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Variable Liberalization

SANYAM MEHTA and PEN-CHUNG YEW, University of Minnesota, Twin Cities

In the wake of the current trend of increasing the number of cores on a chip, compiler optimizations for
improving the memory performance have assumed increased importance. Loop fusion is one such key opti-
mization that can alleviate memory and bandwidth wall and thus improve parallel performance. However,
we find that loop fusion in interesting memory-intensive applications is prevented by the existence of depen-
dences between temporary variables that appear in different loop nests. Furthermore, known techniques of
allowing useful transformations in the presence of temporary variables, such as privatization and expansion,
prove insufficient in such cases.

In this work, we introduce variable liberalization, a technique that selectively removes dependences on
temporary variables in different loop nests to achieve loop fusion while preserving the semantical correctness
of the optimized program. This removal of extra-stringent dependences effectively amounts to variable
expansion, thus achieving the benefit of an increased degree of freedom for program transformation but
without an actual expansion. Hence, there is no corresponding increase in the memory footprint incurred.
We implement liberalization in the Pluto polyhedral compiler and evaluate its performance on nine hot
regions in five real applications. Results demonstrate parallel performance improvement of 1.92× over the
Intel compiler, averaged over the nine hot regions, and an overall improvement of as much as 2.17× for an
entire application, on an eight-core Intel Xeon processor.
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1. INTRODUCTION

With the increase in the number of cores on a chip (or processors in a node) and
the consequent worsening of the existing problems of memory and bandwidth wall,
there is a renewed focus on the optimization capabilities of a parallelizing compiler.
A parallelizing compiler should not only help to exploit the available parallelism in
the host hardware but also alleviate the problems of memory and bandwidth wall by
performing memory optimizations such as loop tiling, data prefetching, loop fusion, and
other supporting optimizations such as loop shifting and loop interchange. While these
important responsibilities of a parallelizing compiler are well recognized, it is also well
known that compilers often fall short in capitalizing on the optimization opportunities
provided by a target application.
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Fig. 1. (a) Original code and (b) Optimized (or transformed) code after a and tmp are privatized.

One key reason for this shortfall is that most existing production compilers built on
traditional wisdom often limit themselves to optimizing only small scopes in the en-
tire program [Rauchwerger and Padua 1999; Ding and Kennedy 2004; Vandierendonck
et al. 2010] or kernels [Bondhugula et al. 2008; Pouchet et al. 2007, 2008; Girbal et al.
2006]. Even in some recent work, such as Johnson et al. [2013], the authors only analyze
individual hot loops in target applications to mark those loops as parallel or determine
the validity of loop distribution. However, our experiments with several scientific ap-
plications from the SPEC benchmark suite reveal that there are many opportunities
for improvement in memory (and parallel) performance of those benchmarks through
global program optimizations (or transformations) such as applying loop fusion across
a sequence of such hot loops. Such loop fusion across multiple loop nests saves the
cost of fork-join synchronization between loops and, more importantly, significantly
improves temporal locality and thus saves costly off-chip memory accesses. Both these
benefits are of increasing importance in the era of multi-/many cores.

In the past, there has been work on loop fusion [Kennedy and McKinley 1994;
Megiddo and Sarkar 1997; Singhai and McKinley 1997; Ding and Kennedy 2004], but
the existing production compilers still prove insufficient in fusing multiple loop nests.
We find that, in addition to some of the other limitations such as non-conformable loop
bounds or loop orders in different nests, and the existence of imperfect nests, it is the
existence of (extra-)stringent memory dependences on temporary variables (scalars or
low-dimensional arrays as shown in Figure 1(a)) in different nests that is the key factor
behind the dismal performance of existing compilers with regard to global program op-
timizations. Such memory dependences severely limit the degrees of freedom for loop
transformations such as loop fusion and loop interchange. It is important to note that
we cannot simply get rid of all such dependences to enable loop fusion, because fusion
merges multiple definitions and uses in the fused loop’s body that can potentially violate
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program correctness. Such dependences thus require specific treatment. In this work,
we make the following contributions,

(1) We analyze an important cause of the weakness of existing compilers in achieving
global program transformations—the (extra-)stringent data dependences caused
by temporary variables that appear in different loop nests and have the same
variable name.

(2) We propose variable liberalization,1 a technique that strategically removes depen-
dences on temporary variables (and, consequently, liberalizes scheduling of state-
ments containing temporary variables) in different nests to release the degrees of
freedom needed to express effective loop transformations such as loop fusion and
loop interchange while preserving program correctness. Variable liberalization dif-
fers from variable privatization because (1) it removes dependences on multiple
outer loops across loop nests instead of just the outermost loop in a single nest and
(2) it is performed to also enable fusion and not just coarse-grained paralleliza-
tion. Liberalization differs from expansion because there is no real expansion of
a variable’s dimensions that takes place in order to accomplish fusion and paral-
lelization. That is, there is no change in memory allocation, but the same effect is
achieved through selective removal of dependences. It thus provides the benefits of
both privatization and expansion and avoids their drawbacks.

(3) We implement our work in the state-of-the-art Pluto polyhedral compiler and evalu-
ate the improvement obtained in terms of parallel performance on nine hot regions
in five real scientific applications from the SPEC and NAS Parallel Benchmark
suites that have not been effectively optimized by current production compilers
even though they contain significant opportunity. With the recent advances in the
scalability of polyhedral compilers [Mehta and Yew 2015] that has rendered the
compile time of large programs comparable to current production compilers, we
believe that this work will further motivate scientific programmers to leverage
polyhedral optimizations for real applications.

The rest of the article is organized as follows. Section 2 reinforces the motivation for
this work through a simple example program that exposes the limitation of existing
compilers in global program transformation and shows the potential benefits from
overcoming that limitation. Section 3 provides a background on dependence analysis
with focus on temporary variables and also introduces key concepts to explain our
proposed variable liberalization optimization. This is followed by a detailed discussion
of our approach and its application in the different cases seen in real applications in
Section 4. Section 5 puts all previous discussion together in the form of an algorithm
that implements liberalization. In Section 6, we evaluate our approach against state-
of-the-art compilers and discuss results in each case. This is followed by a discussion
on related work in Section 7. Finally, Section 8 presents the conclusions from this work.

2. MOTIVATION

Figure 1(a) shows an example program that assumes some of the features that are
characteristic of real scientific applications. These features include extensive use of
temporary variables such as the scalar variable a and the array variable tmp; excellent
opportunities for data reuse across loop nests such as that in arrays rho, x, and z;
and imperfectly nested loops. Figure 1(b) shows a transformed program where the two
loop nests in the original program (Figure 1(a)) are fused into a single nest and the

1Liberalization literally means removing barriers to allow freer interaction between two parties. Variable
liberalization similarly removes the extra-stringent data dependences caused by temporary variables in two
loop nests to allow global optimizations such as loop fusion between them.
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outermost loop has been parallelized (after marking variables a and tmp as private to
each thread) . Clearly, the transformed program is equivalent to the original program
since the transformed program satisfies all memory dependences.

In order to evaluate the strength of existing compilers with regard to performing loop
optimizations on real scientific application code, we compiled the code in Figure 1(a)
with ICC (v14, a state-of-the-art production compiler) and Pluto (0.11.4, a state-of-the-
art polyhedral compiler). Our experiments led to the following interesting findings.

(1) Neither ICC nor Pluto (+ ICC, since Pluto is a source-to-source compiler and needs
ICC as the backend compiler) were able to either achieve loop fusion, even though
there is reuse, or mark the outermost loop as parallel for coarse-grained paral-
lelization.

(2) The transformed program in Figure 1(b) fuses both the loop nests and thus achieves
a sequential performance improvement of 1.19× over the original program in
Figure 1(a) (compiled using ICC). This demonstrates the efficacy of exploiting data
reuse across loop nests. Pluto performs even worse than ICC (0.48× as compared
to ICC) in this case because it fuses the two k1-loops in the first loop nest and the
two k2-loops in the second. Although this helps to gain some reuse, there is also
loss of vectorization in the innermost loops.

