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ABSTRACT
Acoustic event detection is essential for content analysis and
description of multimedia recordings. The majority of cur-
rent literature on the topic learns the detectors through
fully-supervised techniques employing strongly labeled data.
However, the labels available for majority of multimedia
data are generally weak and do not provide sufficient detail
for such methods to be employed. In this paper we propose
a framework for learning acoustic event detectors using only
weakly labeled data. We first show that audio event detec-
tion using weak labels can be formulated as an Multiple In-
stance Learning problem. We then suggest two frameworks
for solving multiple-instance learning, one based on support
vector machines, and the other on neural networks. The
proposed methods can help in removing the time consuming
and expensive process of manually annotating data to facil-
itate fully supervised learning. Moreover, it can not only
detect events in a recording but can also provide temporal
locations of events in the recording. This helps in obtaining
a complete description of the recording and is notable since
temporal information was never known in the first place in
weakly labeled data.

CCS Concepts
•Information systems → Video search; Speech / au-
dio search; Information retrieval;

Keywords
Audio Event Detection; Audio Content Analysis; Multiple
Instance Learning; Temporal Localization

1. INTRODUCTION
The amount of consumer-generated multimedia data on

the internet has grown almost exponentially in recent times.
One popular multimedia upload site, YouTube, reported
about a year ago that 300 hours of multimedia recordings are
uploaded on it every minute [2]. There are several such sites
on the internet today, each of which attracts similarly large
amounts of data. The recordings are largely unannotated;
descriptions if any are limited to simple high-level metadata
such as the author, or a brief legend indicating the over-
all content. Often the legends themselves are cryptic and
uninformative to the uninformed, e.g. “My favorite clip”.

In order to be able to organize, categorize, summarize
and index these recordings such that they can be retrieved
through meaningful queries, one requires analysis of their
content. Given the rather spotty nature of the metadata,

the description of the content must usually be automatically
derived. This naturally requires automatic identification of
the objects and events that occur in the recording. Multi-
media recordings have both video and audio components.
Often, the sounds in the recordings carry information that
the video itself may not. Thus, not only the visual objects
in the recordings be automatically detected, it is also impor-
tant to detect the sounds that occur in them.

Automatic sound event detection also finds application
in other scenarios, such as monitoring traffic for sounds of
accidents or impact, surveillance, where one may “listen”
for sounds of gunshots [31], screams [25] etc., which might
indicate unusual noteworthy activity. It is also useful in
cases such as wildlife monitoring [8], context recognition [13]
and several health and life style monitoring system.

In all cases, the detectors themselves must be “trained”
from examples of the sound to be detected. In general
for learning such detectors, one requires annotated data,
where the segments of audio containing the desired event
are clearly indicated (as well as data in which the events are
distinctly not present). We will refer to this type of label-
ing as strongly labeled data. This is fundamentally limiting,
since such well-annotated data are generally scarce.

A solution to the scarcity is to use the consumer-produced
videos themselves to train the detectors. This immediately
raises several challenges, however. Firstly, of course, the
recording conditions, styles, and sophistication vary greatly
among such recordings, resulting in large within-category
variations between different instances of events, making the
fundamental learning problem challenging. Much more im-
portant however, is the nature of annotations, if any, that
they may carry. As mentioned earlier, the vast majority of
consumer-produced videos carry little or no content anno-
tation (which is what necessitates the development of auto-
mated concept detectors in the first place). Nevertheless, a
significant number of these recordings do carry some weak
information about their content, in the form of title, tags,
etc. By “weak” annotation, we mean that while they may
provide information about the presence or absence of par-
ticular events in the video, they will not provide additional
details such as the number of times these events occur, the
precise times in the recording where they occur, or the du-
ration of the events. These additional details are required
to localize the events in the recordings in order to train de-
tectors using conventional methods. Weak labels can be
automatically inferred from metadata (tags, titles etc.) as-
sociated with recording. Hence, these weak labels must be
used to train the detectors.

http://arxiv.org/abs/1605.02401v3


Conventional methods for learning classifiers for event de-
tection generally assume the availability of datasets that
contain sufficient information to isolate the segments of the
recordings where the target class occurs in order to learn
their characteristics. For the other kind of datasets for which
only weak labels are present (like those available on inter-
net) most methods rely on manually annotating the avail-
able data with the boundaries of events, to facilitate learning
event detectors. But creating such annotations is a time-
consuming and expensive procedure. Supervised learning
hence becomes a difficult task.

