ X−i,

• computational tractability (COM) if Xi D(X−i) ai can be checked in polynomial time,

• maximal domination (MAX) if Ai D(X−i) ai implies max(D(X−i)) D(X−i) ai, and

• singularity (SING) if Xi D(X−i) ai implies the existence of an action xi ∈ Xi with
xi D(X−i) ai.

It is easily seen that S, B, and V are monotonic, and that W is not. S and W satisfy
maximal domination because the relations S(X−i) and W (X−i)—restricted to pairs of
singletons—are transitive and irreflexive. On the other hand, V violates MAX because
max(V (X−i)) may be empty. It directly follows from the definitions that S, W , V , CM ,
and CD are singular.

Computational tractability of dominance structures is a mild requirement. Indeed, if a
dominance structure does not satisfy COM, there is no hope for computing D-solutions
efficiently. As shown in Sections 5 and 6, all the dominance structures defined in Section 3.1
satisfy COM.

The following properties of dominance structures are defined in the context of symmetric
matrix games.

11In games with more than two players, CURB sets are computationally intractable (Hansen et al., 2010).
In fact, even checking uncorrelated rational dominance is coNP-hard.
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Definition 8. Let (A, u) be a symmetric matrix game. Let furthermore X,X ′ ⊆ A and
a, b, c ∈ A. A dominance structure D satisfies

• weak monotonicity (weak MON) if a D(X) b implies a D(X ′) b for all X ′ ⊆ X with
a ∈ X ′,

• transitivity (TRA) if a D(X) b, b D(X ′) c, and a ∈ X ∩X ′ imply a D(X ∩X ′) c,12

• computational tractability of finding subsets (SUB-COM) if a nonempty subset of a
D-core can be computed in polynomial time, and

• uniqueness in symmetric matrix games (UNI) if every symmetric matrix game has a
unique D-core.

In contrast to COM, property SUB-COM is rather demanding. However, there is a
useful sufficient condition involving the essential set. Since the essential set of a game can
be computed efficiently via linear progamming, a dominance structure D satisfies SUB-
COM if every D-core of a game Γ contains the essential set ES (Γ).

Monotonicity turns out to be sufficient for the existence of solutions: If a dominance
structure D satisfies MON, a D-solution can be constructed by iteratively eliminating
actions that are D-dominated (Duggan and Le Breton, 2014). Once the elimination process
terminates, MON ensures that the resulting set is externally D-stable. Note, however, that
these solutions need not be minimal (see, e.g., Figure 1).13 In symmetric matrix games, the
same is true for dominance structures satisfying weak monotonicity. As weak dominance
and mixed weak dominance are not monotonic, the above argument does not apply to
those dominance structures. In fact, there are games without any W - or W ∗-solution (see
Figure 2 for an example). For this reason, we do not consider W - and W ∗-solutions in this
paper.14

Monotonicity of a dominance structure is also an important ingredient in several results
on the uniqueness of (minimal or maximal) D-solutions (Duggan and Le Breton, 2014).
However, those uniqueness results do not apply to the dominance structures CM and CD

(which only satisfy weak monotonicity). Results on the uniqueness of D-cores with respect
to these dominance structures are given in Section 6.

12X ∩X ′ is to be read componentwise. Hence, X ∩X ′ 6= ∅ if and only if Xi ∩X ′i 6= ∅ for all i ∈ N .
13Under fairly general conditions, D-solutions obtained by iterated elimination of D-dominated actions are

maximal (Duggan and Le Breton, 2014). The maximal S∗-solution of a two-player game, for instance,
consists of all rationalizable actions (Pearce, 1984; Bernheim, 1984).

14The fact that W -solutions may fail to exist was first observed by Samuelson (1992). There are at least
three approaches to restore the existence of W -solutions. First, one can ignore internal stability and
define W -solutions as externally W -stable sets (Duggan and Le Breton, 2001). The properties of W -cores
defined in this way are similar to those of V -cores: The number of W -cores may be exponential, even in
symmetric matrix games, and a number of natural problems concerning W -cores are computationally
intractable (Brandt et al., 2011b). Second, one can look for restricted classes of games in which W -
solutions are guaranteed to exist. One such class is the class of confrontation games, where the W -core
is unique and coincides with the V -core. Third, one can consider the so-called monotonic kernel of W ,
which turns out to be identical to B (Duggan and Le Breton, 2014).
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a1 a2 a3

a1 0 1 0

a2 −1 0 1

a3 0 −1 0

Figure 2: Symmetric matrix game without W - and W ∗-solutions.

Another beneficial property of (weakly) monotonic dominance structures is that minimal
externally stable sets also happen to be internally stable. This is again due to the fact that
the iterative elimination of dominated actions preserves external stability.

Proposition 1. (i) Let Γ = (N, (Ai)i∈N , (ui)i∈N ) be a game in normal form and D a
dominance structure satisfying MON. Then, a set X ⊆ AN is a D-core of Γ if and
only if it is a minimal externally D-stable set.

(ii) Let Γ = (A, u) be a symmetric matrix game and D a dominance structure satisfying
weak MON. Then, a set X ⊆ A is a D-core of Γ if and only if it is a minimal
externally D-stable set.

The first part of Proposition 1 follows from Proposition 2 of Duggan and Le Breton
(2014).15 The proof of the second part is completely analogous.