(3) The transformed program in Figure 1(b) achieves a parallel performance improve-
ment of 4.47× over the original program (compiled using ICC) when running eight
threads in parallel, clearly revealing the optimization potential. Even after the
two loop nests in Figure 1(a) are explicitly marked parallel (and variables a and
tmp privatized), parallel performance improvement of the transformed program in
Figure 1(b) is still 1.48× over this manually parallelized version (compiled using
ICC). This is because of the combined savings of off-chip memory accesses and
fork-join synchronization through loop fusion.

The key reason for the poor performance of ICC and Pluto is that the use of same
temporary variables in the two loop nests introduces fusion-preventing backward de-
pendences on the outer loops of these nests. These dependences are not false since
their removal allows a perfect fusion of the two nests, which may violate program
correctness due to incorrect definitions reaching certain uses (see Figure 4 for an ex-
ample). The following section (Section 3), however, shows that while all dependences
involving temporary variables cannot be removed, many can be removed to achieve
liberalization. In other words, those dependences are more stringent than needed and
artificially lead to a reduced degree of freedom for transformations such as fusion and
parallelization. Section 3 then introduces concepts that lead us to variable liberaliza-
tion, the technique that removes dependences selectively to generate the transformed
code as in Figure 1(b).

2.1. Why Not Scalar and Array Expansion (Perhaps, Followed by Contraction)?

Scalar or array expansion involves transforming the scalar or low-dimension array
variables (such as a and tmp[] in our motivating example) into full-dimension arrays
(such as a[][][] and tmp[][][]). Expansion essentially creates a new memory location
for the temporary variable for each iteration of the loop nest. It thus removes loop-
carried dependences between different references of the variable, leading to effective
loop transformations. However, this technique (1) increases the memory footprint sig-
nificantly and thus degrades temporal locality both in cache [Thies et al. 2001] and
registers [Callahan et al. 1990] and (2) requires declaration of new data structures
and corresponding changes in the source code. The authors in Lefebvre and Feautrier
[1998], Quilleré and Rajopadhye [2000], and Darte and Huard [2005] propose to per-
form array contraction to reduce the memory footprint after an initial expansion step.
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Their rationale is that expansion will enable aggressive optimizations, and array con-
traction will help to recover the loss in temporal locality at a later stage. Similarly,
Cohen [1999] proposes maximal static expansion, followed by finding parallelism (or
possibly other transformations) and then performing contraction. Thies et al. [2001],
on the other hand, simultaneously consider the goals of reducing memory footprint
(or storage) and achieving good schedules in a single mathematical framework. These
works all require us to contract the expanded temporary variables, and the following
problem results when trying to do so.

If we perform an expansion of scalar a in the example 1 of Figure 1(a), then it
will be converted into a three-dimensional (3D) array. As a result, the statement S3
containing array x will become free to separate out of the first k1 loop. It can thus be
fused with statement S4 (and distributed with statements S1 and S2) in the second k1
loop. As a result, this transformation is completely feasible (and likely, because it is
not detrimental to reuse). Now that the use and definition of array a are in different
loops (i.e., a loop distribution has been performed), array a cannot be contracted back
to a scalar, losing the opportunity for optimizing storage. Thies et al., however, do point
out the technique of adding certain additional dependence edges to prevent certain
schedules. This could be used to prevent the undesired distribution as above, but the
nature of those additional dependences for the purpose of preventing distribution is
not discussed.

2.2. Why Not Scalar and Array Renaming Across Loop Nests?

Renaming scalar and array variables in different loop nests could also result in dis-
appearance of the transformation-limiting loop-carried dependences across loop nests
and will facilitate loop fusion and parallelization. But, there are three disadvantages
of such a strategy that preclude us from implementing it.

(1) The key limiting factor is that, after fusion of loop nests with (multiple) renamed
temporary variables, the opportunity for reuse of data (accessed by temporary vari-
ables) in the higher levels of the memory hierarchy is lost. In addition, the working
set in those higher (and smaller) levels of the memory hierarchy expands by a
factor of the number of temporary variables and the number of merged nests. This
degrades program performance, especially in the presence of temporary array vari-
ables. For example, the transformed zeusmp benchmark application program from
the SPEC suite (containing 24 temporary arrays in a loop nest) runs 7% slower
when loop fusion is performed after renaming as compared to that performed with-
out renaming (i.e., through variable liberalization). The performance degradation
may be even larger for certain other scientific applications that use even more
temporary variables.

In addition, a proposal to revert the temporary variables back to their original
names after fusion to contract the working set may not be feasible in many cases.
Consider, for example, the code in Figure 2(a). If we rename the temporary array x
in the second loop nest to y, then the two loops nests become fusable, and the code in
Figure 2(b) is a valid fused code that results. Clearly, the temporary array y cannot
be renamed back to x to contract the working set and achieve reuse after fusion
because that would hurt program correctness. In this case, however, fusion could
still be achieved by selective removal of dependences as in variable liberalization.

(2) As a result of this substantial increase in the number of temporary variables, the
number of hardware prefetch streams also increase in the same proportion as each
temporary array triggers one of those prefetch streams. Since every processor has
a limited number of these streams, the transformed program can easily fall short
of the needed prefetch streams, leading to performance degradation.
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Fig. 2. (a) Original code and (b) fused code after renaming.

(3) Another drawback is that renaming will require generation of new variable decla-
rations and also modification of all references to the temporary variable in all loop
nests.

Our framework, on the other hand, does not require any of those changes to the
original source code and, more importantly, does not cause any unnecessary increase
in the number of variables in the program. This promotes efficient data reuse in higher
levels of cache and effective prefetching by the hardware.

3. BACKGROUND

Instancewise dependence analysis [Feautrier 1988] employed in state-of-the-art poly-
hedral compilers [Trifunovic et al. 2010; Bondhugula et al. 2008; Grosser et al. 2011]
precisely tells us which iterations of the involved statements are dependent (rather
than merely revealing which statements are dependent) and is thus more effective in
reasoning about the feasibility of loop transformations. In this section, we use instance-
wise dependence analysis to show how dependences between temporary variables ar-
tificially suppress fusion of multiple loop nests. We first show how loop interchange
(one of the fusion-enabling transformations) is hampered by dependences on tempo-
rary variables within the same strongly connected component (SCC), followed by an
example of how loop fusion is prevented by similar dependences across different SCCs
or loop nests. In the polyhedral model, the dependence relation between individual in-
stances of statements connected by a dependence edge in the data dependence graph is
captured by an affine relation between the iterations and accessed data, called the de-
pendence polyhedron. Through the rest of the article, we refer to dependence relations
between individual instances of statements as dependences, and the set of between two
references in the source and destination statements as dependence polyhedron.

Instancewise dependence analysis could be used to refer to two kinds of analysis:
memory based and dataflow or value based. In memory-based dependence analysis,
a statement instance is considered to depend on any previous statement instance
accessing the same data element provided one of the two accesses is a write. On the
other hand, in dataflow analysis, a statement instance performing a read only depends
on the last preceding statement instance performing a write to the same data element.
In this work, we use ISL [Verdoolaege 2010] for the purpose of dependence analysis
in Pluto. ISL implements both memory-based dependence analysis and also another
form of dependence analysis that generalizes between the two more traditional forms
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Fig. 3. Instancewise memory-based RAW dependences between statements (a) S1 and S2 and (b) S2 and S8
of Figure 1(a); the dashed arrows in the figure indicate a backward (RAW) dependence.

of analysis. We refer to this form of dependence analysis as “lastwriter” through this
article. The lastwriter Read After Write (RAW) dependences are the same as dataflow
dependences. For WAR (, WAW) dependences, there is a dependence only between a
write and the last preceding read (, write) to the same element. That is, an intermediate
write to the same element nullifies the WAR (, WAW) between the previous read (, write)
and a following write all to the same element. In this section, the figures and the
accompanying explanatory text assumes memory-based dependence analysis, but we
also explain how the concepts apply to the lastwriter dependence analysis.

