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—— Abstract

We consider the matroid median problem [11], wherein we are given a set of facilities with
opening costs and a matroid on the facility-set, and clients with demands and connection costs,
and we seek to open an independent set of facilities and assign clients to open facilities so
as to minimize the sum of the facility-opening and client-connection costs. We give a simple
8-approximation algorithm for this problem based on LP-rounding, which improves upon the 16-
approximation in [11]. We illustrate the power and versatility of our techniques by deriving: (a) an
8-approximation for the two-matroid median problem, a generalization of matroid median that we
introduce involving two matroids; and (b) a 24-approximation algorithm for matroid median with
penalties, which is a vast improvement over the 360-approximation obtained in [11]. We show
that a variety of seemingly disparate facility-location problems considered in the literature—
data placement problem, mobile facility location, k-median forest, metric uniform minimum-
latency UFL—in fact reduce to the matroid median or two-matroid median problems, and thus
obtain improved approximation guarantees for all these problems. Our techniques also yield an
improvement for the knapsack median problem.
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1 Introduction

We investigate facility location problems wherein the set of open facilities have to satisfy
some matroid independence constraints or knapsack constraints. Specifically, we consider
the matroid median problem, which is defined as follows. As in the uncapacitated facility
location problem, we are given a set of facilities F and a set of clients D. Each facility ¢ has
an opening cost of f;. Each client j € D has demand d; and assigning client j to facility ¢
incurs an assignment cost of d;c;; proportional to the distance between ¢ and j. Further, we
are given a matroid M = (F,Z) on the set of facilities. The goal is to choose a set F' € T of
facilities to open that forms an independent set in M, and assign each client j to a facility
i(j) € F so as to minimize the total facility-opening and client-assignment costs, that is,
e fit ZjeD djci(j);- We assume that the facilities and clients are located in a common
metric space, so the distances c;; form a metric.
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The matroid median problem generalizes the metric k-median problem, which is the
special case where M is a uniform matroid (and there are no facility-opening costs), and is
thus, NP-hard. The matroid median problem without facility-opening costs was introduced
recently by Krishnaswamy et al. [11], who gave a 16-approximation algorithm for this problem.

Our contributions are threefold.

We devise an improved 8-approximation algorithm for the matroid-median problem

(Section 3). Moreover, notably, our algorithm is significantly simpler and cleaner than the

one in [11], and satisfies the stronger property that it is a Lagrangian-multiplier-preserving

8-approximation algorithm (see Remark 3.4). The effectiveness and versatility of our
simpler approach for matroid median is further highlighted when we consider some natural
extensions of matroid median in Section 4. We leverage the techniques underlying our
simpler and cleaner algorithm for matroid median to devise: (a) an 8-approximation
algorithm for the two-matroid median problem (Section 4.1), which is an extension that we
introduce involving two matroids that captures some interesting facility-location problems
considered in the literature; and (b) a 24-approximation algorithm (Section 4.2) for the
matroid median problem with penalties, wherein we are allowed to leave client unassigned
and incur a penalty for each unassigned client; this constitutes a vast improvement over

the approximation ratio of 360 obtained by Krishnaswamy et al. [11].

We show that the matroid median and two-matroid median problem turn out to be

rather fundamental problems by showing in Section 5 that a variety of facility location

problems that have been considered in the literature can be cast as instances of matroid
median or two-matroid median. These include the data placement problem [2, 3], mobile

facility location [9, 1], k-median forest [10], and metric uniform minimum-latency UFL [4].

This not only gives a unified framework for viewing these seemingly disparate problems,

but also our approximation guarantee of 8 yields improved, and in some cases, the first,

approximation guarantees for all these problems.

We adapt our techniques to also obtain an improvement for the knapsack median prob-

lem [11, 12] (Section 6).

Our improvement for matroid median comes from an improved, simpler rounding procedure
for a natural LP relaxation of the problem also considered in [11]. We show that a clustering
step introduced in [5] for the k-median problem coupled with two applications of the
integrality of the intersection of two submodular (or matroid) polyhedra—one to obtain
a half-integral solution, and another to obtain an integral solution—suffices to obtain the
desired approximation ratio. In contrast, the algorithm in [11] starts off with the clustering
step in [5], but then further dovetails the rounding procedure of [5] creating trees, then stars,
and then applies the integrality of the intersection of two submodular polyhedra.

There is great deal of similarity between the the rounding algorithm of [11] for matroid
median and the rounding algorithm of Baev and Rajaraman [2] for the data placement
problem, who also perform the initial clustering step in [5] and then create trees and then
stars and use these to obtain an integral solution. In contrast, our simpler, improved rounding
algorithm is similar to the rounding algorithm in [3] for data placement, who use the initial
clustering step of [5] coupled with two min-cost flow computations—one to obtain a half-
integral solution and another to obtain an integral solution—to obtain the final solution.
These similarities are not surprising since, as mentioned above, we show in Section 5 that
the data-placement problem is a special case of the matroid median problem. In fact, our
improvements are analogous to those obtained for the data-placement problem by Baev,
Rajaraman, and Swamy [3] over the guarantees in [2], and stem from similar insights.

A common theme to emerge from our work and [3] is that in various settings, the initial



C. Swamy

clustering step introduced by [5] imparts sufficient structure to the fractional solution so that
one can then round it using two applications of suitable integrality-results from combinatorial
optimization. First, this initial clustering can be used to derive a half-integral solution. This
was observed explicitly in [2] and is implicit in [11], and making this explicit yields significant
dividends. Second, and this is the oft-overlooked insight (in [2, 11]), a half-integral solution
can be easily rounded, and in a better way, without resorting to creating trees and then stars
etc. as in the algorithm of [5]. This is due to the fact that a half-integral solution is already
“filtered”: if client j is assigned to facility ¢ fractionally, then one can bound ¢;; in terms of
the assignment cost paid by the fractional solution for j (see Section 3). This enables one to
use a standard facility-location clustering step to set up a suitable combinatorial-optimization
problem possessing an integrality property, and hence, round the half-integral solution. The
resulting algorithm is typically both simpler and has a better approximation ratio than what
one would obtain by mimicking the steps of [5] involving creating trees, stars etc.

Recently, Charikar and Li [6] obtained a 9-approximation algorithm for the matroid-
median problem; our results were obtained independently. While there is some similarity
between our ideas and those in [6], we feel that our algorithm and analysis provides a more
illuminating explanation of why matroid median and some of its extensions (e.g., two-matroid
median, matroid median with penalties; see Section 4) are “easy” to approximate, whereas
other variants such as matroid-intersection median (Section 4) are inapproximable. It is
possible that our ideas coupled with the dependent-rounding procedure used in [6] for the
k-median problem may lead to further improvements for the matroid median problem; we
leave this as future work.