In this paper we take the view that it must be possible
to learn event detectors from the weakly labeled data itself
without requiring the additional effort of detailed annota-
tion. Recordings that have been tagged as containing the
event will have regions which are consistent with one an-
other because they contain the event, but are not consistent
with any region of recordings that are not similarly tagged.
Event-carrying segments can be identified and event detec-
tors trained by keying in on this consistency.

We embody this principle into an algorithmic framework
which falls under the general rubric ofmultiple-instance learn-
ing. Multiple-instance learning is a generalized form of su-
pervised learning in which labels for individual instances
are not known; instead labels are available for a collec-
tion of instances, or “bag” as it is usually called within this
setup. Although multiple-instance learning approaches have
previously been employed for learning event detectors from
weakly labeled data, most prior work in this area has focused
on visual event recognition. The problem of learning to de-
tect acoustic events from weakly labeled data has received
very little attention.

We propose a successful framework for acoustic event de-
tection based on the multiple instance learning methodology.
In our setup, an audio recording is considered as a bag and
segments of the recording are considered as instances within
the bag. Besides achieving the goal of learning acoustic event
detectors using weakly labeled data; as an added benefit, we
are also able to assign temporal locations to occurrences of
events in the test data.

The rest of the paper is arranged as follows: in Section 2
we give an overview of related work, in Section 3 we formu-
late the problem and in Section 4 we describe the proposed
approach. In Section 5 we describe our experimental setup
and results and we conclude in Section 6.

2. RELATED WORK
The problem of multimedia content analysis has received

significant attention in the past decade. Although much of
the reported work relates to image- or video-based informa-
tion extraction, audio-based information extraction has also
been explored. These audio-based information extraction
methods in general involve detection of different kinds of
acoustic events such as clapping, cheering, gunshots etc. in
audio components of multimedia recordings. A nice survey
on audio event detection challenges, related work, and the
state of art can be found in [30]. A brief summary of some
audio event detection work is provided here.

Possibly the most popular application so far of sound-
event detection has been for surveillance [31] [25] [9]. Audio-
event detection has also found its way into consumer devices,
particularly for automatic indexing of multimedia record-
ings of games [16]. The wider setting of detecting sound

events in more generic real-world recordings has been re-
stricted in terms of the “vocabulary” of sound events consid-
ered. This is mainly due to the absence of large-vocabulary
open source datasets meant for audio event detection re-
search. The authors of [40] model various sound events with
Gaussian-mixture models in order to detect them in real-
world recordings. The approach followed in [40] is similar
to the GMM-HMM architecture used for automatic speech
recognition. A simple yet effect approach converts signals
into “bags of audio words” – population-count histograms
– by clustering feature vectors derived from the signal to
a known codebook. Classification is now performed using
these bags of words as feature vectors. This approach too
has been successfully applied to the problems of detecting
events in audio [24] as well as for multimodal approaches to
event detection [36] and [33]. It is a general framework for
obtaining a fixed length representations for audio clips and
can be done on a variety of low-level audio features such as
MFCCs [24], autoencoder based features [3] and normalized
spectral features [21] to name a few. An alternate approach
to obtaining bags of words is used in [18] – sound record-
ings are first decomposed into sequence of basic sound units
called “Acoustic Unit Descriptors” (AUDS), which are them-
selves learned in an unsupervised manner. Bags of words
are then obtained as bags of AUDs. The actual classifica-
tion may be performed through classifiers such as SVM or
random forests [18]. Deep neural network based approaches
have also been proposed for audio event detection [15][17]
[5].

In every one of these cases, the detectors and classifiers
that are used to detect the sound events are trained in a
supervised manner. Each classifier/detector is trained using
several clearly-demarcated instances of the type of sound
event it must detect, in addition to several “negative” in-
stances – instances of audio segments that do not contain
the event. Obtaining data of these kinds clearly requires
human annotation, and can be a time-consuming and ex-
pensive process.

Our focus in this paper is to learn detectors from weak an-
notations – annotations which only indicate the presence of
sound events in recordings, without additional detail about
the number of instances, their location in the recording, etc.
Such annotations are, in general, easily available and easy
to generate if not available.