Figure 3 shows the (memory-based) dependences between specific statement in-
stances involving temporary variables to demonstrate the transformation limiting na-
ture of such dependences. Since the same memory locations are accessed in multiple
iterations of the loop nest, backward dependences (i.e., dependences with negative
dependence distance) are introduced in multiple loops of the loop nest. For example,
consider the read to the temporary scalar variable a in Statement S2 in Figure 1(a)
at the instance (j1=1, k1=1); it is the sink of a RAW dependence from not just the
instances (j1=1, k1=0) and (j1=1, k1=1) but also from instances (j1=0, k1=0 .. N-1) of
statement S1 as shown in Figure 3(a). Thus, it leads to loop-carried dependence in not
just loop k1 but also loop j1.

It is important to note that the dependence distance for the dependences involving
the scalar a whose source instance is (j1=0, 1<k1<N) is negative along loop k1 (i.e.,
they are backward dependences), and such dependences are thus marked by dashed
arrows in Figure 3 for emphasis. Since loop interchange requires all dependences to be
either loop independent or forward directed on the involved loops, interchanging loops
j1 and k1 is rendered infeasible in this case in the presence of the above-mentioned
loop-carried dependences. When using the lastwriter dependence analysis (that only
reports the dependence between a read to the first write to prevent redundant WAR
dependences), a dependence between the read instance (j1, k1=Nz-1) of S2 and the
write instance (j1+1, k1=0) of S1 involving the scalar a is reported. This is again a
backward dependence, which prevents the interchange of loops j1 and k1 as in the case
of memory-based dependence analysis. The interchange between loops i1 and j1 is
prevented for similar backward dependences occurring with both forms of dependence
analysis.
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We next show how dependences on temporary variables in different loop nests pre-
clude fusion of the involved loop nests. Figure 3(b) shows the instancewise dependences
between statements S2 and S8 involving the temporary array variable, tmp. Since S2
and S8 are in different nests, for a given k = k1 = k2, every write to tmp[k1] in S2 will
be visible to the read tmp[k2] in S8 since the same memory location is involved each
time. Thus, there is a RAW dependence from the definition in the first loop nest to the
use in the second for every instance of loops i and j. This is depicted in Figure 3(b)
for the instance (i=1, j=1) in the second loop nest, which becomes the sink for RAW
dependences whose sources (0≤i≤N-1, 0≤j≤N-1) lie in the first loop nest. We call the
dependence polyhedron capturing these RAW as being all-to-all in loops i and j, since
it represents dependences from all iterations of these loops in the source-nest to all
iterations of the corresponding loop in the destination-nest. Similarly, we can see that
the polyhedron capturing the dependences involving scalar a is all-to-all in loop k as
shown in Figure 3(a). Thus, if loop i or loop j were fused for both nests, then this would
lead to backward (negative distance) dependences in loop i or loop j. Such a fusion will
be invalid, and the compiler restricts itself from performing it.

Similarly, the presence of temporary scalar variables in different nests leads to all-
to-all dependence polyhedra on all loops in the loop nest, which proves to be similarly
fusion restricting.

When using the lastwriter dependence analysis, there is a WAR dependence from the
last read to any temporary variable in the first loop nest to its first write in the second
loop nest. For example, there is a dependence between the read instance (i1=Nx-1,
j1=Ny-1, k1=Nz-1) of S3 and the write instance (i2=0, j2=0, k2=0) of S5 involving the
temporary scalar a. This is again a backward dependence that prevents fusion of the
two loop nests as in the case of memory-based dependence analysis.

3.1. Some Key Concepts and Definitions

We next describe some key concepts and definitions to aid the understanding of our
approach to loop fusion by selectively removing dependences involving temporary
variables.

3.1.1. Live Ranges. In the context of polyhedral compilers, a live range is appropriately
defined in terms of precise statement instances [Baghdadi et al. 2013] instead of static
statements in the program, as studied in earlier literature [Hack et al. 2006]. We define
live ranges as in Baghdadi et al. [2013]. A live range of a value is the range of statement
instances between its definition instance and any use (Baghdadi et al. [2013] explain
that they consider all uses instead of the last use since loop transformations may change
the last use instance). However, since any source-sink pair of references can lead to as
many unique live ranges as the number of iterations in enclosing loops, we represent
live ranges generated by any given source-sink pair in terms of live-range “classes.”
For example, the live-range “class,” which the live range of the scalar a defined in the
first loop nest of the example program in Figure 1(a) belongs to, is:

[S1(i, j, k) → S3(i, j, k)], s.t. 0≤i<Nx, 0≤j<Ny, 0≤k<Nz.
The above notation implies that there is a live range that begins at the write in state-

ment S1 in every iteration of the loop nest (comprising loops i, j and k) and lasts until
statement S3 in the very same iteration. In terms of dependence and dependence poly-
hedron, each individual live range corresponds to a RAW dependence and a live-range
class corresponds to the dependence polyhedron associated with the RAW dependence
edge in the data dependence graph.

3.1.2. Iteration-Private Live Ranges. For the above live range, we note that the live range
begins and ends in the same iteration of the innermost loop k of the loop nest. We call

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 3, Article 23, Publication date: August 2016.



Variable Liberalization 23:9

Fig. 4. Live-range interference.

such a live range as iteration private in loop k. Intuitively, the same live range is also
iteration private in the outer loops, i and j. Past work [Maydan et al. 1993] has shown
that if all live ranges are iteration private in a loop, then the temporary variables can
be marked as private in that loop. In other words, the criteria for privatization requires
that there be no loop-carried dependences (both true and false dependences) at the loop
level concerned. For example, the live range for the scalar a in our example program in
Figure 1(a) is iteration private in all three loops, and, hence, a can be marked as private
in all three loops. However, we only mark a as private in only the outermost loop (as
noted in Section 2) since that allows us to benefit from coarse-grained parallelization,
an important use-case of privatization. We use this concept of iteration-private live
ranges in our proposed variable liberalization optimization.

3.1.3. Live Ranges and Loop Fusion. As a result of loop fusion (after a possible selec-
tive removal of dependences involving temporary variables), loop bodies of the fused
nests merge. Consequently, multiple definitions and uses of temporaries with the same
name end up in the same loop. Thus, to ensure validity of fusion, each use must see
the same definition as in the original program, or, in other words, fusion of loop nests
should preserve non-interference of live ranges. For example, the program in Figure 4(a)
shows two live ranges for the scalar variable a in the two loop nests. Figure 4(b) shows
a fused nest where the two live ranges interfere with each other as shown, and the
first use of the scalar a does not see the same definition as in the original program;
it is thus an incorrectly transformed program. This interference results because all
dependences (including the anti-dependence between statements S2 and S3 that could
prevent the reordering of S2 and S3) are removed in Figure 4(b). Thus, dependences
between temporary variables in different nests cannot be all removed or else an incorrect
transformation as in Figure 4(b) may result. Figure 4(c) preserves the non-interference
of live ranges and is thus a correctly transformed program. Therefore, any removal of
dependences must preserve this non-interference of live ranges to ensure correctness.
This (1) non-interference of live ranges and (2) preservation of dataflow dependences
form the criteria for validity of program transformation as proved in previous work
[Trifunovic et al. 2011; Baghdadi et al. 2013]. We use this criteria to reason about cor-
rectness of the transformed program in the wake of our proposed refinement (selective
removal) of dependences involving (just) temporary variables.