2 An LP Relaxation for Matroid Median

We can express the matroid median problem as an integer program and relax the integrality
constraints to get an LP. Throughout we use ¢ to index facilities in F, and j to index clients
in D. Let r denote the rank function of the matroid M = (F,Z).

min Z fiyi + Z Z d;cijTij (P)
i P
s. t. ZCCZ‘J‘ =1 V]

Sy <r(8) VS C F
i€S
0 <z <y Vi, .

Variable y; indicates if facility 7 is open, and z;; indicates if client j is assigned to facility i.
The first and second constraints say that each client must be assigned to an open facility.
The third constraint encodes the matroid independence constraint. An integer solution
corresponds exactly to a solution to our problem. We note that (P) can be solved in polytime
since (for example) a polytime algorithm for submodular-function minimization yields an
efficient separation oracle.

3 A Simple 8-Approximation Algorithm via LP-Rounding

Let (z,y) denote an optimal solution to (P) and OPT be its value. We first describe a simple
algorithm to round (z,y) to an integer solution losing a factor of at most 10. In Section 3.4,
we use some additional insights to improve the approximation ratio to 8. We use the terms
connection cost and assignment cost interchangeably.
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3.1 Overview of the Algorithm

We first give a high level description of the algorithm. Suppose for a moment that the optimal
solution (z,y) satisfies the following property:

for every facility 4, there is at most one client j such that z;; > 0. (*)

Let F; = {i : x;; > 0}. Notice that the F; sets are disjoint. We may assume that for i € F;,
we have y; = x;;, so the objective function is a linear function of only the y; variables. We
can then set up the following matroid intersection problem. The first matroid is M restricted
to J; ;. The second matroid M’ (on the same ground set [ J; F;) is the partition matroid
defined by the F; sets; that is, a set is independent in M if it contains at most one facility
from each Fj;. Notice the y;-variables yield a fractional point in the intersection of the
matroid polyhedron of M and the matroid-base polyhedron of M’. Since the intersection of
these two polyhedra is known to be integral (see, e.g., [8]), this means that we can round
(z,y) to an integer solution of no greater cost. Of course, the LP solution need not have
property (x) so our goal will be to transform (z,y) to a solution that has this property
without increasing the cost by much.

Roughly speaking we want to do the following: cluster the clients in D around certain
‘centers’ (also clients) such that (a) every client k is assigned to a “nearby” cluster center
j whose LP assignment cost is less than that of k, and (b) the facilities serving the cluster
centers in the fractional solution (z,y) are disjoint. So, the modified instance where the
demand of a client is moved to the center of its cluster has a fractional solution, namely
the solution induced by (x,y), that satisfies (x) and has cost at most OPT. Furthermore,
given a solution to the modified instance we can obtain a solution to the original instance
losing a small additive factor. One option is to use the decomposition method of Shmoys et
al. [13] for uncapacitated facility location (UFL) that produces precisely such a clustering.
The problem however is that [13] uses filtering which involves blowing up the z;; and y;
values, thus violating the matroid-rank packing constraints. Chudak and Shmoys [7] use the
same clustering idea but without filtering, using the dual solution to bound the cost. The
difficulty here with this approach is that there are terms with negative coefficients in the dual
objective function that correspond to the primal matroid-rank constraints. Although [14]
showed that it is possible to overcome this difficulty in certain cases, the situation here looks
more complicated and it is not clear how to use their techniques.

Instead, we use the clustering technique of Charikar et al. [5] to cluster clients and first
obtain a half-integral solution (&,9), that is, every &;;,9; € {0, %, 1}, to the modified instance
with cluster centers, losing a factor of 3. Further, any solution here will give a solution to the
original instance while increasing the cost by at most 4 - OPT. Now we use the clustering
method of [13] without any filtering, since the half-integral solution (Z, §) is essentially already
filtered; if client j is assigned to ¢ and ¢’ in Z, then ¢;j, ¢ir; < 2(c¢;5&:; + ¢irj&ir;). This final
step causes us to lose an additive factor equal to the cost of (£,§), so overall we get an
approximation ratio of 4 + 3 + 3 = 10. In Section 3.4, we show that by further exploiting the
structure of the half-integral solution, we can give a better bound on the cost of the integer
solution and thus obtain an 8-approximation.

We now describe each of these steps in detail; omitted proofs appear in the full version.
Let C; =, ¢ijxi; denote the cost incurred by the LP solution to assign one unit of demand
of client j. Given a vector v € R” and a set S C F, we use v(S) to denote Y, ¢ v;.
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3.2 Obtaining a Half-integral Solution (Z, §)

Step I: Consolidating Demands around Centers. We first consolidate (or cluster) the
demand of clients at certain clients, that we call cluster centers. We do not modify the
fractional solution (z,y) but only modify the demands so that for some clients j, the demand
d; is “moved” to a “nearby” center k. We assume every client has non-zero demand (we can
simply get rid of zero-demand clients).

Set d;- < 0 for every j. Consider the clients in increasing order of C'j. For each client j,
if there exists a client k such that dj, > 0 and ¢;; < 4max(C;,Cy) = 4CY, set d}, < d}. + d;,

otherwise set d; < d;. Let D = {j € D : d; > 0}. Each client in D is a cluster center.

Let OPT' = > fivi + ZjeD}i d;-cija:ij denote the cost of (z,y) for the modified instance
consisting of the cluster centers.

» Lemma 3.1. (i) If j,k € D, then c;, > 4max(C;,Cy), (ii) OPT' < OPT, and (i) any
solution (2',y') to the modified instance can be converted to a solution to the original instance
incurring an additional cost of at most 4 - OPT.

From now on we focus on the modified instance with client set D and modified demands
d;-. At the very end we will use the above lemma to translate an integer solution to the
modified instance to an integer solution to the original instance.

Step IlI: Transforming to a Half-integral Solution. We define the cluster of a client j € D
to be the set F}; of all facilities ¢ such that j is the center in D closest to %, that is,

F; = {i: ¢;j = mingep ¢;x }, with ties broken arbitrarily. Let Fj’ CFj={ieFj:c; < QC_'j}.

Clearly the sets F; for j € D are disjoint. By property (i) of Lemma 3.1, we have that
F; contains all the facilities 7 such that ¢;; < QC'j. So ZZ—GF; T = Zi:cijgzc‘y Ty > % by
Markov’s inequality.