Our proofs will frequently exploit the equivalence of D-cores and minimal externally D-
stable sets. In particular, we will make use of the following easy corollary of Proposition 1.

Corollary 1. (i) Let Γ = (N, (Ai)i∈N , (ui)i∈N ) be a game in normal form and D a
dominance structure satisfying MON. If X ⊆ AN is externally D-stable, then there
exists a D-core Y with Y ⊆ X.

(ii) Let Γ = (A, u) be a symmetric matrix game and D a dominance structure satisfying
weak MON. If X ⊆ A is externally D-stable, then there exists a D-core Y with
Y ⊆ X.

4 General Results

We will now study how to compute minimal solutions for the dominance structures intro-
duced in the previous section. To this end, we introduce two generic algorithms: a greedy
and a sophisticated one. In principle, these algorithms can be applied to any game and
any of the dominance structures introduced in Section 3.1. The goal of this section is to
identify, for each algorithm, which properties of a dominance structure guarantee that the

15Note that Proposition 2 of Duggan and Le Breton (2014) also assumes Duggan and Le Breton’s version
of transitivity, but this is satisfied by all the dominance structures of Definition 2 when translated into
their binary framework.
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algorithm is sound and efficient. In addition, we will construct families of games that admit
an exponential number of minimal solutions.

4.1 Generic Greedy Algorithm

Shapley (1964) has shown that every matrix game possesses a unique S-core and described
an algorithm, attributed to Harlan Mills, to compute this set. The idea behind this algo-
rithm is that given a nonempty subset of the S-core, the S-core itself can be computed
by iteratively adding actions that are maximal, i.e., not dominated with respect to the
current subset of actions of the other player. We generalize Mills’ algorithm in two direc-
tions. First, we identify general conditions on a dominance structure D that ensure that
this greedy approach works. Second, we consider arbitrary n-player normal-form games,
thereby losing uniqueness of D-cores, and devise an algorithm that computes all D-cores
of such games in polynomial time.

We start by looking at some structural properties of externally stable sets. For mono-
tonic dominance structures satisfying maximal domination, externally stable sets are closed
under intersection.16

Proposition 2. Let D be a dominance structure satisfying MON and MAX. If X and Y
are externally D-stable and X ∩ Y 6= ∅, then X ∩ Y is externally D-stable.

Proof. Suppose that X and Y are externally D-stable and X ∩ Y 6= ∅. In order to show
that X ∩ Y is externally D-stable, fix i ∈ N and consider ai ∈ Ai \ (Xi ∩ Yi). Without loss
of generality, assume that ai /∈ Xi. As X is externally D-stable, Xi D(X−i) ai, and thus
Ai D(X−i) ai. Now MON implies Ai D(X−i ∩ Y−i) ai. Since ai ∈ Ai \ (Xi∩Yi) was chosen
arbitrarily, no action in Ai \ (Xi ∩ Yi) is D-maximal with respect to X−i ∩ Y−i. Therefore,
max(D(X−i∩Y−i)) ⊆ Xi∩Yi. Moreover, MAX implies max(D(X−i∩Y−i)) D(X−i ∩ Y−i) ai,
which finally yields (Xi ∩ Yi) D(X−i ∩ Y−i) ai.

One particularly useful consequence of Proposition 2 is the uniqueness of minimal exter-
nally D-stable sets containing given sets of actions.

Corollary 2. Let D be a dominance structure satisfying MON and MAX. For any X0 ⊆
AN , the minimal externally D-stable set containing X0 is unique: If Y and Z are externally
D-stable with X0 ⊆ Y and X0 ⊆ Z, then Y ⊆ Z or Z ⊆ Y .

Proof. Let X0 ⊆ AN . Assume for contradiction that both Y and Z are minimal among all
externally D-stable sets containing X0, and that neither Y ⊆ Z nor Z ⊆ Y . As both Y
and Z contain X0, Y ∩ Z is nonempty and Proposition 2 implies that Y ∩ Z is externally
D-stable. This contradicts minimality of both Y and Z.

If D moreover satisfies computational tractability, the minimal externally D-stable set
containing X0 can be computed efficiently by greedily adding D-maximal actions.

16X ∩ Y is to be read componentwise. Hence, X ∩ Y 6= ∅ if and only if Xi ∩ Yi 6= ∅ for all i ∈ N .
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Algorithm 1 Minimal externally D-stable set containing X0

procedure min ext(Γ, (X0
1 , . . . , X

0
n))

for all i ∈ N do
Xi ← X0

i

end for
repeat

for all i ∈ N do
Yi ← max(D(X−i)) \Xi

Xi ← Xi ∪ Yi
end for

until
⋃n

i=0 Yi = ∅
return (X1, . . . , Xn)

Proposition 3. Let X0 ⊆ AN . If D satisfies MON, MAX, and COM, the minimal
externally D-stable set containing X0 can be computed in polynomial time.

Proof. We show that Algorithm 1 computes the minimal externally D-stable set containing
X0 and runs in polynomial time. Algorithm 1 starts with X0 and iteratively adds all actions
that are maximal with respect to the current set X−i of opponent action profiles. As D
satisfies COM, these actions can be computed efficiently. Moreover, the number of loops
is bounded by

∑n
i=1 |Ai|.