4. OUR APPROACH

Our approach of achieving a valid fusion by removing the extra-stringent dependences
on temporary variables is based on the following key insight:

4.1. Key Insight

The temporary variables, by virtue of their functionality of storing partial results
temporarily in a program, are mostly defined in one of the inner loops of loop nests and
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Fig. 5. (a) Example program, (b) (incorrectly) transformed program after dependence relaxation, and (c)
correctly transformed program.

are used in the same loop. In other words, they are iteration private in one of the inner
loops and, consequently, in all outer loops. For example, in the program in Figure 1(a)
that has a three-level loop nest, the temporary scalar a is iteration private in the
innermost loop k (and also loops i and j). The temporary 1D array, tmp, is iteration
private in the next-to-innermost loop j (and loop i). If there was a temporary 2D array,
then it would be iteration private in the outermost loop i.

In the event of fusion of loop nests containing temporary variables with the same
name, interference of live ranges is only possible at loops within and including the in-
nermost loop with iteration-private live ranges. Thus, the dependences on the outer loops
can be removed to allow fusion of outer loops up to the innermost loop with iteration-
private live ranges. This “removal” of dependences implies that the transformation-
restricting all-to-all dependence polyhedra in outer loops are converted into one-to-one
polyhedra (i.e., every instance or iteration of the source statement in the source nest
depends on the exact same instance of the destination statement in the destination
nest) as if the polyhedra now represents dependences between fully expanded arrays
and not temporaries. Effectively, this is expansion and releases the necessary degrees
of freedom for loop transformations. It is important to note that despite the removal of
certain dependences, there still exist both RAW and one-to-one WAR dependences at
the innermost loop with iteration-private live ranges. In particular, the one-to-one WAR
dependence between the sink of a live range to the source of a following live range in the
fused loop body preserves the non-interference of live ranges and hence program cor-
rectness. For example, the existence of a one-to-one (or, in this case, loop-independent)
WAR dependence between S3 and S4 in Figure 5(c) ensures correctness.
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With our proposed dependence refinement, loop fusion is enabled by converting all-
to-all dependence polyhedra into one-to-one polyhedra. However, a polyhedral compiler
being capable of composing multiple loop transformations simultaneously may perform
other transformations such as loop shifting, skewing,2 interchange, and reversal (en-
abled recently in Pluto+ [Acharya and Bondhugula 2015]). For correctness, therefore,
it is important that these transformations do not cause live-range interference. We ob-
serve that, apart from shifting, these transformations when composed with fusion do
not change the one-to-one WAR dependence at the innermost loop with iteration-private
live ranges. This WAR dependence on fusion becomes a loop-independent dependence
and ensures the non-interference of live ranges. However, in the event of loop shifting
(alongside fusion), this WAR dependence may be converted to a loop-carried dependence
and allow interference of live ranges. This is explained through the following example.

Figure 5(b) shows a transformed program with fused nests—note that statements
S3 and S4 are reordered, which is a correct reordering under the proposed refinement.
In this example, the cross-nest all-to-all dependence polyhedra are converted to one-
to-one polyhedra to enable fusion. The net effect of this is that from the compiler’s
perspective, the scalar variables are expanded to become 3D arrays like other arrays
such as x in the loop nest. This is shown in the comments at the end of each statement.

In this example program, although we remove dependences to enable loop fusion,
fusion is ultimately accomplished by the compiler with the help of shifting as an en-
abling transformation. This is because the statements in the second nest have to be
shifted by one iteration in the innermost loop (k) to prevent backward dependences on
array x in loop k. As a result of shifting, the (possible) backward dependence on array
x is converted into a forward dependence in the transformed program. Thus, we see
that there is a forward loop-carried WAR dependence from S3 to S4 on the scalar a0 in
loop k (i.e., a0[i][ j][k] read in statement S3 is written in the next iteration of the k-loop
in statement S4) and a forward loop-carried RAW dependence between statements S1
and S5 on the same scalar a0 in loop k (i.e., a0[i][ j][k] written in statement S1 is
read in the next iteration of the k-loop in statement S5). As a result, the schedule of
statements within the fused nest as shown in Figure 5(b) is completely valid from the
point-of-view of data dependences (some of which have been purposely removed). How-
ever, the transformed program in Figure 5(b) is incorrect because the non-interference
of live-ranges property is violated—the live ranges for the two def-use pairs involving
the scalar a0 interfere with each other as shown. This happened precisely because
shifting converts the WAR dependence between statements S3 and S4 to a loop-carried
dependence in the fused loop. The same is possible for the other loops in the nest. Thus,
the sufficient condition to preserve non-interference of live ranges and hence correctness
of the transformed program when removing dependences is that the loops participat-
ing in fusion should not be shifted with respect to each other. We next discuss exactly
which dependences are removed in variable liberalization and how we ensure that the
above-mentioned sufficient condition is maintained for correctness.

4.2. Dependence Refinement

Dependencies involving temporary variables are of two kinds—those between state-
ments that belong to the same SCC (at the outermost loop) and those between state-
ments belonging to different SCCs (different loop nests). As discussed earlier in Sec-
tion 3, dependences of the first kind (such as the RAW dependence between statement

2It is important to note that, in general, those loops participate in skewing that have loop-carried dependences
(such as the time-tilable stencils where there is reuse and hence loop-carried dependences in the outermost
time loop), and thus those loops do not contain iteration-private live ranges. Such loops are, therefore, not
affected by variable liberalization.
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Fig. 6. Dependence refinement when statements belong to (a) the same SCC (statements S1 and S2) and
(b) different SCCs (statements S2 and S8) in Figure 1(a).

S1 and S2 in Figure 1(a) involving the scalar variable a) prevent loop interchange
which is an enabling transformation for fusion. Dependencies of the second kind (such
as the RAW dependence between statements S2 and S8 in Figure 1(a) involving the
temporary variable tmp, where S2 and S8 belong to two different SCCs) prevent fusion
of the involved loop nests.

In variable liberalization, we (selectively) remove both of these kinds of dependences
on temporary variables to enable more transformations for improved performance,
particularly, fusion, interchange, and parallelization (coarse and fine grained). This is
done in both cases as follows.

The dependences between statements S1 and S2 in Figure 1(a) that both belong to
the same SCC is shown in Figure 6(a) by three sets of equalities/inequalities called de-
pendence polyhedra (note that inequalities capturing loop bounds have been ignored).
Note that the dependences representing these polyhedra were shown earlier in Sec-
tion 3. Clearly, these involve loop-carried backward edges preventing interchange. In
liberalization, we remove all loop-carried dependences in loops with iteration-private
live ranges (loops i, j, and k, in this case) as shown in the dependence polyhedron on
the right in Figure 6(a). This refinement is feasible since the source and destination
statements in a dependence involving a temporary variable often belong to the same
SCC in the loops3 that have iteration-private live ranges (we explicitly check for this
in the implementation). For example, statements S1 and S2 belong to the same SCC
in loops i, j, and k. This ensures that statements S1 and S2 will not be shifted with
respect to each other in these loops since the presence of cyclical dependences involving
such statements (in an SCC) prevent any relative shifting in the loops concerned. This
is sufficient to guarantee the correctness of liberalization. Similarly, when using the
lastwriter dependence analysis, the WAR dependences between statements S2 and S1
in Figure 1(a) are removed since they are all loop-carried in loops i, j, and k. Further-
more, the existence of the loop-independent RAW and WAR dependences ensures the
non-interference of live ranges within the SCC.