To obtain the half-integral solution, we define a suitable vector 3’ that lies in a polytope
with half-integral extreme points and construct a linear function 7°(.) such that T'(y") bounds
the cost of a fractional solution. We show that T'(y') < 3 - OPT'. This implies that one can
obtain a “better” half-integral vector g, which we then argue yields a half-integral solution
(Z,9) to the modified instance of cost at most T'(§) < T'(y').

Define v; := minggp, c;j, and let G; = {i € Fj : ¢;; < 7;}. Note that v; > 2C_'j, SO

F C Gj. Sety; = x;; < y; if i € Gy, and y; = 0 otherwise. Clearly, y'(F;) = y'(G;) < 1.

Then 3 lies in the following polytope
P o= {v eRT :0(S) <r(S) VSCF,  w(F) =1 o(@G) <1 Vie D}. (1)

We claim that P has half-integral extreme points. The easiest way to see this is to note
that any extreme point of P is defined by a linearly independent system of tight constraints
comprising some v(S) = r(5) equalities corresponding to a laminar set system, and some
v(Fj) = 1 and v(G;) = 1 equalities. The constraint matrix of this system thus corresponds
to equations coming from two laminar set systems; such a matrix is known to be totally

unimodular, and hence the vector v satisfying this system must be a half-integral solution.

(The full version also gives a proof based on the integrality of the intersection of two
submodular polyhedra.)

Given v € Rf, define T'(v) = >, fivi + Zj d;- (Ziecj Cijvi + 37 (1 — ZZEG], vz)) Since

y' € P, this implies that we can obtain a half-integral solution § such that T'(3) < T(y').

Observe that there is at least one facility i € F] with §; > 0; we call the facility i € F}
nearest to j the primary facility of j and set 2;; = ¢;. Note that every every client in D

407

APPROX/RANDOM’14



408

Approximation Algorithms for Matroid and Knapsack Median

has a distinct primary facility. If §; < 1, then let i’ be the facility nearest to j other than
i such that g, > 0; we call ¢’ the secondary facility of j, and set &;; = 1 — &;;. Define
Cj = Zl Cijii'ij and Sj = {Z : jij > O}

» Lemma 3.2. The cost of (2,9) is at most 3- OPT' <3 - OPT.

3.3 Converting (&, 9) to an Integer Solution

Step llI: Clustering. We cluster the clients in D as follows: pick j € D with smallest C'j.
Remove every client k € D such that S; NSy # 0; we call j the center of k and denote it by
ctr(k). Recurse on the remaining set of clients until no client in D is left. Let D’ be the set
of clients picked—these are the new cluster centers. Note that ctr(j) = j for every j € D’.

Step IV: The Matroid Intersection Problem. For convenience, we will say that every client
J € D has both a primary facility i, (j) and a secondary facility io(j) with &;, (j); = Zi,(j); = %,
with the understanding that if j does not have a secondary facility then i, (j) = 41(j), and so
Zi,(j); = 1. Then we have Cj = 3(ciy(j); + €ia(g);) and ¢, (j); < Cj < ci(y < 2.

For i € F, define §; = &;; < §; if i € S; where j € D', and g, = g; otherwise. Then '
lies in the polytope

R:={zeR] :2(5) <r(S) VSCF, 2(S;) =1 VjeD'}. (2)

Observe that R is the intersection of the matroid polytope for M with the matroid base
polytope for the partition matroid defined by the S; sets for j € D’. This polytope is
known to have integral extreme points. Similar to Step II, we define a linear function

H(z) =3, fizi + 2 pep Ar(2), where

Ap(z) = Eiesm(k) dycinzi if iy (k) € Sctr(k:)
w(2) =
Ziesm(k) dj.cinzi + djy (Ciy (k)k — Cig(k)k) Zir (k) Otherwise.

Since R is integral, we can find an integer point § € R such that H(§) < H(§'). This yields
an integer solution (Z,§) to the instance with client set D, where we assign each client j € D’
to the unique facility opened from S;, and each client k € D \ D’ either to i (k) if it is open
(i.e., Ji,(»y = 1), or to the facility opened from S (). In Lemma 3.3 we prove that the
cost of this integer solution is at most H(g), and in Lemma 3.4 we show that H(§') is at
most twice the cost of (£, 9) and hence, at most 6 - OPT (by Lemma 3.2). Combined with
Lemma 3.1, this yields Theorem 3.5.

» Lemma 3.3. The cost of (£,7) is at most H(g) < H(g').
» Lemma 3.4. H(9') is at most twice the cost of (£,7).

» Theorem 3.5. The integer solution (Z,7) translates to an integer solution to the original
instance of cost at most 10 - OPT.

3.4 Improvement to 8-Approximation

The procedure described in Section 3.3 shows that any half-integral solution can be rounded to
an integral one losing a factor of 2 in the cost. We obtain an improved approximation ratio of
8 by exploiting the structure leading to the half-integral solution obtained in Section 3.2. The
key to the improvement comes from the following observation (in various flavors). Consider
a non-cluster-center k € D'\ D with ctr(k) = j. Let i be a facility serving both j and k.
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Suppose i is not the primary facility of k. Without any further information, we can only say
that c;jr < cij + ik < 375 + 3vk. However, if we define our half-integral solution by setting
the secondary facility of k to be the primary facility of the client (in D) nearest to k, then we
have the better bound c¢;j, < 2y; + 27, which yields an improved bound for k’s assignment
cost. To push this observation through, we will “couple” the rounding steps used to obtain
the half-integral and integral solutions: we tailor the function 7'(.) (defined in Step II above)
so as to allow one to bound the total cost of the final integral solution obtained. Also, we
use a different criterion for selecting a cluster center in the clustering performed in Step III.

The first step is the same as Step I in Section 3.2. Recall that the new client-set is D
with demands {d’};jcp, OPT " is the cost of (z,y) for the modified instance, and for each
J € D we define Fj = {i : ¢;j = mingep cir}, Fj = {i € Fj : ¢;j < 205}, v; = minggp, cij,
and Gj = {’L S Fj 1 Cij < ’}/j}

Al. Obtaining a Half-integral Solution. Set y, = z;; <y, if i € G, and y; = 0 otherwise.