In comparison to supervised techniques, there has been
relatively little work on learning to detect events in multi-
media using weakly labeled data. Even here, the majority
of published work focuses on detecting events based on vi-
sual content of the data [12] [38] [37]. In the case of audio,
however, literature on learning generic sound event detec-
tors from weakly labeled data is almost negligible. Some
audio-related works include music genre classification using
semi-supervised approach [22] [29]. Two other audio related
works are [26] and [8] where the authors try to exploit weak
labels in bird-song and bird-species classification.

In our work we perform audio event detection (AED) us-
ing weakly-labeled data by formulating it as a multiple in-
stance learning (MIL) problem. MIL is a learning method-
ology which relies on the labels of an ensemble of instances,
rather than labels of individual instances. Several well known
learning methods such as Support Vector Machines (SVMs)[4],
K-NNs [34] have been modified to learn in this paradigm.



3. AED USING WEAKLY LABELED DATA
The problem of audio event detection is that of detecting

the occurrences of events (e.g clapping, barking or cheering
) in a given audio recording. In order to be able to do so, we
require models for these events which can be used to detect
their occurrence. Training such models, in turn, requires
training instances of these sounds. Such instances may be
presented either as explicit recordings of these sounds, or
as segments from longer audio recordings within which they
occur. Our objective is to train the models, instead, using
weakly-labeled data which comprise recordings in which only
the presence or absence of these events is identified, without
indicating the exact location of the event or even the number
of times it has occurred.

Let R = {Ri : i = 1 to NR} be the collection of audio
recordings and E = {Ei : i = 1 to NE} be the set of events
for which detection models must be built using R.

For each Ri a certain subset of events from E are known
to be present (weak-labels). For example, the information
might say that Ri contains events E1, E3 and E6. It is also
possible that the subset of E present in Ri is empty, meaning
that no event from E is present in Ri.

Clearly, to train a detector for an event Ei one cannot
simply use all recordings that are marked as containing Ei,
since a significant portion of the marked recordings might
also contain other events. Moreover, since the start and
end times of the occurrences of event Ei in the recordings
are not known, it is impossible to extract out the specific
segment of the audio that contains the event for further use
in supervised learning. Conventional supervised learning is
thus not possible. How do we then use these weak labels for
learning detectors for the events? We answer the question
in the next Section.

4. PROPOSED FRAMEWORK
Our formulation of event detection using weak labels of

the kind described above is based onMultiple-Instance Learn-
ing [10] which is a generalized version of supervised learning
in which labels are available for a collection of instances.
We propose that audio event detection using weak labels is
essentially an MIL problem and in general any suitable MIL
algorithm can be used.

4.1 Multiple Instance Learning
The term Multiple Instance Learning was first developed

by Dietterich et al. in 1997 for drug activity detection [10].
MIL is described in terms of bags; a bag is simply a collection
of instances. Labels are attached to the bags, rather than to
the individual instances within them. A positive bag is one
which has at least one positive instance (an instance from
the target class to be classified). A negative bag contains
negative instances only. A negative bag is thus pure whereas
a positive bag is impure. This generates an asymmetry from
a learning perspective as all instances in a negative bag can
be uniquely assigned a negative label whereas for a positive
bag this cannot be done; an instance in a positive bag may
either be positive or negative.

Thus, it is the bag-label pairs, rather than instance-label
pairs, which form the training data from which a classifier
which classifies individual instances must be learned.

We represent the bag-label pairs as (Bi, Yi). Here Bi is
the ith bag and contains instances xij where j = 1 to ni and
ni is the total number of instances in the bag, i.e. Bi =
{xij : j = 1 · · · ni}. Yi ∈ {−1, 1} is the label for bag Bi.