The dependences between statements S2 and S8 that both belong to different SCCs
is shown in Figure 6(b) by a dependence polyhedron. The backward dependence edges
in this all-to-all dependence polyhedron prevent fusion of the two loops containing S2

3Note that we use the terminology, “SCC in loop i” to denote SCCs computed at loop level i. This is because
an SCC is always defined on a per-loop basis and not on a per-loop-nest basis, and after each loop hyperplane
(or a band of hyperplanes) is found, SCCs in the SCoP are recomputed since some dependence edges now
disappear from the dependence graph.
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Fig. 7. Example programs where dependence removal is infeasible.

and S8 as explained earlier in Section 3. As in the first case, we remove the dependence
edges on the loops outside of and including the innermost loop with iteration-private
live ranges. We convert the all-to-all dependence polyhedron to a one-to-one polyhedron
as shown on the right in Figure 6(b). The same approach is applicable when lastwriter
dependence analysis is used. Unlike the first case, however, statements S2 and S8 do not
belong to the same SCC and thus correctness in the wake of this dependence removal is
contingent on the non-occurrence of loop shifting in loops i and j. We ensure this in our
framework by forcing such statements as S2 and S8 to have the same transformation
(i.e., no shifting with respect to each other) if they are fused together by the compiler.
That is, if the scheduler finds different transformations for any of the loops outside
of and including the innermost loop with iteration-private live ranges (since we only
consider loops with iteration-private live ranges, the same approach applies to both
perfect and imperfect nests), then we force a distribution of the two SCCs that contain
the two statements into different loop nests. This loop distribution was not needed to
generate the correct fused code for Figure 1(a) (as shown in Figure 1(b)) but was needed
to obtain the correct fused code for Figure 5(a) (as shown in Figure 5(c)) where loop
shifting was involved in loop k.4 Furthermore, the existence of loop-independent WAR
dependence between statements S4 and S6 in Figure 1(b) (and between statements S3
and S4 in Figure 5(c)) ensures the non-interference of live ranges within the fused loop
nest. Thus, we see that this dependence refinement by selective removal of dependences
in variable liberalization satisfies the sufficient condition for non-interference of live
ranges and hence program correctness.

4.3. Cases in Which Dependence Refinement Is Not Feasible

In this section, we mention two examples where dependences on temporary variables
in different loop nests cannot be removed. In particular, these examples show example
cases where scalars or 1D arrays may be used but their live range is not iteration
private, that is, they are are used as temporary variables in these cases. As a result, it
is not safe to remove dependences through our proposed variable liberalization.

Figure 7(a) shows the first example that contains a temporary scalar variable tmp in
the two loop nests. Removing dependences on the outer loops i and j would result in
fusion of the two nests, but such a fusion is clearly invalid and our framework desists
from performing it. The reason is that the live range involving tmp is not iteration
private in the outer loops of the loop nest, that is, a value written in tmp in each
iteration of loop j is read in the next iteration of loop j. The same holds true for the
outermost loop i as well. The net result is that tmp is live-in in the second nest, which
clearly indicates the infeasibility of loop fusion in this case.

4It is important to note that although a perfect fusion could be achieved in this case, loop distribution is
helpful since it aids inner-loop vectorization. In such cases, one could also wait until the entire schedule
is computed to actually witness live-range interference and only then choose to distribute the loops, but it
would require re-computation of the entire schedule.
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Figure 7(b) shows the second example. The subscript of the temporary array a is the
outermost loop variable i as opposed to the previous examples where temporary array’s
subscript is an innermost loop variable. Clearly, the live range of a is not iteration
private in any loop in the loop nest, which also indicates its use later in the program.
It is therefore not marked for liberalization. Also, in such a case, liberalization is not
needed to allow fusion (and parallelism) of the outer loop since there are no backward
dependences (represented by an all-to-all dependence polyhedron) on the outer loop.

5. IMPLEMENTATION: PUTTING IT ALL TOGETHER

This section describes the algorithm used to implement variable liberalization. Our
proposed dependence refinement involving temporary variables as discussed in the
previous sections relies on determining loops with iteration-private live ranges so
selective dependences in such loops could be identified for removal. For this purpose,
we use an array, i-p depth, that stores the depth of the innermost loop with iteration-
private live ranges for all SCCs in the program. Since we apply Algorithm 1 only once
before the scheduling phase in Pluto, the SCCs at this point are those computed at the
outermost loop level.

As discussed in Section 3.1.1, a live range is the same as a dataflow or a RAW
dependence (in lastwriter). Thus, we know that a live range (and, therefore, the live-
range class) is iteration private in a given loop if the corresponding RAW dependence
(or dependence polyhedron) is loop independent in that loop. We thus obtain the depth
of the innermost loop with iteration-private live ranges in Step 1 of the algorithm.
However, since different temporary variables may have live ranges that are iteration
private up to different depths in an SCC, we take the minimum depth over all live
ranges. This ensures that when dependences on such loops with iteration-private live
ranges are removed, no useful dependences are removed.

In Step 2, we remove the extra-stringent dependences. In Step 2a, we remove those
dependences involving temporary variables whose source and destination statements
belong to the same SCC (again, at the outermost loop level). In this case, as discussed
in Section 4, we prune the dependences that are loop-carried on loops outside of and in-
cluding the innermost loop with iteration-private live ranges. Furthermore, only those
dependences are pruned whose source and destination statements belong to the same
SCC in all such outer loops (as indicated in lines 21–27 in the algorithm). This ensures
that the removal of those dependences will not result in different schedules (and con-
sequently, no loop shifting) for the statements involved, in the concerned outer-loops.
In our algorithm, we consult the original program schedule (and the SCCs computed
thereof at each loop level for the original program schedule) to determine all the outer
loop levels in which the source and destination statements of a given dependence belong
to the same SCC.

Step 2b results in removing dependences involving temporary variables whose source
and destination statements belong to different SCCs. In this case, as discussed in
Section 4, we explicitly add equalities in the dependence polyhedron (representing
dependences involving a temporary variable across SCCs) to convert it from all-to-
all to one-to-one. In other words, all dependences that were loop-carried (including
backward dependences) in loops outside of and including the innermost loop with
iteration-private live ranges are pruned, allowing for fusion of two nests.

5.1. Validation of Relaxation Criteria

In polyhedral compilation, violated dependence analysis [Vasilache et al. 2006] has
been proposed in the past. Using violated dependence analysis, the polyhedral com-
piler can reason the correctness of the proposed transformation in the wake of either
relaxed validity checks [Vasilache et al. 2007] or reduced dependences [Trifunovic et al.
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ALGORITHM 1: Variable Liberalization
1: INPUT:

deps : Copy of the list of dependence polyhedra
SCCs : List of SCCs at the outermost loop (i.e., before scheduling begins)

2:
3: STEP 1:
4: for each scc ∈ SCCs do
5: i-p depth[scc] = -1
6: for each dependence polyhedron d ∈ deps s.t. (d.src scc id=d.dest scc id) ∧ IsRAW(d.type)

do
7: Set depth to 0
8: for each loop l in d.src scc id starting from the outermost loop do
9: if d is loop-independent in l then
10: Increment depth
11: if depth < i-p depth[d.src scc id] ∨ i-p depth[d.src scc id]=-1 then
12: i-p depth[d.src scc id]=depth
13:
14: STEP 2a:
15: for each dependence polyhedron d ∈ deps s.t. d.src scc id=d.dest scc id do
16: Set depth to 0
17: for each loop l ∈ d.src scc id starting from the outermost loop do
18: if d is loop-carried in l then
19: Break out of the for-loop
20: Increment depth
21: if depth < i-p depth[d.src scc id] then
22: Set loop level to 0
23: for each hyperplane h in the original program schedule do
24: if IsTYPE(d.src, h) = H LOOP then
25: Increment loop level
26: if !IsSameOrigSCC(d.src, d.dest, h) ∧ (depth < loop level) then
27: Remove d from deps
28: Break out of the for-loop
29:
30: STEP 2b:
31: for each dependence d ∈ deps s.t. (d.src scc id != d.dest scc id) ∧ (i-p depth[d.src scc id] >

0) ∧ (i-p depth[d.dest scc id] > 0) do
32: for each loop l in d.src scc id starting from the outermost loop upto a depth given by

min(i-p depth[d.src scc id], i-p depth[d.dest scc id]) do
33: Add an equality in d to convert d from being all-to-all in loop l to one-to-one
34:
35: OUTPUT: Refined set of dependence polyhedra, deps

2011; Vasilache et al. 2012]. In such an approach, one has to wait until a transforma-
tion is performed and re-iterate the process possibly several times in the case of an
incorrect transformation or take a corrective action. In this work, we introduce violated
transformation analysis, where we can reason about the correctness of the computed
transformation during the process of finding transformation itself, and the recovery is
executed immediately to yield a correct (although weaker) transformation.