Let Xmin be the minimal externally D-stable set containing X0. We show that during
the execution of Algorithm 1, the set X is always a subset of Xmin . At the end of the
algorithm,

⋃n
i=0 Yi = ∅ implies that max(D(X−i)) ⊆ Xi for all i ∈ N . As D satisfies MAX,

this shows that X is externally D-stable.
We prove X ⊆ Xmin by induction on |X| =

∑n
i=1 |Xi|. At the beginning of the algorithm,

X = X0 ⊆ Xmin by definition of Xmin . Now assume that X ⊆ Xmin at the beginning
of a particular iteration. We have to show that for all i ∈ N , Yi ⊆ Xmin

i . Let ai ∈
Yi = max(D(X−i)) \ Xi, and assume for contradiction that ai /∈ Xmin

i . Since Xmin is
externally D-stable, Xmin

i D(Xmin
−i ) ai. By the induction hypothesis, X−i ⊆ Xmin

−i , which
together with MON implies Xmin

i D(X−i) ai. It follows that Ai D(X−i) ai, contradicting
the assumption that a ∈ max(D(X−i)).

Whenever X0 is contained in a D-core, Algorithm 1 returns this D-core. This property
can be used to construct an algorithm to compute all D-cores of a game: Call Algorithm 1
for every possible combination of singleton sets of actions of the different players. The result
is a set of externally D-stable sets, and the D-cores of the game are the inclusion-minimal
elements of this set. This idea is made precise in Algorithm 2.

Theorem 1. If D satisfies MON, MAX, and COM, all D-cores of a normal-form game
can be computed in polynomial time.

13



Algorithm 2 All D-cores

procedure D cores(Γ)
C ← ∅
for all (a1, . . . , an) ∈

∏
i∈N Ai do

add min ext(Γ, ({a1}, . . . , {an})) to set C
end for
return {X ∈ C : there does not exist X ′ ∈ C with X 6= X ′ and X ′ ⊆ X}

a1 a2 a3 a4 a5 a6

a1 0 1 −1 1 1 −1

a2 −1 0 1 1 −1 1

a3 1 −1 0 −1 1 1

a4 −1 −1 1 0 1 −1

a5 −1 1 −1 −1 0 1

a6 1 −1 −1 1 −1 0

Figure 3: Tournament game with unique V -core ({a1, a2, a3}, {a1, a2, a3}). A naive adap-
tation of Algorithm 2—starting with a pair ({ai}, {aj}) and iteratively adding
all actions that are not V -dominated—results in proper supersets of the V -core.

Proof. Let Γ = (N, (Ai)i∈N , (ui)i∈N ) be a game in normal form. We show that Algorithm 2
computes all D-cores of Γ and runs in polynomial time. Polynomial running time follows
immediately because Algorithm 1 is invoked

∏
i∈N |Ai| times, and inclusion-minimality can

be checked easily.
As for correctness, we first note that every D-core X is an element of the set C. To

see this, note that Proposition 2 implies that X is the minimal externally D-stable set
containing ({x1}, . . . , {xn}), for every (x1, . . . , xn) ∈

∏n
i=1Xi. To show that all inclusion-

minimal elements of C are D-cores, observe that all elements of C are externally D-stable.
Thus, the first part of Corollary 1 implies that every element of C contains a D-core. Since
all D-cores are elements of C, the inclusion-minimal elements of C are exactly the D-cores
of Γ.

4.2 Generic Sophisticated Algorithm for Symmetric Matrix Games

Algorithm 2 is not sound for all dominance structures considered in this paper. For in-
stance, very weak dominance violates maximal domination and therefore does not satisfy
the conditions of Theorem 1. The example given in Figure 3 shows that, even in tour-
nament games, where V -cores are generally unique, Algorithm 2 fails to find the V -core.
The failure of the greedy algorithm can be traced back to the following problem: Since
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the set of D-maximal actions with respect to a given set X−i may be empty, it is no
longer obvious which actions should be added to a strict subset of a D-core. In particular,
adding all actions that are not D-dominated with respect to the current subset does not
work (see Figure 3). We will identify conditions on dominance structures D that allow for
the following sophisticated method: Instead of adding all D-undominated actions, merely
add actions contained in a D-core of the subgame induced by the D-undominated actions.
This immediately gives rise to a recursive algorithm, whose running time may, however,
be exponential. Whenever a nonempty subset of a D-core can be found efficiently, which
fortunately is the case for many symmetric dominance structures we consider, an efficient
algorithm can be constructed.

In this section, we will only be concerned with symmetric matrix games and dominance
structures D satisfying uniqueness in symmetric matrix games (UNI). If a symmetric matrix
game Γ has a unique D-core (X1, X2), it is easily verified that X1 = X2.

17 In this case, the
set X1 = X2 will be denoted by SD(Γ). The following lemma is the key ingredient for the
sophisticated algorithm. Given a game Γ and a subset X of the D-core of Γ, it identifies
sufficient conditions for the D-core of Γ|A′ to be contained in the D-core of Γ, where Γ|A′
is the subgame of Γ that is induced by the D-undominated actions with respect to X.