We define T'(v) = >, fivi + 3, d; (2 ZieGj cijvi + 4y (1 — ZieGj v;)) for v € RY with
some hindsight. Since y’ lies in the half-integral polytope P (see (1)), we can obtain a
half-integral § such that T(9) < T(y’).
For each client j € D, define o(j) = j if §(G;) = 1, and o(j) = argmingep.x; Cjk
otherwise (breaking ties arbitrarily). Note that cj,(;) < 2v;. As before, we call the
facility ¢ nearest to j with g; > 0 the primary facility of j and denote it by i1 (j); we
set #,(jy; = Ui, (j)- Note that i1(j) € Fj. If §;,(jy < 1 and §(G;) = 1, let &’ be the
fractionally open facility other than i;(j) nearest to j; otherwise, if §; ;) < 1 and
9(G5) < 1, (so a(j) # j and @;,(j) = %), let ¢’ be the primary facility of o(j). We
call ¢/ the secondary facility of j, and denote it by i2(j). Again, for convenience, we
consider j as having both a primary and secondary facility and Z;, (;); = Zi,(j); = %,
with the understanding that if g;, ;) = 1, then 43(j) = i1(j) and Z;,(;); = 1. Let
Sj={i: & >0} ={i1(j), i2(4)}-

A2. Clustering and Rounding to an Integral Solution. For each j € D, define C;» =

(cq;l(j)j +¢io () +ci2(j)a(j))/2. We cluster clients as in Step III in Section 3.3, except that
we repeatedly pick the client with smallest C} among the remaining clients to be the
cluster center. As before, let D’ denote the set of cluster centers, and let ctr(k) = j € D’
for k € D if k was removed in the clustering process because j was chosen as a cluster
center and S; N Sy, # 0.
Similar to Step IV in Section 3.3, for each i € F, define §; = &;; < ¢; if i € S; where
j € D' and §] = §; otherwise. For z € R], define H(z) = ¥, fizi + > pep Li(2),
where Lg(z) is ZieSm(k) dycirzi if i1(k) € Scer(r), and Zz‘esm(k) dj, (c;m(k) + cw(k))zi +
dl (Ciy (k)k = Cho(k) — Ciy(o(k))o(k)) %is (k) Otherwise. Since § lies in the integral polytope R
(see (2)), we can obtain an integral vector ¢ such that H(§) < H(§'), and a corresponding
integer solution (Z, %) (as in Step IV in Section 3.3).

Analysis. The 8-approximation guarantee (Theorem 3.8) follows directly by combining
Lemmas 3.6 and 3.7 with Lemma 3.1.

» Lemma 3.6. We have T(§) < T(y') <4- OPT' <4-OPT.
Proof. We know that T(§) < T'(y') and OPT' < OPT. We have OPT' =", fiyi+>2; d;C’j,

and for any j € D, we have C_Z'j = ZieGj Cijxij + Zing CijTij > Ziecj cijrij + (1 —
Zz‘eGj x;;) by the definition of ;. So T'(y') is at most

DS ) di(D ] i+ 41— Y wy)) <Y fui+4Y 450, <

i€Gy i€G
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» Lemma 3.7. The cost of (Z,7) is at most H(§) < H(¢'), and H(§') < T(3).

Proof. We first argue that the cost of (Z,7) is at most H(g). The facility opening cost is
>_; fitii- The assignment cost of a client j € D" is s; djcijgi = Lj(g). Consider a client
ke D\ D" with ctr(k) = j. Let i’ =1i1(j), i" = i2(j). If §;,(x) = 0 or i1(k) € Sj, then Li(7)
is at least dj, ZzES cik¥i- So suppose ¥, x) = 1 and i1(k) ¢ S;. Then the assignment cost of
k is dj.c;, (kyk, and since Cio (k) > €, (o (k))o (k) for every i € S, we have Ly (7) > dkch(k)k

We now show that H(§') < T(§). Define B;(§) := dj(2 Yica, Cijli + 475 (1 — )))-
S0 T(§) = X, fifh + Xy By(9). Clearly X, i, < 37, fifi. We show that L; (§') iy ()
for every j € D, which will complete the proof.

We first argue that d;C; < B;(g) for every j € D. If §(G;) = 1, then dC} =
ZZGG djcij9i < Bj(9)- Otherwise, 0(G;) = ;, and ¢jq(j) + i, (a(j))o(i) < 3755 S0 djC <
d; (ZzeG cmyz + 3'7]( g(GJ))) < Bj (?3)

For a client j € D', we have L;(§') = dj(c;,(j); + Cin(5);)/2 < djC} < B;(§). Now
consider a client k € D\ D'. Let j = ctr(k), and 7’ = i1(j), i = 42(j). Note that C} < Cj.
We consider two cases.

1. 41(k) € S;. This means that i; (k) = 4" # ' and k = o(j). So
d/ d/
Le(§) = 2= - (cimk + cok) < =
2 2
2. i1(k) ¢ S;. This implies that §(Gy) = 9:,(x) = . Let £ = o(k) (which is the same as j if
i2(k) = i1(j)). We have Ly (') = d +(2cke + cire + Cire + Ciy (e — Che — Ciyope)- 1L =7,
then Ly (9') = % . (cl-l(k)k + ¢ + Ci//j). Notice that c;v; < QC’j — ¢irj. So we obtain that

. (Ci’j + Cjk + Ci”k) = d;CC} < d},Cy, < Bi(9)-

! /

. d d
Lk(y') < fk-(cil(k)k—FCjk-f—QC]/-—ci/j) < —k-(cil(k)k+cjk+20;€—ci/j) = d;c(cil(k))k+cjk)'

2 2
If ¢ # 7, then i2(j) = " = ia2(k) = i1(£), so £ = o(j), and Cit + Cje + Cing = 205 <20} =
Ciy (k)k T Cre + Cirrg. So Lk(@/) < %“ . (Cil(k)k + Cpe+Cje +cyr ]) < dk(cil(k)k: +Ckg). In both
cases,
L) < dile,gon + choy) < di (2D et + 4 (1= 3(G)) ) = Be(@). «
1€Gy

» Theorem 3.8. The integer solution (Z,7) translates to an integer solution to the original
instance of cost at most 8 - OPT.

» Remark. It is easy to modify the above algorithm to obtain a so-called Lagrangian-multiplier
preserving (LMP) 8-approximation algorithm, that is, where the solution (Z, ) returned
satisfies 8, fi7i + Zjep,i djc;;Z;; < 8- OPT. To obtain this, the only change is that we
redefine

’U) = 8Zfﬂ}l+2d;(2 Z cijvi+4’yj(1— Z ’Ui)), = 8Zf121+ ZLk
i J

i€Gy i€G keD

We now have T'(9) < T'(y') <83, fivi +4> ;ep d;C and 8%, filli + > jep djcijTij <
H(g) < H(§'). Also, as before, we have H(§') < T(g). Thus, we have

821;@,, + Y djeijEy 82f,y,+ S dieyEi+ Y 4d;Cy

JED,i jJ€ED jE€D\D

82f1y1+42d0 +8 > d;C; <8 OPT.