As discussed in Section 4, we can reason about the validity of dependence refinement
by checking for the satisfaction of the sufficient condition. The sufficient condition to
validate dependence refinement states that the loops participating in fusion should
not be shifted with respect to each other during the transformation. In the polyhedral
framework, the transformation process consists of finding a schedule row at a time.
This schedule row determines the transformation performed on each statement at that
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Table I. Summary of Fusion Models in Different Compilers (Note That Ifort Is Used
as the Backend Compiler with the “Smartfuse,” “Explicit,” and “Var-Lib” Models

Fusion Model Description
gfortran GNU Fortran Compiler (baseline); flags = ‘-O3 -ftree-loop-parallelize=n’

ifort The Intel Fortran Compiler; flags = ‘-O3 -parallel’
smartfuse The default fusion model in Pluto.

It uses heuristics to determine a good fusion schedule
explicit Explicit parallelization or parallelization by hand
var-lib Variable liberalization in Pluto (our work)

loop level.5 In variable liberalization, in order to satisfy the sufficient condition, we
check if all source and destination statements of dependences involving temporary
variables across SCCs undergo the same transformation. In other words, we check
for the occurrence of loop shifting in any of the common (fused) loops. If we find that
any such source and destination statements undergo different transformation at a
particular loop level, then we discard (only) that schedule row and force distribution
of the SCCs containing the respective source and destination statements. Thus, this
ensures that the sufficient condition is held and the correctness is guaranteed without
the need to re-iterate the process.

6. EXPERIMENTAL EVALUATION

6.1. Setup

The test programs were compiled and run on an Intel Xeon processor (E5-2650 v2)
with eight Sandy Bridge-EP cores operating at 2.0GHz. The processor has private L1
(32KB per core) and L2 (256KB per core) caches and a 20MB shared L3 cache and
16GB DDR3 memory. Since we implement the variable liberalization optimization in
the Pluto polyhedral compiler, we compare our performance results with the fusion
model within Pluto, in addition to the popular production compilers, the GNU and
the Intel compilers. A summary of the different fusion models used for comparison
is given in Table I. It is important to note that Pluto itself cannot parse Fortan code
(and the applications we use for experiments are written in Fortran). We thus use
PolyOpt/Fortran [OSU 2012], a tool that uses a ROSE compiler [LLNL 2015] frontend
to parse Fortran code and relies on Pluto (version 0.5.4) for loop optimizations. We have
also tested the C versions of most of these applications with our variable liberalization
optimization implemented in the latest version of Pluto (version 0.11.4) with the options
‘–lastwriter –parallel/–tile’ (note that we do not rely on scalar privatization performed
by the dependence analyzer). It is now available as a git branch of Pluto, called scalable-
fuse. The transformed source code generated is then compiled using the Intel compiler
v14 (ifort or icc) as the backend compiler. The compile time options used with the Intel
compiler are ‘-O3’ and ‘-parallel’.

6.2. Benchmarks

The experiments were run on five real application programs used in the scientific
community and in other published research. A brief description of these programs is
given in Table II; we choose these applications because we identify them to contain
opportunity for significant data reuse through loop fusion. In these five applications,
we identify nine hot regions that form the computationally intensive portions of the
application. Each identified hot region constitutes a Static Control Part (SCoP), or
the maximal syntactic program segment that contains sequences of loop nests with

5More details on the process of computing transformations using a polyhedral compiler can be found in
Bondhugula et al. [2008].
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Table II. Summary of the Benchmarks

Benchmark Benchmark Suite Category Problem Size
applu NPB/OMP2012 Computational Fluid Dynamics (CFD) N=102; CLASS B

bt NPB/OMP2012 ” ”
sp NPB ” ”

zeusmp CPU2006 Simulation of astrophysical phenomena Reference Input
swim OMP2012 Weather prediction Reference Input

Fig. 8. Sequential kernel speedups wrt gfortran.

Fig. 9. Parallel kernel speedups wrt gfortran (using 8 cores).

constant strides and affine bounds. As a result, all chosen hot regions are amenable
for optimizations by a polyhedral compiler (other applications from these suites were
either not amenable to polyhedral optimizations or did not contain opportunity to
benefit from fusion). It is important to note that each of these nine SCoPs contain
multiple large loop nests with the number of statements in each SCoP ranging from 48
to 121. Such large sequences of statements are known to be hard for the compilers to
optimize. In particular, previous work has not shown the strength of polyhedral model
on such large SCoPs.

6.3. Results and Discussion

Figures 8 and 9 show the performance results for the nine SCoPs using different com-
pilers for comparison. Figure 8 shows results for sequential performance, while Fig-
ure 9 shows parallel performance. Among the five benchmarks, the entire compute_rhs
subroutine in bt, sp, and lu benchmarks forms a single SCoP, the hsmoc subroutine
within zeusmp benchmark consists of three SCoPs, each separated by a procedure call
(with possible side-effects and thus recognized as a non-affine component), whereas
the lorentz subroutine consists of a single SCoP but divided into two in order to limit
the memory requirement for optimizing it using polyhedral compilation. In swim, the
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three large loops that contain the bulk of the computation together form a single SCoP.
Each of the chosen benchmarks contains multiple loop nests and thus offers consider-
able opportunities for loop optimizations—a characteristic of most scientific application
codes.

In particular, some of the chosen benchmarks contains loop nests with different
loop-orders and thus are more challenging from the point of view of the loop fusion
optimization. From the figures, we can find that var-lib, that is, the compiler optimiza-
tion proposed in this work, outperforms the other compilers in almost all cases. The
sequential performance of var-lib outperforms ifort by as much as 1.2×, and the per-
formance improvement is significantly larger for parallel versions of the benchmarks
with var-lib outperforming ifort by as much as 6.8× in lu. Even against the explicitly
parallelized versions, var-lib performs considerably better, as shown in Figure 9. We
next discuss the performance results for each compiler in more detail.

6.3.1. gfortran and ifort. gfortran or the GNU Fortran compiler was chosen as the base-
line in our experiments. In addition, we also show results with the Intel Fortan compiler.
In all cases, gfortran proved to be worse than ifort due to the latter being much more
effective at vectorization. However, both these production compilers are equally poor in
performing loop fusion. As a result, neither of them fused any large loop nests for any
of the SCoPs listed in the figure. gfortran performed the worst of all compilers because
it could not recognize parallel loops in any benchmark. ifort could recognize parallel
loops in bt.rhs, sp.rhs, zeusmp.hsmoc, zeusmp.lorentz.1, and swim.

From these results (and other experiments using our test kernels), we find that
ifort is capable of parallelizing the loop nest in the presence of temporary scalar vari-
ables but not in the presence of temporary array variables. It is for this reason that
ifort could not parallelize lu. Although temporary array variables exist in hsmoc as
well, we believe that ifort relies on recognizing certain specific patterns in this case
to achieve parallelization because the inability to recognize temporary array variables
in a computationally less intensive subroutine, lorentz, in the same benchmark hurts
parallelization opportunity. In any case, we can conclude that existing production com-
pilers are limited in their capability of detecting parallelism in scientific application
codes that contain temporary variables and much more so in performing the important
loop fusion optimization.