Lemma 1. Let Γ be a symmetric matrix game and D a dominance structure satisfying
weak MON, TRA, SING, and UNI. Let furthermore X ⊆ SD(Γ) and let A′ denote the
set of actions that are neither contained in X nor D-dominated with respect to X, i.e.,
A′ = {a ∈ A \X : ¬(X D(X) a)}. Then, SD(Γ|A′) ⊆ SD(Γ).

Proof. Let X ⊆ SD(Γ) and A′ = {a ∈ A \X : ¬(X D(X) a)}. We can assume that A′ is
nonempty, as otherwise SD(Γ|A′) is empty and there is nothing to prove.

Now partition the set A′ into two sets C = A′ ∩ SD(Γ) and C ′ = A′ \ SD(Γ) of actions
contained in SD(Γ) and actions not contained in SD(Γ). We will show that (C,C) is
externally D-stable in Γ|A′ . Then, the second part of Corollary 1 and UNI imply that
SD(Γ|A′) ⊆ C and, therefore, SD(Γ|A′) ⊆ SD(Γ).

In order to show that (C,C) is externally D-stable in Γ|A′ , consider some z ∈ C ′. Since
z /∈ SD(Γ), SING implies that there exists y ∈ SD(Γ) with y D(SD(Γ)) z. We show
that y ∈ C. It is easy to see that y /∈ X, since otherwise weak MON would imply that
y D(X) z, contradicting the assumption that z ∈ A′. On the other hand, assume that
y ∈ SD(Γ) \ (X ∪ C). Then there is some x ∈ X such that x D(X) y. However, according
to TRA, x D(X) y and y D(SD(Γ)) z imply x D(X) z, again contradicting the assumption
that z ∈ A′. Thus y ∈ C, and using weak MON again, y D(SD(Γ)) z and z ∈ A′ imply
y D(A′) z. Hence (C,C) is externally D-stable in Γ|A′ .

Two further properties are required to turn the insight of Lemma 1 into an efficient
algorithm: First, we need a polynomial-time algorithm to compute a nonempty subset
of the unique D-core; second, the dominance structure D itself must be computationally
tractable.
17Suppose X1 6= X2. Then, (X2, X1) is another D-core in Γ.
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Algorithm 3 D-core of a symmetric matrix game

procedure D core symm(Γ)
X ← subset of SD(Γ)
repeat
A′ ← {a ∈ A \X : ¬(X D(X) a)}
X ′ ← subset of SD(Γ|A′)
X ← X ∪X ′

until max(D(X)) \X = ∅
return (X,X)

Theorem 2. If D satisfies weak MON, TRA, SING, UNI, SUB-COM, and COM, the
D-core of a symmetric matrix game can be computed in polynomial time.

Proof. Let Γ = (A, u) be a symmetric matrix game. We show that Algorithm 3 computes
SD(Γ) and runs in polynomial time. In each iteration, at least one action is added to
the set X, so the algorithm is guaranteed to terminate after at most |A| iterations. Each
iteration consists of (1) computing the set A′ of D-undominated actions and (2) finding a
subset X ′ of SD(Γ|A′). Since D satisfies COM and SUB-COM, both tasks can be performed
in polynomial time.

As for correctness, we show by induction on the number of iterations that X ⊆ SD(Γ)
holds at any time. When the algorithm terminates, X is externally D-stable, which together
with the induction hypothesis implies that X = SD(Γ). The base case is trivial. Now
assume that X ⊆ SD(Γ) at the beginning of a particular iteration. Then X ∪ X ′ ⊆
X ∪ SD(Γ|A′) ⊆ SD(Γ), where the first inclusion is due to X ′ ⊆ SD(Γ|A′) and the second
inclusion follows from Lemma 1 and the induction hypothesis.

4.3 Games with an Exponential Number of D-Cores

Our algorithms do not apply to all dominance structures considered in this paper. In
fact, some dominance structures give rise to an exponential number of D-cores, even in
symmetric matrix games. We need the following lemma, which is easily established.

Lemma 2. Let Γ = (A, u) be a symmetric matrix game. Define Γ′ as the matrix game that
is identical to Γ except that player 1 has an additional action â that always yields a utility
of 1. That is, Γ′ = ({1, 2}, (A ∪ {â}, A), (u1, u2)) with u1(a, b) = u(a, b) for all a, b ∈ A,
u1(â, a) = 1 for all a ∈ A, and u2 = −u1. Then, there exists no subset X ⊆ A such that
X V ∗(X) â.

Proof. Assume for contradiction that X V ∗(X) â for some X ⊆ A and let s ∈ ∆(X) be a
strategy that strictly dominates â with respect to X. Consider the matrix game Γ|X . In
this game, playing strategy s guarantees a payoff of at least 1. However, the game Γ|X is
symmetric and thus has a value of zero, meaning that no player can guarantee a strictly
positive payoff.
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A D-core (X1, X2) is symmetric if X1 = X2. It is straightforward to verify that every
symmetric matrix game has a symmetric D-core for all dominance structures D considered
in this paper. For D ∈ {V, V ∗}, any symmetric matrix game with multiple symmetric
D-cores can be used to show that the number of D-cores may be exponential in general.
Let c(Γ) denote the number of symmetric D-cores of game Γ.