JjeD JjED\D

IN

IN
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4 Extensions

4.1 Matroid Median with Two Matroids

A natural extension of matroid median is the matroid-intersection median problem, wherein
are given two matroids on the facility-set F, and we require the set of open facilities to be an
independent set in both matroids. This problem turns out to be inapproximable to within
any multiplicative factor in polytime.

» Theorem 4.1. [t is NP-complete to decide if an instance of matroid-intersection median
has a zero-cost solution; this holds even if one of the matroids is a partition matroid. Hence,
no multiplicative approximation is achievable in polytime for this problem unless P=NP.

Proof. The reduction is from the NP-complete directed Hamiltonian path problem, wherein
we are given a directed graph D = (N, A), and two nodes s, t, and we need to determine
if there is a simple (directed) s ~» ¢ path spanning all the nodes. The facility-set in the
matroid-intersection median problem is the arc-set A, and every node except t is a client. One
of the matroids M is the graphic matroid on the undirected version of D, that is, an arc-set
is independent if it is acyclic when we ignore the edge directions. The second matroid My is
a partition matroid that enforces that every node other than s has at most one incoming arc.
All facility-costs are 0. We set ¢;; = 0 if 4 is an outgoing arc of j, and oo otherwise. Notice
that this forms a metric since the sets {i : ¢;; = 0} are disjoint for different clients.

It is easy to see that an s ~» t Hamiltonian path translates to a zero-cost solution to
the matroid-intersection median problem. Conversely, if we have a zero-cost solution to
matroid-intersection median, then it must open |N| — 1 facilities, one for each client. Hence,
the resulting edges must form a (spanning) arborescence rooted at s, and moreover, every
node other than ¢t must have an outgoing arc. Thus, the resulting edges yield an s ~» ¢
Hamiltonian path. <

We consider two extensions of matroid median that are essentially special cases of matroid-
intersection median and can be used to model some interesting problems (see Section 5). The
techniques developed in Section 3 readily extend and yield an 8-approximation algorithm (in
fact, an LMP 8-approximation) for both problems. These extensions may be viewed in some
sense as the most-general special cases of matroid-intersection median that one can hope to
approximately solve in polytime.

The setup in both extensions is similar. We have a matroid M = (F,Z) on the facility-set
(and clients with demands and assignment costs). F is partitioned into F; U F and clients
may only be assigned to facilities in J7; this can be encoded by setting ¢;; = oo for all i € F
and j € D. We also have lower and upper bounds (b1, ub1), (b2, ub2), and (1b, ub) on the
number of facilities that may be opened from Fi, F2, and F respectively. We need to open a
feasible set of facilities and assign every client to an open facility so as to minimize the total
facility-opening and client-assignment cost. A set F' C F of facilities is said to be feasible if:
(i) F eZ; (i) b1 <|FNFi| <ubl, b2 < |FNF| <ub2, ib<|F|<ub;and (iii) F N Fs
satisfies problem-specific constraints. While the role of F, may seem unclear, notice that a
non-trivial lower bound on the number of F»-facilities imposes restrictions on the facilities
that may be opened from F; due to the matroid M (see, e.g., k-median forest in Section 5).

Two-matroid Median (2MMed). In addition to the above setup, we have another matroid
My = (F2,Z5) on Fp with rank function ro. A set F of facilities is feasible if it satisfies (i)
and (ii) above, and (iii) F'NF2 € Zo. We may modify the matroids M and M; to incorporate
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the upper bounds ub and ub2 respectively in their definition; we assume that this has been
done in the sequel. The LP-relaxation for 2MMed is quite similar to (P). We augment (P)
with the constraints:

y(S) <ra(S) VS CFy, b1 <y(F) <ubl, W2 <y(F), b<y(F).

Let (z,y) denote an optimal solution to this LP, and OPT denote its cost. The rounding
procedure dovetails the one in Section 3. The first step is again Step I in Section 3.2. Let
D be the new client-set with demands {d}};cp, OPT' be the new cost of (x,y), and for
each j € D, we define F};, Fj, 7;, and G; as before. Note that F; C F; for all j € D. A
slight technicality arises in mimicking Step Al in Section 3.4: setting y; = x;; for some
facility + € G; need not satisfy the lower-bound constraints. We deal with this by “cloning”
facilities suitably to obtain: (i) a new Fj-set Fi, corresponding facility-set 7' = F] U Fo
and facility-opening vector y € Rf; (ii) a new set G; C JFi for all j € D; (iii) a new rank
function 7 : 27— Z,.

We continue with steps Al, A2 in Section 3.4, replacing G; with G;, and using suitable
polytopes in place of P and R to obtain the half-integral and integral solutions. To obtain a
half-integral solution, we define

P = { veRT : w(S) <r(S) VS CF, wu(S)<ra(S) VS C Fa, Ib<u(F)
b1 <o(Fj) <wubl, b2 <v(F), v(F)) >3 v(G;) <1l VjeD } (3)

which contains y. The key observation is that an extreme point of P’ is again defined by
a linearly independent system of tight constraints coming from two laminar systems: one
consisting of some tight v(S) < #/(S) and b < v(F’) < ub constraints; the other consisting
of some tight v(S) < ro(S) and b1 < v(Fj) < ubl, b2 < v(F2) < ub2 constraints, and
some tight v(F}) < % and v(G’) > 1 constraints. Thus, P’ has half-integral extreme points,
and so we can find a half-integral § such that T'(§) < T'(y), and a corresponding solution
(Z,9). We round this to an integral solution as in step A2, using the polytope

R = { zeRY : 2(9) <1'(S) VSCF, z(S) <rq(S) VS CF
b1 < 2(Fy)) <wubl, W2<z(F), Wb<zF), =2(5;)=1VjeD } (4)

which has integral extreme points. A useful observation is that if 7 € D’ then we may assume
that &;; = ¢; for all ¢ € S}, and so § € R’. So we obtain an integral vector § such that
H(j) < H(9), and hence an integer solution (Z, ). (Here T'(.) and H(.) are as defined in in
Section 3.4.) Mimicking Lemmas 3.6 and 3.7, we obtain that T'(§) < T'(y) < 4- OPT’, and
the cost of (Z,7) is at most H(g) < H(§) < T(§). Thus, we obtain the following theorem.

» Theorem 4.2. The integer solution (Z,7) yields an integer solution to 2MMed of cost at
most 8 - OPT.