6.3.2. Pluto’s Smartfuse. Pluto is a state-of-the-art polyhedral compiler that has shown
significant promise in achieving automatic loop parallelization [Bondhugula et al. 2008;
Mehta et al. 2014]. Pluto uses three different heuristics for fusion, min-, max-, and
smartfuse. maxfuse and smartfuse are practically equivalent for SCoPs with many
statements, and minfuse performs maximal distribution and almost always performs
sub-optimally. Thus, we only show results for smartfuse. Pluto is also capable of per-
forming scalar privatization that empowers it to perform coarse-grained parallelization
in the presence of scalar temporary variables. It cannot, however, privatize temporary
array variables. As a result, smartfuse can identify parallel loops in bt, sp, and swim
but not in any of the other SCoPs that contain temporary array variables. Also, since
Pluto does not remove any dependences (or perform variable liberalization) on such
temporary variables across loop nests, it is deprived of the opportunity to perform
loop fusion. This amounts to reduced performance as compared to var-lib even for the
benchmarks where it could achieve parallelization.

6.3.3. Variable Liberalization (Var-Lib). When using a single thread to run benchmarks,
var-lib outperforms all other compilers on account of fusing multiple loop nests. The
improvement is proportional to the fusion opportunity available in the benchmarks.
For example, both the large nests in zeusmp.hsmoc.2 are fused to enable data reuse,
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Fig. 10. Parallel kernel speed-up of var-lib over explicit parallelization.

Table III. Performance Counters Indicating Reduced
Pipeline Stalls and Effective Memory Latency

through Var-Lib

explicit-varLib
explicit ∗ 100(%)

Hardware Event lu zeusmp
Load_latency_gt_512 24.03 12.88
Resource_stalls.any 7.68 13.8

Uops_dispatched.stall_cycles 8.8 19.94

whereas in the other cases, such as lu, only two of the three large nests could be fused
together. This is because the common outer loop of the first two nests in lu is the
innermost loop of the third nest, and the innermost loop cannot participate in loop
interchange because of the presence of temporary arrays and imperfect nesting. It
is important to note that although, unlike other benchmarks, swim does not contain
temporary variables and does not thus benefit from var-lib, var-lib does not hurt its
performance either, when compared to smartfuse. In other words, the optimization does
not hurt when not applicable. This is because var-lib does not modify any dependencies
in the original program other than those on temporary variables.

Interestingly, the performance improvement for all benchmarks surges upon paral-
lelization even for benchmarks that are successfully parallelized by other compilers
(including explicitly or manually parallelized code) such as bt, sp, and zeusmp.hsmoc.
This is due to two reasons: (1) reduction of fork-join synchronization points and, more
importantly, (2) saving of off-chip memory accesses, and thus the bandwidth, which
is a source of contention among parallel threads in such memory-intensive applica-
tions. Both of these benefits are direct consequences of effective loop fusion achieved
as a result of variable liberalization. In addition, var-lib significantly outperforms all
other compilers when they cannot identify outer-parallel loops due to the presence of
temporary array variables and imperfect nests as in lu and zeusmp.lorentz.

Figure 10 shows the speedups achieved by var-lib over explicitly parallelized code
for two of the eight SCoPs, lu.rhs and zeusmp.hsmoc.2, when using different numbers
of threads. The speedup achieved in the case of zeusmp.hsmoc.2 is larger than that
in lu.rhs. This is because of a greater opportunity for fusion in the former case, as
explained earlier. Furthermore, the speedup achieved increases with the increase
in the number of threads. This is explained with the help of performance counters
shown in Table III as obtained from Intel’s VTune Performance Profiler [Intel 2015].
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Table IV. Overall (Application) Speedup (S) Achieved by Var-Lib (+ Ifort) Over Ifort

Benchmark Subroutine # statements # deps % Ex. time S =
Ex. Timeifort

Ex. Timevar-lib

bt rhs 48 1419 16.8 1.06x

sp rhs 50 1428 33.7 1.08x

lu rhs 106 3033 63.1 2.17x

zeusmp

hsmoc.1 121 2660
24.1

1.36x
hsmoc.2 118 2493

hsmoc.3 120 2296

lorentz.1 98 2227
27.3

lorentz.2 92 2149

swim main 52 472 100 1.05x

Both benchmarks witness a considerable reduction (24.03% and 12.88%, respectively)
in the number of memory loads whose latency is greater than 512 cycles after
variable liberalization. Since the memory latency on the test processor (SandyBridge
microarchitecture) is roughly 200 cycles, such high latency corroborates bandwidth
contention. Thus, clearly, lower number of such high latency loads confirms the efficacy
of effective loop fusion performed by var-lib. These high-latency loads result in an
increase in the number of stall cycles due to resource contention (measured by the
counter Resource_stalls.any that includes stalls due to fully occupied load Buffer, Store
Buffer, Reorder Buffer, and Reservation Stations) and also due to reservation stations
waiting on operands (measured by the counter Uops_dispatched.stall_cycles). The
reduction in loads with high latency are larger for lu than zeusmp since the optimized
subroutine, rhs, in lu is its most memory-intensive part and thus benefits more from
loop fusion. However, reduction in stalls is more significant in case of zeusmp since the
optimized subroutines, hsmoc and lorentz, together contribute more than 50% of the
execution time in zeusmp, as compared to rhs that contributes only 20% of the total
execution time in the explicitly parallelized version of the lu benchmark.

Last, Table IV shows the overall application speedups achieved by var-lib over ifort
for the five applications. The performance improvement depends on both, the contri-
bution of the optimized portion to the overall application and also the opportunity for
optimization. For example, the speedup ranges from 1.06× in bt where the optimized
subroutine (compute_rhs) contributes only 16.8% to the execution time, to 2.17× in lu
where the optimized subroutine contributes 63.1% to the overall execution time. On
the other hand, swim benefits by 1.05× only because of little opportunity to improve
locality through fusion.

6.4. Scope of This Work

Until recently, polyhedral compilers had been largely restricted to tiny scopes with
few statements. This is primarily due to two reasons, (1) undiscovered large affine
codes and (2) unscalability of the algorithms used for programs with many statements
and dependences. As a result, the potential for performance improvement through a
polyhedral compiler in real application codes with hundreds of lines of SCoPs had
remained unknown.

This work shows that the polyhedral compilers are, in fact, useful for real appli-
cations also by showing significant improvement for such codes. To the best of our
knowledge, this is the first time that results on such large SCoPs have been shown
using a polyhedral compiler.

While variable liberalization opens up opportunities for loop fusion, it might hurt
program performance for three reasons. They are as follows: (1) it may increase the
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number of prefetch streams in the loop that the hardware cannot detect; (2) it may
cause pronounced bandwidth contention; (3) it may cause pressure on the data cache.
However, we argue that none of these actually prove to be detrimental in practice. This
is due to the following reasons.

(1) The latest processors are equipped with hardware to detect many more streams
than needed in almost all cases in practice. For example, the Intel SandyBridge
can prefetch 32 streams, and we found it to be over-provisioned for all but one
(cactusADM) benchmark in the SPEC suites. Even after aggressive loop fusion with
var-lib, the same was observed. This is because, the fused loops use the same arrays
(note that we do not do renaming) in most cases and therefore do not contribute
different streams. In cactusADM also, even though there are 81 prefetch streams,
the prefetcher proves unhelpful because of the large amount of computation on
those arrays.

(2) Loop fusion, in most cases, leads to reuse of data between at least a few common
arrays in the fused loops, which alleviates bandwidth contention. For example, in
rhs subroutine of bt, sp, and lu, there is considerable reuse in the last-level cache
since many common arrays are referenced in each loop nest. However, even in the
worst-case scenario, when there are no common arrays in the fused loops, although
no reuse is achieved, the amount of computation in the loop usually increases in
proportion to the arrays. For example, in the zeusmp benchmark, there is much
less reuse but we do not observe a performance degradation upon fusion, even for a
single thread. This is because the memory to computation ratio in the loop does not
change. Thus, fusion does not lead to pronounced bandwidth contention in most
cases.