Theorem 3. Let D ∈ {V, V ∗}. For every symmetric matrix game Γ = (A, u), there exists
a family (Γk)k∈N of symmetric matrix games with the following properties:

(i) For all k ∈ N, the game Γk = (Ak, uk) satisfies |Ak| = 3k−1|A| and

c(Γk) = c(Γ)3
k−1

= c(Γ)|A
k|/|A|.

In particular, c(Γk) is exponential in |Ak| whenever c(Γ) ≥ 2.

(ii) If Γ is a confrontation game, then so is Γk, for all k ∈ N.

Proof. Let D ∈ {V, V ∗} and consider a symmetric matrix game Γ = (A, u). We now
construct the family (Γk)k∈N with Γk = (Ak, uk) for all k ∈ N. Let Γ1 = Γ. For k ≥ 1,
Γk+1 = (Ak+1, uk+1) is defined inductively as follows.

Ak+1 = Ak,0 ∪Ak,1 ∪Ak,2,

where for each ` ∈ {0, 1, 2}, Ak,` is a copy of Ak. For a ∈ Ak,` and b ∈ Ak,`′ , the utility
function uk+1 is defined by

uk+1(a, b) =


uk(a, b) if ` = `′,

−1 if `′ = ` + 1,

1 if `′ = ` + 2,

where `+r should be understood to mean `+r mod 3. If Mk is the matrix representing Γk,
1 is the |Ak| × |Ak| matrix containing only ones, and −1 is (−1) · 1, then the game Γk+1

is represented by the block matrix

Mk+1 =

 Mk −1 1

1 Mk −1
−1 1 Mk

 .

Property (ii) follows immediately from the construction. For (i), we will show that, for
each k ≥ 1, the symmetric D-cores of Γk+1 can be characterized in terms of the symmetric
D-cores of Γk. The following notation will be useful. For X ⊆ Ak+1 and ` ∈ {0, 1, 2}, let
X` = X ∩Ak,` denote the part of X that lies in block `. We claim that for each k ≥ 1,

(X,X) is a symmetric D-core in Γk+1 if and only if

(X`, X`) is a symmetric D-core in Γk for all ` ∈ {0, 1, 2}.
(3)
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Before proving this equivalence, we make the following observation.

If (X,X) is a D-core in Γk+1, then X` 6= ∅ for all ` ∈ {0, 1, 2}. (4)

To see this, let x ∈ X be an arbitrary action in X and choose ` such that x ∈ X`. Consider
the game where the actions of player 2 are restricted to X`. As uk+1(a, b) = 1 for all
a ∈ X`+1 and b ∈ X`, Lemma 2 implies that no action in X`+1 is D-dominated by X`.
Therefore, at least one of the actions in X`+1 has to be contained in X, i.e., X`+1 6= ∅.
Repeating the argument, X`+1 6= ∅ implies X`+2 6= ∅, which proves (4).

We are now ready to prove the equivalence (3). For the direction from left to right,
assume that (X,X) is a D-core in Γk+1 and let ` ∈ {0, 1, 2}. We need to show that
(X`, X`) is a D-core in Γk. By (4), we know that X` 6= ∅. To show that (X`, X`) is
externally D-stable, consider some a ∈ Ak,` \X`. As (X,X) is externally D-stable in Γk+1,
X D(X) a. However, the definition of uk+1 ensures that none of the actions in X`+1∪X`+2

is involved in the domination of a, and that actually X` D(X) a. Monotonicity of D finally
yields X` D(X`) a. For minimality of (X`, X`), note that the existence of an externally
D-stable set (X ′, Y ′) 6= (X`, X`) in Γk with X ′, Y ′ ⊆ X` would contradict the minimality
of (X,X) in Γk+1.

For the direction from right to left, (X,X) is externally D-stable in Γk+1 because each
(X`, X`) is externally D-stable in Γk. Furthermore (X,X) is minimal, as a proper subset
of (X,X) that is externally D-stable in Γk+1 would yield an externally D-stable subset of
(X`, X`) for some ` ∈ {0, 1, 2}, contradicting the minimality of (X`, X`) in Γk. We have
thus proven (3).

Finally, let ck = c(Γk). It follows from (3) that ck+1 = c3k for all k ≥ 1. As c1 = c(Γ),

this yields ck = c(Γ)3
k−1

. As |Ak| = 3k−1|A|, we have ck = c(Γ)|A
k|/|A|. In particular, ck is

exponential in |Ak| whenever c(Γ) ≥ 2.

The construction used in the proof of Theorem 3 also works for weak dominance and
mixed weak dominance.

5 Greedy Algorithms

In this section, we investigate the consequences of Theorem 1 on S-, B-, and S∗-cores.

Corollary 3. All S-cores of a normal-form game can be computed in polynomial time.

Proof. According to Theorem 1, it suffices to show that S satisfies MON, MAX, and COM.
It can easily be verified that S satisfies MON and MAX. Furthermore, S satisfies COM be-
cause xi S(X−i) ai can be checked efficiently by simply comparing ui(xi, x−i) and ui(ai, x−i)
for each x−i ∈ X−i.

The same is true for Börgers dominance.