Laminarity-constrained Matroid Median (LCMMed). In LCMMed, in addition to the
common setup, we have a laminar family £ on F5 and bounds 0 < ¢g < ug for every set
S € L; aset F of facilities is feasible if it satisfies (i) and (ii) above, and (iii) £s < |[FNS| < ug
for all S € £, The approach used for 2MMed also works for LCMMed. The only (obvious)
changes are that the LP-relaxation, as well as the definition of the polytopes P’ and R’ (in
(3) and (4)) now include the laminarity constraints in place of the rank constraints for the
second matroid. All other steps and arguments proceed identically, and so we obtain an
8-approximation algorithm for laminarity-constrained matroid median.
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4.2 Matroid Median with Penalties

This is the generalization of matroid median where are allowed to leave some clients unassigned
at the expense of incurring a penalty d;m; for each unassigned client j. This changes the
LP-relaxation (P) as follows. We use a variable z; for each client j € D to denote if we incur
the penalty for client j, and modify the assignment constraint for client j to >, x;; + z; > 1;
also the objective is now to minimize ) . fiy; + Zj d; (Zl CijTij + szj). Let (z,y, z) denote
an optimal solution to this LP and OPT be its value. Krishnaswamy et al. [11] showed
that (z,y,2) can be rounded to an integer solution losing a factor of 360. We show that our
rounding approach for matroid median can be adapted to yield a substantially improved
24-approximation algorithm. The rounding procedure is similar to the one described in
Section 3 for matroid median, except that we now need to deal with the complication that a
client need be assigned fractionally to an extent of 1. We defer the algorithm description
and its analysis to the full version.

5 Applications

We now show that the various facility location problems listed below can be cast as
special cases of matroid median or the extensions considered in Section 4.1. Thus, our
8-approximation algorithms for matroid median and these extensions immediately yield
improved approximation guarantees for all these problems.

Problem Previous best approximation factor

Data placement problem [2, 3] 10 [3]

Mobile facility location [9, 1] (with | —; our reduction and results of [11, 6] yield factors of 16
general movement costs) and 9  ((3+€) [1] for proportional movement costs)

k-median forest [10] (with non-

uniform metrics) 16 [10]  ((3 + ¢) [10] for related metrics)

Metric-uniform minimum-latency

UFL (MLUFL) [4] 10.773 [4]

The Data Placement Problem. We have a set of caches F, a set of data objects O, and a
set of clients D. Each cache ¢ € F has a capacity u;. Each client j € D has demand d; for a
specific data object o(j) € O and has to be assigned to a cache that stores o(j). Storing an
object o in cache ¢ incurs a storage cost of f, and assigning client j to cache ¢ incurs an access
cost of djc;;, where the ¢;;s form a metric. We want to determine a set of objects O(i) C O to
place in each cache i € F satisfying |O(7)| < u;, and assign each client j to a cache i(j) that

stores object o(j), (i-e., o(j) € O(i(j))) so as to minimize >, = > cow) 7 + 2 e dici);-

Reduction to matroid median. The facility-set in the matroid-median instance is F x O.
Facility (i,0) denotes that we store object o in cache i, and has cost f?. The client set is D.
We set the distance c(; ,); to be ¢;; if o(j) = 0 and oo otherwise, thus enforcing that each
client j is only assigned to a facility containing object o(j). The new distances form a metric
if the ¢;5s form a metric. The cache-capacity constraints are incorporated via the matroid
where a set S C F x O is independent if |{(i’,0) € S : ¢’ =i}| < u; for every i € F.

Mobile facility location. In the version with general movement costs, the input is a metric
space (V, {c”}) We have a set D C V of clients, with each client j having demand d;, and a
set F C V of initial facility locations. A solution moves each facility ¢ € F to a final location
s; € V incurring a movement cost of w;s, > 0, and assigns each client j to the final location
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s of some facility incurring an assignment cost of d;cs;. The goal is to minimize the sum of
all the movement and assignment costs.

Reduction to matroid median. We define the facility-set in the matroid-median instance
to be F x V. Facility (¢, s;) denotes that ¢ € F is moved to location s; € V, and has cost
w;s, (note that s; could be 7). The client-set is unchanged, and we set c(; 5,); to be cs,; for
every facility (i,s;) € F x V and client j € D. These new distances form a metric: we have
Cliysi)j < Cliysiyk T C(ir s,k T C(itys,)5 SINCE Cs,5 < Cs,k + Cs, k6 + Cs,, 5. The constraint that a

facility in F can only be moved to one final location can be encoded by defining a matroid
where a set S C F x V is said to be independent if [{(i’,s) € S:4 =i}| <1 for all i € F.

k-median Forest. In the non-uniform version, we have two metric spaces (V, {cuv}) and
(V,{duv}). The goal is to find S C V with |S| < k and assign every node j € V to i(j) € S
so as to minimize }; ¢;(j); + d(MST(V/S)), where MST(V/S) is a minimum spanning forest
where each component contains a node of S.

Reduction to 2MMed (or LCMMed). We actually reduce a generalization, where there is an
“opening cost” f; > 0 incurred for including ¢ in S; the resulting instance is also an LCMMed
instance. We add a root r to V. The facility-set F is the edge-set of the complete graph on
V U {r}. The client-set is D := V. Selecting a facility (r,7) denotes that i € S, and selecting
a facility (u,v), where u,v # r, denotes that (u,v) is part of MST(V/S). We let F; be the
edges incident to r, and F, be the remaining edges. The cost of a facility (r,i) € Fy is fy;
the cost of a facility (u,v) € F2 is dy,. The client-facility distances are given by c(,;); = cij
and c.j = oo for every e € F». Note that these {cej} distances form a metric. We let M be
the graphic matroid of the complete graph on V' U {r}. We impose a lower bound of |V| on
the number of facilities opened from F, and an upper bound of k£ on the number of facilities
opened from F;. The matroid Ms on F5 is the vacuous one where every set is independent.

A feasible solution to the 2MMed instance corresponds to a spanning tree on V U {r}
where r has degree at most k. This yields a solution to k-median forest of no-greater cost,
where the set S is the set of nodes adjacent to 7 in this edge-set. Conversely, it is easy to see
that a solution S to the k-median forest instance yields a 2MMed solution of no-greater cost.

Metric Uniform MLUFL. We have a set F of facilities with opening costs { f; };cr, and a set
D of clients with assignment costs {c;;}jep,icF, where the ¢;;s form a metric. Also, we have a
monotone latency-cost function A : Z, — R, . The goal is to choose a set F' C F of facilities
to open, assign each open facility ¢ € F a distinct time-index ¢; € {1,...,|F|}, and assign
each client j to an open facility i(j) € F' so as to minimize » ;o fi + > ;cp (cigj); + Atis)))-

Reduction to Matroid Median. We define the facility-set to be F x {1,...,|F|} and the
matroid on this set to encode that a set S is independent if |{(,#') € S : ¢/ =t}| <1 for all
te{l,...,|F|}. Weset fi;+) = fi and c(;1),; = cij + A(t); note that these distances form a
metric. It is easy to see that we can convert any matroid-median solution to one where we
open at most one (i,t) facility for any given ¢ without increasing the cost, and hence, the
matroid-median instance correctly encodes metric uniform MLUFL.