(3) Loop fusion does cause increase in pressure at the last-level cache (LLC) because
of greater number of array references in the loop. As a result, reusable data may be
evicted from the LLC before the program control enters the next loop. For example,
in zeusmp, fusion definitely exerts more pressure at LLC, especially since there is
not much reuse available. However, we find that the serial performance does not
degrade and the parallel performance increase due to the slight reuse exploited
and the reduction of the synchronization points. Also, our framework prevents loop
fusion in the complete absence of data reuse, thereby further reducing chances of
performance degradation upon fusion.

It is for the above reasons that we argue that var-lib is more generally applicable
than may seem from the results on five real applications. Having said that, we concede
that it would certainly be interesting to test var-lib on more programs, and we consider
it as our on-going effort. We also hope that this work will motivate scientists to write
code that is amenable to polyhedral optimizations.

7. RELATED WORK

Past work has well recognized the importance of enabling important optimizations
through variable privatization and expansion. Variable privatization [Li 1992; Maydan
et al. 1993; Tu and Padua 1994] involves creating multiple copies of a temporary vari-
able (scalar or a low dimension array) that is defined and used in one of inner loops of a
loop nest (i.e., has iteration-private live ranges in that loop). Consequently, each thread
is assigned a private copy of the variable, thus eliminating races between threads and
allowing coarse-grained parallelism at an outer loop. From a data-dependence analysis
perspective, privatization involves pruning loop-carried dependencies on the tempo-
rary variables at the outermost loop. However, privatization only affects a single loop
nest; the data dependencies between temporary variables in different nests continue
to be stringent and, thus, transformation restricting.
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While privatization is a supporting optimization for parallelism, expansion
[Feautrier 1988] is another enabling optimization for many other transformations such
as loop fusion, shifting, and distribution. However, it has a known drawback of signif-
icantly increasing the memory footprint. To counteract this, the authors in Lefebvre
and Feautrier [1998], Quilleré and Rajopadhye [2000], and Darte and Huard [2005]
propose to perform a maximal expansion to enable important optimizations and then
attempt to contract the expanded variables as much as possible. However, this con-
traction of the optimized program is not only difficult but is sometimes not possible
in the wake of transformations such as distribution that can potentially distribute the
definition and use of expanded variables to different loops. In our work, we propose
variable liberalization that achieves the benefits of both privatization and expansion.
In liberalization, we remove dependences on temporary variables in different nests as
in privatization, thus effectively expanding those variables but not through an actual
expansion in their dimensions.

In the past, there has also been considerable work on loop fusion using different
algorithms to find the best loops to fuse with the objective of maximizing data reuse
[Megiddo and Sarkar 1997; Kennedy and McKinley 1994], minimizing synchroniza-
tion [Kennedy and McKinley 1994], reducing register pressure [Singhai and McKinley
1997], and saving off-chip bandwidth [Ding and Kennedy 2004]. Interestingly, none
of these techniques have been used in existing production compilers for various prag-
matic reasons in addition to the increased compile time. These pragmatic reasons
include loops with different bounds, orders, or those that are imperfectly nested and
are hard for the compiler to optimize in real application codes. However, we show in
this work that even if these limitations were removed (most of which are non-existent
in polyhedral compilers due to exact dependence analysis), effective fusion and conse-
quent parallelization could still be prohibited due to the occurrence of transformation-
restricting dependences on temporary variables in different nests. Thus, this work
proposes variable liberalization to fill this gap.

The authors in Trifunovic et al. [2011] and Vasilache et al. [2012] propose lazy ex-
pansion where they ignore WAW and WAR dependences when finding transformations
and then reason correctness using an extension to the violated dependence analysis
[Vasilache et al. 2006], called live-range violation analysis. In the event of a violation,
variables are expanded as needed (lazily) to ensure correctness. Since they do not vi-
olate true (RAW) dependences, they guarantee transformation correctness, albeit at
the cost of higher memory footprint. However, these works do not focus on loop fusion,
which is crucial for performance in large SCoPs. In fact, since there also exist RAW
dependences across loop nests that are fusion-restricting, considering them for trans-
formations without relaxation would disallow fusion in the first place in the presence
of temporary variables in different nests. It is also important to note that even partial
expansion and renaming can significantly increase (potentially double with the fusion
of just two nests) the working set in the higher levels of the memory hierarchy by
increasing the amount of data accessed in the inner loops of the nest and thus hurt
performance. In this work, we extend the violated dependence analysis to our proposed
violated transformation analysis where we can reason if the transformation has gone
wrong during the time it is being found and immediately take corrective measures by
imposing stricter constraints. This thus prevents subsequent passes to find a correct
transformation and does not require any renaming or expansion.

The work by Baghdadi et al. [2013] that prunes spurious dependences for the
purpose of tiling comes closest to our work. We use the authors’ idea of live-range
noninterference to argue the validity of our proposed variable liberalization. However,
there are important differences. In polyhedral compilers, the actual creation of
dimensions corresponding to tiled loops/tiled space is implemented as a post-pass
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optimization. Therefore, removing certain dependences such as the WAR dependence
between two live ranges (as proposed) to enable tiling is helpful and does not hurt
other optimizations. However, if such WAR dependences were completely removed
to enable fusion, it may lead to incorrect code. Therefore, we only selectively remove
such dependences to enable fusion. Among other polyhedral tools, Polly and Graphite
are both capable of performing fusion in the presence of temporary scalars but not
temporary array variables. This is because these tools map scalars to registers and
not to memory at the IR level, and therefore scalars do not induce any dependences to
restrict fusion. Also, Verdoolaege and Cohen [2016] have recently incorporated similar
ideas as presented in this work into their PPCG compiler to achieve fusion of loop nests
in the presence of temporary variables. Their approach relies on finding adjacent live
ranges and anti-dependencies; a live range and an anti-dependence are adjacent to
each other if the source of one is the sink of the other. Their basic premise is that either
live ranges must be local to the band (i.e., both elements in the live range are assigned
the same values by the members of a band) being computed or the anti-dependencies
adjacent to the live ranges concerned must be satisfied to ensure correctness. In effect,
their approach ignores the anti-dependencies on the outer loops that have iteration-
private live ranges (i.e., live ranges that are local to the loops) and is thus similar to
our approach in this work. However, we find that, in some cases, when it is not possible
to force the live ranges to be local to the band (particularly, in certain imperfect nests),
then the adjacent anti-dependence is enforced in its entirety, thereby precluding fusion
in its entirety. In such cases, var-lib can still achieve partial fusion whenever possible,
which is very useful to reduce reuse distance by an order of magnitude.

Last, our recent work on the scalability of polyhedral compilers [Mehta and Yew
2015] nicely complements this work in showing the merit of polyhedral optimizations
for real applications, which had not been revealed in previous work. It may also be
noted that a preliminary version of this work has been available in Mehta [2014].

8. CONCLUSION

In this work, we propose variable liberalization, a compiler technique that strategically
removes dependences on temporary variables that impede useful optimizations such
as fusion of loop nests and coarse-grained parallelization. Unlike variable expansion,
variable liberalization does not cause an actual expansion of variables while enabling
fusion, thus further improving the memory performance of transformed programs.
In variable liberalization, effective loop fusion is accomplished by a novel method of
selective removal of dependences involving temporary variables. This technique differs
from (and complements) privatization in that privatization only removes dependences
involving temporary variables that appear in the same nest with the objective for
coarse-grained parallelization. Experimental results on real applications demonstrate
its effectiveness in achieving fusion of nests and subsequent parallelization of the fused
nest. On an eight-core Intel Xeon processor, variable liberalization achieves a geomean
parallel speedup of 1.92× over the Intel compiler for nine hot regions in five scientific
applications.
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