Corollary 4. All B-cores of a normal-form game can be computed in polynomial time.
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Algorithm 4 Checking Börgers dominance

procedure Boergers dom(Γ, (Xi)i∈N , ai)
Y−i ← X−i
repeat

if Xi W (Y−i) ai then
choose xi ∈ Xi such that xi W (Y−i) ai
C(xi)← {y−i ∈ Y−i : ui(xi, y−i) > ui(ai, y−i)}
Y−i ← Y−i \ C(xi)

else
return “no”

end if
until Y−i = ∅
return “yes”

Proof. According to Theorem 1, it suffices to show that B satisfies MON, MAX, and COM.
As was the case for S, it can easily be checked that B satisfies MON and MAX.

It remains to be shown that B satisfies COM. Consider the following procedure, formal-
ized in Algorithm 4, which checks whether Xi B(X−i) ai holds. First check whether Xi

weakly dominates ai. If no, then Xi does not B-dominate ai either. If yes, we can find
an action xi ∈ Xi with ui(xi, x−i) ≥ ui(ai, x−i) for all x−i ∈ X−i. Define C(xi) as the
set of all tuples x−i ∈ X−i for which the latter inequality is strict. C(xi) is nonempty
by definition of W . It follows that xi W (Y−i) ai for all Y−i with Y−i ∩ C(xi) 6= ∅. We
can therefore restrict attention to subsets of Y−i \ C(xi) and “recursively” check whether
Xi B(Y−i \ C(xi)) ai.

It is easily verified that this procedure runs in polynomial time and correctly checks
Börgers dominance. For the former, observe that the number of loops is bounded by |X−i|.
For the latter, there are two cases two consider. If Algorithm 4 returns “no”, then there
is Y−i ⊆ X−i such that Xi does not weakly dominate ai with respect to Y−i. Therefore,
Xi B(X−i) ai does not hold. If, on the other hand, Algorithm 4 returns “yes”, then every
x−i ∈ X−i is contained in C(xi) for some xi ∈ Xi. In order to show that Xi B(Y−i) ai,
consider an arbitrary subset Y−i ⊆ X−i. We need to show that xi W (Y−i) ai for some
xi ∈ Xi. Consider the first time Algorithm 4 chooses an action xi with C(xi) ∩ Y−i 6= ∅.
Denote this action by x∗i and let Y ∗−i be the corresponding set of opponent action profiles
such that x∗i W (Y ∗−i) ai. By choice of x∗i , we have Y−i ⊆ Y ∗−i. It follows that ui(x

∗
i , y−i) ≥

ui(ai, y−i) for all y−i ∈ Y−i. And since C(xi) ∩ Y−i 6= ∅, the inequality is strict for at least
one y−i ∈ Y−i.

The requirements for the greedy algorithm are also met by mixed strict dominance.

Corollary 5. All S∗-cores of a normal-form game can be computed in polynomial time.

Proof. According to Theorem 1, it suffices to show that S∗ satisfies MON, MAX, and
COM. It is easily verified that S∗ satisfies MON. Furthermore, S∗ satisfies COM because
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Xi S∗(X−i) ai can be checked efficiently with the help of a linear program (see, e.g.,
Conitzer and Sandholm, 2005, Proposition 1).

We now show that S∗ satisfies MAX.18 We use the following notation. For a strategy
s ∈ ∆(Ai) and an action a ∈ Ai, we write s >X−i a if s strictly dominates a with respect
to X−i, i.e., if u(s, x−i) > u(a, x−i) for all x−i ∈ X−i. We simply write s > a if X−i is
clear from the context. We call an action dominated if there exists a strategy s ∈ ∆(Ai)
with s > a.

Consider a strategy s ∈ ∆(Ai) and an action a ∈ Ai. For a strategy t ∈ ∆(Ai) with
t(a) < 1, we denote by sa→t the strategy in which action a gets probability zero and the
probability mass from action a is redistributed among other alternatives according to t.
Formally, sa→t(a) = 0 and sa→t(b) = s(b) + s(a) t(b)∑

c6=a t(c) for all b ∈ Ai \ {a}.
Consider a game Γ and a set X−i of opponent action profiles. Let a ∈ Ai be an action

such that Ai S
∗(X−i) a. We call an action b ∈ Ai necessary for the domination of a if

every strategy s ∈ ∆(Ai) with s >X−i a satisfies s(b) > 0. In other words, b is necessary for
the domination of a if Ai S

∗(X−i) a but not Ai \ {b} S∗(X−i) a. We will use the following
observations:

(i) For every dominated action a ∈ Ai, a is not necessary for the domination of a.

(ii) If b is necessary for the domination of a, then b ∈ max(S∗(X−i)).

To see (i), consider a dominated action a ∈ Ai and s ∈ ∆(Ai) with s > a. If s(a) = 0,
there is nothing to show. Otherwise, define s′ = sa→s. It is easily verified that s′ > a.
Since s′(a) = 0, we have that a is not necessary for the domination of a.

To see (ii), consider a dominated action a ∈ Ai and an action b ∈ Ai that is necessary for
the domination of a. Assume for contradiction that b /∈ max(S∗(X−i)). Then there exists
a strategy sb ∈ ∆(Ai) with sb > b. By (i), we can assume that sb(b) = 0. Let furthermore
sa ∈ ∆(Ai) be a strategy with sa > a. Since b is necessary for the domination of a, it must
hold that sa(b) > 0. Define s′ = sb→sb

a . It is easily verified that s′ > a. But s′(b) = 0,
contradicting the assumption that b is necessary for the domination of a.