Yi = 1 implies a positive bag and Yi = −1 implies a negative
bag. We might alternatively represent negative labels by 0
at some place for convenience (in Section 4.3). Let the total
number of bags be indicated by N . One can attempt to
infer labels of individual instances xij in the bag from the
bag label. The label yij for instances in bag Bi can be stated
as:

Yi = −1 ⇒ yij = −1 ∀ xij ∈ Bi, (1)

Yi = 1 ⇒ yij = 1 for at least one xij ∈ Bi (2)

This relation between Yi and yij is simply

Yi = max
j

{yij}. (3)

The problem now is to learn a classification model C so that
given a new bag B̂n it can predict the label Ŷn for B̂n. Sev-
eral methods have been proposed to solve the MIL problem
such as Learning Axis-Parallel Concepts [10], Diverse Den-
sity[23], Citation-KNN[34], mi-SVM and MI-SVM [4]. In
this work we work with two frameworks: (1) mi-SVM which
modifies support vector machines for the MIL setting and,
(2) neural networks for solving MIL problems

4.2 MIL for SVM (mi-SVM)
In [4] Andrews et al. proposed two methods for multiple-

instance learning of Support Vector Machines. The first,
called mi-SVM, operates at the instance level and maxi-
mizes the margin of individual instances from a linear dis-
criminant. The second, referred to as MI-SVM maximizes
the margin of bags of instances, rather than individual in-
stances. In this work we use mi-SVM.

To understand mi-SVM, we first note that the relation
between bag label Yi and instance labels yij can also be
represented in the form of linear constraints.

ni
∑

j=1

yij + 1

2
≥ 1 ∀ i s.t Yi = 1, ; yij = −1∀ i s.t Yi = −1

The instance labels in mi-SVM are treated as unobserved
integer variables subject to the constraints defined above.
As in conventional training of SVMs, where we must esti-
mate the parameters of a linear (or kernelized) discriminant
function such that the margin of training instances from the
discriminant function is maximized, here too we must max-
imize the margin. However, since the instance labels are
unknown, we modify the objective: the goal now is to max-
imize a soft margin over both the decision function and the
hidden integer variables, namely the unknown labels of in-
stances. Optimization of the generalized soft margin is thus

min
yij ,w,b,ξ

1

2
||w||2 + C

∑

ij

ξij (4)

such that

∀i, j : yij(〈w,xij〉+ b) ≥ 1− ξij (5)

ξij ≥ 0 ; yij ∈ {−1, 1} ; yij = −1∀ i s.t Yi = −1 (6)
ni
∑

j=1

yij + 1

2
≥ 1 ∀ i s.t Yi = 1 (7)

In equation 4 the labels yij of instances belonging to posi-
tive bags are unknown integer variables. As a result both,
the optimal labeling of these instances as well as the opti-
mal hyperplane (w, b), must be computed. The separating
hyperplane must be such that there is at least one pattern



Algorithm 1 mi-SVM Algorithm

1: procedure Learning SVM in MIL setting(Bi, Yi)
// Input training bags and labels

//Initialization Step
2: yij = Yi for all j in Bag Bi

3: repeat
4: compute SVM solution w, b with imputed labels

5: for all bag Bi s.t Yi = 1 do
6: compute fij = (〈w,xij〉 + b) ∀ xij in Bi

7: yij = sgn(fij) ∀ j in bag Bi s.t Yi = 1

8: if (
ni
∑

j=1

yij+1

2
== 0) then

9: compute j∗ = argmaxj(fij)
10: set yij∗=1
11: end if
12: end for
13: until imputed labels no longer change
14: end procedure

from every positive bag in the positive half space and all
patterns belonging to negative bags are in the negative half
space.

The above formulation is, however, a difficult mixed in-
teger problem to solve. Andrews et al. [4] proposed an
optimization heuristic to solve this integer problem. The
main idea behind the heuristic is that for given integer vari-
ables i.e. fixed labels, it can be solved exactly through usual
quadratic programming. The solution thus is a two step it-
erative process:

• Step 1: Given the integer variables (fixed labels), solve
the standard SVM.

• Step 2: Given the SVM solution, impute the integer
label variables for the positive bags.

The labels of instances in the positive bags are all initialized
as positive and are updated as described above. The in-
stances in negative bags are obviously labeled negative and
remain so through out the procedure. The two steps are iter-
ated until no changes in labels occur. The overall mi-SVM is
shown in Algorithm 1. If it happens during an iteration that
all instances in a positive bag are labeled as negative, then
the one with the maximum value for discriminant function
is assigned a positive label. This process is repeated until
no change in imputed labels is observed.