6 Knapsack Median

We now consider the knapsack median problem [11, 12], wherein instead of a matroid on
the facility-set, we have a knapsack constraint on the facility-set. Kumar [12] obtained the
first constant-factor approximation algorithm for this problem, and [6] obtained an improved
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34-approximation algorithm. We consider a somewhat more-general version of knapsack
median, wherein each facility ¢ has a facility-opening cost f; and a weight w;, and we have
a knapsack constraint ), ,w; < B constraining the total weight of open facilities. We
leverage the ideas from our improved rounding procedure for matroid median to obtain an
improved 32-approximation algorithm for this (generalized) knapsack-median problem.

We may assume that we know the maximum facility-opening cost f°P? of a facility opened
by an optimal solution, so in the sequel we assume that f; < f°P!, w; < B for all facilities
i € F. Krishnaswamy et al. [11] showed that the natural LP-relaxation for knapsack median
has a bad integrality gap; this holds even after augmenting the natural LP with knapsack-
cover inequalities. To circumvent this difficulty, Kumar [12] proposed the following lower
bound, which we also use. Suppose that we have an estimate C°P* within a (1 + ¢)-factor of
the connection cost of an optimal solution (which we can obtain by enumerating all powers
of (1+¢€)). Then, defining U; := argmax{z : >, dy max{0, z — ¢;r } < C°P'}, Kumar argued
that the constraint z;; = 0 if ¢;; > Uj is valid for the knapsack median instance. We augment
the natural LP-relaxation with these constraints to obtain the following LP (K-P).

min Z fiyi + Z Z d;cijTi; (K-P)
: PR
s. t. Z Ti5 = 1 Vj

7

iy < Y Vi, j
Zwiyi <B
[
fzg,yzZO v%], Zl'ijzo ifCij>Uj.

Let (z,y) be an optimal solution to (K-P) and OPT be its value. Let C; = >, c;jy;.
Note that if our estimate C°P! is correct, then OPT is at most the optimal value opt for the
knapsack median instance. We show that (z,y) can be rounded to an integer solution of cost
fOPt +4C°Pt + 28 - OPT. Thus, if consider all possible choices for C'°P! in powers of (1 + )
and pick the solution returned with least cost, we obtain a solution of cost at most (32 + ¢)
times the optimum. The rounding procedure first obtains a nearly half-integral solution
whose cost is within a constant-factor of the optimum, which then turns out to be easy to
round to an integral solution. The resulting algorithm and analysis is simpler than that
in [12, 6]. A detailed description of our algorithm is as follows.

K1. Consolidating Demands. We start by consolidating demands as in Step I in Section 3.2.
We now work with the client set D and the demands {d}jep. For j € D, we use M; C D
to denote the set of clients (including j) whose demands were moved to j. Note that
the M;s partition D. Let OPT’ denote the cost of (x,y) for this modified instance. As
before, for each j € D we define F; = {i : ¢;; = mingep ¢ }, FJ’ ={i € Fj:¢;; <2Cj},
Y= man¢F7 Cij, and Gj = {’L S Fj P Cij < ’YJ}

K2. Obtaining a Nearly Half-integral Solution. Set y, = z;; < y; if i € G, and y, = 0
otherwise. Let F' = |J;cp Gj. In the sequel, we will only consider facilities in J".
Consider the following polytope:

K = {v eERT :u(F) =1, o(G)<1 VieD, Y wuw< B}. (5)

Define K(v) = 3, 2f;v; + 32, d; (2 Yiea, Cijvi + 87 (1 — v(Gj))) for v € Rf. Since
Yy € K, we can efficiently obtain an extreme point § of K such that K(§) < K(y'), the
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support of 4 is a subset of the support of ', and all constraints that are tight under 7/’
remain tight under §. Thus, if i € G; and g; > 0, then y; > 0 and so ¢;; < U;. Also,
if §(G;) < 1 then y'(G;) < 1, and so v; < U;. We show in Lemma 6.1 that there is at
most one client, which we call the special client and denote by s, such that G4 contains
a facility ¢ with §; ¢ {0,1,1}.

As in Section 3.4, for each client j € D, define o(j) = j if §(G;) = 1, and o(j) =
arg minge p.x; Cjx otherwise (breaking ties arbitrarily). Note that c;q(j) < 27;. We now
define the primary and secondary facilities of each client j € D, which we denote by i1 (j)
and is(j) respectively. If j is not the special client s, then i1(j) is the facility ¢ nearest
to j with g; > 0; otherwise, i1(j) = arg min;e pr.g, >0 Wi (breaking ties arbitrarily).
If 95,5 = 1, then we set i2(j) = i1(j). If §(G;) < 1, we set ia(j) = i1(o(j)). If
Ui,y < 9(G5) = 1, we set ia(j) to: the half-integral facility in G; other than 4;(j) that
is nearest to j if j # s; and the facility with smallest weight among the facilities i € G
with §; > 0 (which could be the same as i1(j)) if j = s. Define S; = {i1(j),92(j)}-

To gain some intuition, observe that the facilities i1(j) and i3(j) naturally yield a
half-integral solution, where these facilities are open to an extent of % and j is assigned
to them to an extent of 3; as before, if i1 (j) = i2(j), then this means that i1(j) is open
to an extent of 1 and j is assigned completely to i1 (j). The choice of the primary and
secondary facilities ensures that this solution is feasible. (We do not however modify §
as indicated above.)

K3. Clustering and Rounding to an Integral Solution. This step is quite straightforward.
We define C’]‘ for j € D, and cluster clients in D exactly as in step A2 in Section 3.4,
and we open the facility with smallest weight within each cluster. Finally, we assign
each client to the nearest open facility. Let (Z,¢) denote the resulting solution. Recall
that D’ is the set of cluster centers, and for k € D, ctr(k) denotes the client in D due to
which k was removed in the clustering process (so ctr(j) = j for j € D').

Analysis. We call a facility ¢ half-integral (with respect to the vector § obtained in step

K2) if §; € {0, 3,1} and fractional otherwise.

» Lemma 6.1. The extreme point § of K obtained in step K2 is such that there is at most one
client, called the special client and denoted by s, such that Gs contains fractional facilities.
Moreover, zf% < 9(Gs) < 1, then there is one exactly one facility i € F! such that §; > 0.