We are now ready to prove that S∗ satisfies MAX. Consider a game Γ, a player i ∈ N ,
and a set X−i of opponent action profiles. Let M = max(S∗(X−i)) and L = Ai \ M
denote the maximal and dominated actions of player i, respectively. We need to show that
M S∗(X−i) a for all a ∈ L. Our proof is by induction on the number k = |L| of dominated
strategies.

If k = 0, there is nothing to show, and for k = 1 the statement follows from observa-
tion (i). Now assume k ≥ 2 and consider two dominated actions a, b ∈ L. By observa-
tion (ii), we know that b is not necessary for the domination of a. Thus, a is still dominated
in the subgame Γ′ of Γ in which player i is restricted to action set Ai \ {b}. By induction,
ai is dominated by the set M ′ of maximal actions of player i in Γ′. Clearly, M ′ is identical
to the set M of maximal actions of player i in Γ. Thus M S∗(X−i) a. Since the argument
works for every dominated action a ∈ L, we have shown that S∗ satisfies MAX.
18We are grateful to an anonymous reviewer for pointing out this argument.

20



6 Sophisticated Algorithms for Symmetric Matrix Games

In this section, we investigate the consequences of Theorems 2 and 3 on CD-, CM -, V -, and
V ∗-cores.

Let us first consider CM and CD, which are only defined in symmetric matrix games.
For this class of games, it turns out that both dominance structures yield unique minimal
solutions. In fact, we can show the following more general result.

Proposition 4. Let D be a dominance structure satisfying weak MON and TRA. If D is
coarser than CM (i.e., D ⊆ CM ), then every symmetric matrix game has a unique D-core.

For the case D = CM , it was already known that every symmetric matrix game has a
unique symmetric CM -core (Dutta and Laslier, 1999, Theorem 4.2). Furthermore, Lem-
mata 1 and 2 of Duggan and Le Breton (1996) imply that every confrontation game has a
unique CM -core. (See Footnote 21 for details.)

It is unknown whether D ⊆ CM is necessary for the uniqueness of D-cores in symmetric
matrix games. Various dominance structures that are finer than CM have been shown to
admit disjoint minimal solutions, sometimes involving rather elaborate combinatorial argu-
ments. Examples include unidirectional covering (Brandt and Fischer, 2008) and extending
(Brandt, 2011; Brandt et al., 2013).

In order to prove Proposition 4, we need the following two lemmata.19

Lemma 3. Let D ⊆ CM be a dominance structure satisfying weak MON and TRA. Let
furthermore Γ = (A, u) be a symmetric matrix game and X,Y ⊆ A. If (X,X) and (Y, Y )
are externally D-stable sets, then (X ∩ Y,X ∩ Y ) is externally D-stable.

Proof. We first show that X ∩ Y 6= ∅. Assume for contradiction that X ∩ Y = ∅ and let
a0 ∈ Y . As (X,X) is externally D-stable, there exists a1 ∈ X with a1 D(X) a0. As (Y, Y )
is externally D-stable, there exists a2 ∈ Y with a2 D(Y ) a1. Repeatedly applying these
arguments yields an infinite sequence (a0, a1, a2, ...) such that

• for all even i ≥ 0, ai ∈ Y and ai+1 D(X) ai, and

• for all odd i ≥ 1, ai ∈ X and ai+1 D(Y ) ai.

By the assumption that D ⊆ CM and the definition of CM , it follows that

• u(ai+1, ai) > 0 and u(ai+1, x) ≥ u(ai, x) for all even i ≥ 0 and for all x ∈ X, and

• u(ai+1, ai) > 0 and u(ai+1, y) ≥ u(ai, y) for all odd i ≥ 1 and for all y ∈ Y .

19These lemmata are adapted from Duggan and Le Breton (1996), who proved analogous statements for
the special case of W -cores in confrontation games.
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Figure 4: Construction in the proof of Lemma 3. An arrow from a profile (ai, aj) to another
profile (ai′ , aj′) indicates that u(ai, aj) ≥ u(ai′ , aj′).

Since A is finite, the sequence (a0, a1, a2, ...) must contain repetitions. Without loss of
generality, assume that ak = a0 for some even k > 0. We can therefore construct the
following chain of inequalities (consult Figure 4 for an example with k = 6):

u(a0, a1) ≤ u(a1, a1) ≤ u(a1, a0) ≤ u(a2, a0) ≤ u(a2, ak−1)

≤ u(a3, ak−1) ≤ u(a3, ak−2) ≤ u(a4, ak−2) ≤ . . .

≤ u(a0, a2) ≤ u(a0, a1)

It follows that all utilities in this chain of inequalities are equal. Moreover, since Γ
is a symmetric matrix game, we have that u(a1, a1) = 0 and hence that all utilities in
this chain are zero. In particular, u(a1, a0) = 0, which contradicts the assumption that
a1 D(Y ) a0 (because we have observed that the latter implies u(a1, a0) > 0). This proves
that X ∩ Y 6= ∅.20

In order to show that (X∩Y,X∩Y ) is externally D-stable, take an arbitrary a0 /∈ X∩Y .
Without loss of generality, assume that a0 /∈ X. As (X,X) is externally D-stable and
D ⊆ CM , there exists a1 ∈ X with a1 CM (X) a0. If a1 /∈ Y , there exists a2 ∈ Y with
a2 CM (X) a1. This construction finally yields some ak ∈ X ∩ Y , for otherwise we have
a contradiction as in the first part of the proof. Repeated application of weak MON now
yields ak D(X ∩ Y ) ai for all i < k. In particular, ak D(X ∩ Y ) a0, as desired.