4.3 MIL of Neural Networks (BP-MIL)
Neural networks have become increasingly popular for clas-

sification tasks [28] [20]. The conventional approach to train-
ing neural networks is to provide instance-specific labels for
a collection of training instances. Training is performed
by updating network weights to minimize the average di-
vergence between the actual network output in response to
these training instances and a desired output, typically some
representation of their assigned labels [27][35].

In the MIL setting, where only bag-level labels are pro-
vided for the training data, this procedure must be appro-
priately modified. In order to do so, we must modify the
manner in which the divergence to be minimized is com-
puted to utilize only bag-level labels. For this, we employ

an adaptation of neural networks for multiple instance learn-
ing (BP-MIL) proposed in [39].

Let oij represent the output of the network in response
to input xij , the jth instance in Bi, the ith bag of training
instances. We define the bag-level divergence for bag Bi as

Ei =
1

2

(

max
1≤j≤ni

(oij)− di

)2

(8)

where di, the desired output of the network in response to
the set of instances from Bi, is simply set to Yi, the label
assigned to Bi. Thus for positive bags di = 1, whereas for
negative bags di = 0. The central idea behind the bag-
level divergence of Equation 8 is to refer to any bag using
the instance which produces the maximal output. This was
proposed by Dooly et al. in [11] where they showed that
irrespective of the number of instances (positive or negative)
in a bag, the bag can be fully described by the instance with
maximal output.

The bag-level divergence of Equation 8 may be understood
by noting that the term“maxj oij” in it effectively represents
the bag-level output of the network, and that Equation 8
simply computes the divergence of the bag-level output with
respect to the bag-level label of Equation 3.

The ideal output of the network in response to any neg-
ative instance is 0, whereas for a positive instance it is 1.
For negative bags, Equation 8 characterizes the worst-case
divergence of all instances in the bag from this ideal output.
Minimizing this effectively ensures that the response of the
network to all instances from the bag is forced towards 0.
In the ideal case, the system will output 0 in response to all
inputs in the bag, and the divergence Ei will go to 0.

For positive bags, on the other hand, Equation 8 computes
the best-case divergence of the instances of the bag from the
ideal output of 1. Minimizing this ensures that the response
of the network to at least one of the instances from the bag is
forced towards 1. In the ideal case, one or more of the inputs
in the bag will produce an output of 1 and the divergence
Ei will go to zero.

The overall divergence on the training set is obtained by
summing the divergences of all the bags in the set:

E =

N
∑

i=1

Ei =

N
∑

i=1

1

2

(

max
1≤j≤ni

oij − di

)2

(9)

The parameters of the network are trained using conven-
tional backpropagation, with the difference that we now
compute gradients of the divergence given in Equation 9, and
that entire bags of data must be processed prior to updating
network parameters. During training once all instances in a
bag have been fed forward through the network, the weight
update for the bag is done with respect to the instance in
the bag for which the output was maximum. The process is
continued until the overall divergence falls below a desired
tolerance.

Prediction using a trained network can now be done instance-
wise as in done in classical feed-forward neural networks.
Bag labels, if required, can be predicted based on the label
obtained for the maximal-scoring instance in the bag.

4.4 MIL for AED using weakly labeled data
In our setting for training audio-event detectors from weakly

labeled data, we only have labels informing us whether a
recording contains a given event or not. In order to apply
the MIL framework to this scenario, we must first represent



the weakly labeled recordings in R in terms of bag-label rep-
resentations.

To convert recording Ri to a bag, it is segmented into a
number of short audio segments. Adjacent segments may
overlap by design. Let the segments derived from Ri be
[IRi1 IRi2 ...IRiK ]. Each of these smaller segments is now
treated as an individual instance within the bag Ri. For-
mally a bag Ri is thus Ri = {IRi1, IRi2, ....IRiK} where K
depends upon the duration of recording Ri, the length of
the individual segments and the overlap between adjacent
segments.

If the weak labels for Ri mark an event as being present
in Ri, then it will be present in at least one of the in-
stances within it. Hence, Ri will be a positive bag for the
instance. On the other hand, if an event is marked as not
being present in a recording, then clearly none of the seg-
ments(instances) from the recording will be positive for that
event, and hence overall that recording is a negative bag for
the event. Hence, the weak labels for all the recordings can
directly provide bag-label representations needed in MIL.
The MIL approaches can now be used to learn a model
which can predict the presence or absence of an event in
each recording, and even identify the locations of the events
within the recordings.