Proof. Since ) is an extreme point, it is well known that the submatrix A’ of the constraint
matrix whose columns correspond to the non-zero ¢;s and rows correspond to the tight
constraints under ¢ has full column-rank. The rows and columns of A’ may be accounted
for as follows. Each client j € D contributes: (i) a non-empty disjoint set of columns
corresponding to the positive §;s in G; and (ii) a possibly-empty disjoint set of at most two
rows corresponding to the tight constraints §(F}) = 1 and §(G;) = 1. This accounts for all
columns of A’. There is at most one remaining row of A’, which corresponds to the tight
constraint ), w;; = B.

Let p; and g; denote respectively the number of columns and rows contributed by j € D.
First, note that p; > ¢; for all j € D. This is clearly true if ¢; < 1; if ¢; = 2, then
9(F}) = 3, §(G;) = 1, so both F/ and G; must have at least one positive g;. Also, note that
if p; = ¢, then G; contains only half-integral facilities. Since >, p; <37, q; + 1, there can
be at most one client such that p; > ¢;; we let this be our special client s. Note that we
must have p; = g5 + 1.

If 1 < §(Gs) < 1 then: (i) ¢s = 0, so p, = 1; or (ii) ¢s = 1, so p; = 2, and since
9(F]) = £ < 9(G,), both F, and G, contain exactly one positive ;. <



C. Swamy

It is easy to adapt the proof of Lemma 3.6, and obtain that K(§) < K(y') < 8- OPT' <
8- OPT. Next, we prove our main result: the integer solution (Z,§) computed is feasible and
its cost for the modified instance is at most K (§) + f°P* +4C°P* + 16 - OPT. Thus, “moving”
the consolidated demands back to their original locations yields a solution of cost at most
(32 +¢€) - opt for the correct guess of f°P* and C°Pt. The following claims will be useful.

» Claim 6.2. If §(G,) =1 for some j € D, then (we may assume that) j is a cluster center.

Proof. Let i’ =i1(j), i =i2(j). Let k € D be such that S, NS; # 0. Then o(k) = j. So
2(0;c — CJ/) = Ciy(k)k T Cik — Cin(5)j > Ciy(k)j — Ciz(4)j > 0 since Zg(k) % Gj. <

» Claim 6.3. For any client j € D, we have d;-Uj < CoPt+4.0PT.
Proof. By definition, )*, d max{0,U; — ¢} < C°P'. So d;U; = >_kenr, WUj, which equals

> de(Uj—cin) + Y dicjr <CP 4 Y 4diC < CP' 44 OPT. <

keM; keM; keM;

» Theorem 6.4. The solution (Z,y) computed in step K3 for the modified instance is feasible
and has cost at most K(§) + f°Pt +4C°P* + 16 - OPT.

Proof. Let B;(v) = d(2 X ,cq, cijvi + 87 (1 — v(G)) for v € R So K(§) =23, fili +
>_; Bj(9). Recall that S; = {i1(j),42(j)} for every j € D.

We first prove feasibility and bound the total facility-opening cost. Consider a cluster
centered at j. Let i’ = i1(j), i’ = ia(j). Let i be the facility opened from S;. If §(S;) = 1,
then w; < Ziesj w;f);. Otherwise, either j = s or 0(j) = 5. If j = o(j) = s, then i is
the least-weight facility in G;. Otherwise, if j = s then i is the least-weight facility in
F7 U {io(4)} and §(F}) + Ji,(5) = 1; finally, if j # o(j) = s then 7 is the least-weight facility
in {i1(5)} U F;(j) and 7;, ;) + Q(F;(j)) > 1. Since S; C G UG,y ), in every case, we have
w; < Ziecjuc;(,(j) Wi

If all facilities in S; are half-integral, then f; <2 Ziesj figi <2 ZieGjuGa(j) fi%;. Other-
wise, we have j = s or o(j) = s, and we bound f; by f°P".

Note that if & € D’ is some other cluster center, then G;;UG ;) is disjoint from G UG ;1)
If not, then we must have o(j) = k or (k) = j or o(j) = o(k), which yields the contradiction
that S; NSy # 0. So summing over all clusters, we obtain that the total weight of open
facilities is at most 3, 1 ZieGjuG w;¥; < Y, w;iY; < B, and the facility opening cost is
at most 2>, f;0; + foP".

We now bound the total client-assignment cost. Fix a client 7 € D’. The assignment
cost of j is at most d’;c;,(j);. Note that cy,(;); < 3Uj. If j # s, then B;(9) > d’;ci,(j);: this
holds if §(G;) = 1 since §;,(;) > 3; otherwise, B;(f) > ddivy; > diciy ). If j = s, then its
assignment cost is at most Sd;Uj < 3C°rt +12. OPT (Claim 6.3).

Now consider k € D\ D’. Let j = ctr(k), and i’ = 41(j), i’ = i2(j). We consider two
cases.

1. i1(k) € Sj. Then k = o(j) and k’s assignment cost is at most dj c;,x)x- As above, this is
bounded by By (9) if k # s, and by 3C°P* 4+ 12 - OPT otherwise.

2. i1(k) ¢ S;. Let £ = o (k). We claim that the assignment cost of k is at most dj (c;, (k) +
4'yk). To see this, first suppose £ # j, and so £ = o(j). Then, k’s assignment cost is at
most dj, (ckg +cgj —I—ci/j) <dj, (ZCM +Cz‘1(k)k) <dj, (cil(k)k —|—4'yk), where the first inequality
follows since €} < Cy. If £ = j, then iz(k) = i1(j) = i’ and k’s assignment cost is at
most d% (Cjk + Cio(j) + Ciz(j)g(j)) < d;c (Cil(k) + 2Cjk) < d;@ (Cil(k)k + 4’)%), where the first
inequality again follows from C} < Cj.

a(5)
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Since k ¢ D', we have §(G) < 1 (by Claim 6.2). So y'(Gg) < 1 and vy, < Uy. If k # s,
then Bi(9) > d (ci,ax + 4w). If k = s and §(Gy) = 3, then By(9) > 4d} v, and

29

d},Ciy (e < dj,Uy. Otherwise, by Lemma 6.1, we have §;, (5) > %7 and so By(§) > dj.c;, (k)k
and 4d) vy < 4d;.Uy. Taking all cases into account, we can bound k’s assignment cost by
k(9) if k # s, and by By(9) + 4d}, Uy < Bi(9) +4C°P* +16 - OPT if k = s.

Putting everything together, the total cost of (Z, ) is at most 2 ", fii; + Zj B;(9) + fort +
4C°Pt 416 - OPT = K () + foP' + 4C°P* + 16 - OPT. <

» Corollary 6.5. There is a (32 + €)-approzimation algorithm for the knapsack median
problem.
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