The proof of the following lemma is similar to that of Lemma 3 and we omit it.

20X ∩ Y 6= ∅ also follows from Claim 2 in the the proof of Theorem 4.2 of Dutta and Laslier (1999).
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Lemma 4. Under the assumptions of Lemma 3, if (X,Y ) is externally D-stable, then
(X ∩ Y,X ∩ Y ) is externally D-stable.

It is now easy to prove Proposition 4.

Proof of Proposition 4. Lemma 4 implies that every D-core (X,Y ) satisfies X = Y , as
otherwise (X ∩ Y,X ∩ Y ) would be a smaller externally D-stable set. Similarly, Lemma 3
implies that there cannot exist two D-cores (X,X) and (Y, Y ) with X 6= Y .

Since CD is coarser than CM and both CD and CM are weakly monotonic and transitive,
it immediately follows that CD and CM satisfy uniqueness in symmetric matrix games,
which is one of the main ingredients of the sophisticated algorithm.

Corollary 6. Every symmetric matrix game has a unique CD-core and a unique CM -core.

We now show that the other requirements for the sophisticated algorithm are satisfied
as well.

Corollary 7. The CD-core and the CM -core of a symmetric matrix game can be computed
in polynomial time.

Proof. According to Theorem 2, it is sufficient to show that both CM and CD satisfy weak
MON, TRA, SING, UNI, SUB-COM, and COM.

It is easily verified that both CM and CD satisfy weak MON, TRA, SING, and COM. UNI
was shown in Corollary 6. Finally, Dutta and Laslier (1999) have shown that the essential
set ES (Γ) is a (nonempty) subset of SCM

(Γ). Since the essential set can be computed in
polynomial time using linear programming (see Brandt and Fischer, 2008), this proves that
CM satisfies SUB-COM. The same is true for CD because SCM

(Γ) ⊆ SCD
(Γ).

Let us now turn to very weak dominance. In contrast to S-cores, V -cores are not unique
in matrix games. It is in fact easily seen that even a symmetric matrix game can have
multiple very weak saddles: If all action profiles yield the same utility, then every single
profile constitutes a V -core. Therefore, Theorem 3 implies that there are symmetric matrix
games with an exponential number of V -cores. The following corollary is an immediate
consequence.

Corollary 8. Computing all V -cores of a game requires exponential time in the worst case,
even for symmetric matrix games.

We emphasize that this result does not preclude the existence of an efficient algorithm
that finds a succinct representation of V -cores for a given matrix game. In fact, the recent
finding that V -cores in matrix games are interchangeable and equivalent raises hope that
this might indeed be possible (Brandt et al., 2016). It is even open whether a single
V -core of a matrix game can be computed efficiently. For non-zero-sum games, Brandt
et al. (2011b) have shown that a number of natural problems like finding V -cores, checking
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a1 a2 a3 a4 a5 a6

a1 0 3 −3 −1 −1 2

a2 −3 0 3 −1 2 −1

a3 3 −3 0 2 −1 −1

a4 1 1 −2 0 3 −3

a5 1 −2 1 −3 0 3

a6 −2 1 1 3 −3 0

Figure 5: Confrontation game with two symmetric V ∗-cores: ({a1, a2, a3}, {a1, a2, a3}) and
({a4, a5, a6}, {a4, a5, a6}). In the former V ∗-core, a4 is dominated by 2

3a1 + 1
3a3,

a5 is dominated by 1
3a2 + 2

3a3, and a6 is dominated by 1
3a1 + 2

3a2. In the latter
V ∗-core, a1 is dominated by 2

3a5 + 1
3a6, a2 is dominated by 2

3a4 + 1
3a5, and a3 is

dominated by 1
3a4 + 2

3a6.

whether a given action is contained in some V -core, or deciding whether there is a unique
V -core are computationally intractable.

In confrontation games, the picture is different: Duggan and Le Breton (1996) have
shown that these games have a unique V -core, which moreover coincides with the (unique)
CM -core.21 The following positive result now follows from Corollary 7.

Corollary 9. The unique V -core of a confrontation game can be computed in polynomial
time.

V ∗-cores, on the other hand, are not even unique in confrontation games, as witnessed
by the game in Figure 5. Applying Theorem 3 again, we get the following.

Corollary 10. Computing all V ∗-cores of a game requires exponential time in the worst
case, even for confrontation games.

In order to guarantee the uniqueness of V ∗-cores, we thus have to restrict the class of
games even further. Duggan and Le Breton (2001) have shown that tournament games
have a unique V ∗-core, which moreover coincides with the (unique) CM -core.

Corollary 11. The unique V ∗-core of a tournament game can be computed in polynomial
time.

21To be precise, Duggan and Le Breton (1996) have shown that the W -core of a confrontation game is
unique and coincides with the CM -core. However, it can be shown that the proofs carry over for very
weak dominance. As a consequence, V -cores, W -cores, and CM -cores all coincide in confrontation games.
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