4.5 Temporal Localization of Events
The MIL frameworks we use in this work learn from bag-

level labels; but once learning is complete, they can clas-
sify individual instances. In the context of audio analysis,
this implies that not only can we detect the presence of an
event in a test recording (bag) but also in individual seg-
ments of the test recording. Formally, if Rx is a test record-
ing, which we may more explicitly represent as Rx(t) where
“t” indexes time, the individual segments in the recording,

IRx1, IRx2, ....IRxK , are given by IRxk = Rx(t), (k− 1)l
′

≤

t < (k − 1)l
′

+ l, where l is the length of the segment in

seconds and l
′

denotes the amount by which a segment win-
dow is shifted with respect to the previous segment. In the

special case of non-overlapping segments l
′

= l. If an event
Ei is detected in segment IRxk it means this event can be

localized to the time segment
(

(k − 1)l
′

, (k − 1) ∗ l
′

+ l
)

in

the recording Rx. Hence, the framework can generate in-
formation about the temporal location of events. Hence, we
are able to obtain a complete description of the recording in
terms of audio events. This is a unique form of AED learn-
ing since the descriptive form of labeling was never present
in the training data in the first place.

4.6 GMM based features for audio segments
Before we can apply the MIL framework, each segment

of audio must first be converted to an appropriate feature
representation. We use Mel-frequency cepstral coefficient
(MFCC) vectors to obtain low-level feature representations
for audio segments. However, direct characterization of au-
dio as sequences of MFCC vectors tends to be ineffective for
the purposes of audio classification [40]; other secondary rep-
resentations derived from these are required. As described
in Section 2, one simple and yet very successful approach is
the Bag of Audio Words feature representation, which quan-
tizes the individual MFCC vectors into a set of codewords,
and represents segments of audio as histograms over these
codewords.

However, while the bag of words representation has been
found to be very effective for classification of long segments
of audio, for shorter duration segments such as those in our
case, they present several problems. Bag of words represen-
tations effectively characterize the distribution of the MFCC
vectors in the segment. However, because of the inherent
quantization they lose much of the detail of this distribu-
tion, which is required for fine-level analysis, such as in the
detection of sound events, particularly when the classifiers
must be learned from weak labels. While the loss of resolu-
tion may be partially resolved by increasing the size of the
codebook used for quantization, this can lead to generation
of sparse histograms for short audio segments, with large
cross-instance variation in the derived features.

In [19] it was demonstrated that for short audio segments
characterization of the audio using a Gaussian Mixture Model
(GMM) can provide robust representations for performance
of audio event detection. They suggested Gaussian Mixture
based characterization of audio events is a combination of
two features: the first, which we represent as ~F , is similar to
bag-of-words characterizations such as [32], and the second,

which we represent as ~M is a characterization of the modes
of the distribution of vectors in the segment.

As a first step to obtaining the ~F and ~M feature vectors for
the audio segments, we train a universal Gaussian mixture
model (GMM) on MFCC vectors from a large and diverse
collection of audio recordings. This background GMM is
used to extract the ~F and ~M features. In the following, we
will represent this universal GMM as G = {wk, N(x;λk)},
where wk is the a priori probability or mixture weight of
the kth Gaussian in the mixture, N(.) represents a Gaussian,
and λk collectively represents the set of mean and covariance
parameters of the kth Gaussian.

4.6.1 ~F Features
For each audio segment we have a sequence ofD-dimensional

MFCCs vectors denoted by ~xt where t = 1 to T . T is the
total number of MFCC vectors for the given segment. For
each component k of the background GMM we compute

Pr(k|~xt) =
wkN(~xt;λk)
G
∑

j=1

wjN(~xt; λj)

, (10)

F (k) =
1

T

T
∑

i=1

Pr(k|~xt) (11)

The ~F feature vectors are ~F = [F (1), F (2), · · · , F (G)]⊤.

Thus, ~F is G-dimensional vector representing a normalized
soft-count histogram of the MFCC vectors in the recording.
It captures how the MFCC vectors are distributed across
components of G. It is a variant of bag of audio word features
where soft assignment is used in place of hard quantization.

4.6.2 ~M Features
A more detailed characterization can be obtained by ac-

tually representing the distribution of the feature vectors in
the segment. To do so, we train a separate GMM for each
audio segment by adapting the universal GMM G to the col-
lection of MFCC vectors in the segment. The means of the
universal GMM are adapted to each training segment using
the maximum a posteriori (MAP) criterion as described in



[6]. This is done as follows for kth component of the mixture

nk =
T
∑

t=1

Pr(k|~xt), (12)

Ek(~x) =
1

nk

T
∑

t=1

Pr(k|~xt)~xt (13)

Finally the updated means are computed as

~̂µk =
nk

nk + r
Ek(~x) +

r

nk + r
~µk (14)

where ~µk is the mean vector of kth Gaussian and r is a
relevance factor. The means of all components are then ap-

pended to form theG×D vector ~M as ~M = [ ~̂µ⊤
1 , ~̂µ⊤

2 , · · · ~̂µ⊤
G]⊤.

The above two features are unsupervised methods of char-
acterizing the statistical structure of an audio segment. ~F
is the coarser representation, but can however be robustly
estimated. ~M is more detailed, though it is also more easily
affected by inter-instance variability. Together, they give us
a robust representation of both the coarse and fine structure
of the signals in short audio segments. In our experiments
we have used ~F both in combination with ~M , and as a stan-
dalone feature.

Once we have a robust set of features for representing
events in short audio segments we can extract features for
each audio segment (instances) of a recording (bag). Thus
a recording(bag) Ri = {IRi1, IRi2, ....IRiK} in feature space
becomes Ri = {~xRi1; ~xRi2; ....~xRiK} where ~xRij are either

the ~F features alone or the concatenated ~F and ~M vectors.
The bags are then fed into the the MIL frameworks BP-MIL
or mi-SVM for learning event detector models.

5. EXPERIMENTS AND RESULTS
We evaluated the proposed MIL framework on a portion

of the TRECVID-MED 2011 database [1]. The videos in
this dataset are meant for multimedia event detection and
belong to broad categories such “Changing a vehicle tire”,
“Attempting a board trick”, “feeding an animal”, etc which
are not particularly suitable for audio event detection study.
Hence we work with more meaningful acoustic events such
as clapping, cheering etc. A subset of the MED dataset is
thus annotated with 10 such events. To be able to compare
performance with the fully supervised case and to compute
performance metrics for temporal localization of events, our
annotations include actual locations and duration of occur-
rences of these events. However, only the information re-
garding the presence or absence of these sounds is used in
our MIL based framework.

A total 457 recordings (bags) are used in the experiments.
This is over 22 hours of audio data. We henceforth refer to
this set of recordings as the “dataset”. The length of each
recording in the dataset varies from a few seconds to several
minutes with an average length of about 2.9 minutes. This
implies that the number of instances in each bag also has a
wide range.

Ideally, the length of each segment should be properly set
keeping in mind the expected duration of event. However,
we observed that segment length decided by heuristics work
well. Since the median length of the chosen sound events was
less than 1 second, we will report results for all our results
on segment length fixed to 1 seconds. The segments overlap
by 50%. This results in well over 150,000 total instances.

Table 1: Number of Positive Bags for each event
Events Number of Bags
Cheering 171

Children’s Voices 33
Clanking 13
Clapping 102
Drums 25

Engine Noise 80
Hammering 17
Laughing 116

Marching Band 24
Scraping 30

The names of the 10 events and the total number of positive
bags for each events are given in Table 1. It is worth noting
that some of the recordings in the dataset do not contain
any of the 10 events; also a recording might be a positive
bag for more than 1 event. Hence, the sum total of numbers
in Table 1 is different from the total number of recordings
in the dataset. As is clear from our proposed framework our
goal is detection of audio events in recordings. Hence, the
training data for the binary classifiers for each event have
positive bags equal to the number shown in Table 1, while
the rest of the recordings in the dataset are negative bags
for that event. The dataset is partitioned into 4 sets. Three
of the sets were used to train the models, which were then
tested on the fourth set. This was done in all four ways
meaning each set becomes a test set. This gives us results
on the whole dataset. Hence, all results reported here are
on the entire dataset.

All recordings were parameterized into sequences of 21-
dimensional Mel Frequency Cepstrum Coefficient (MFCC)
vectors. MFCC vectors were computed over analysis frames
of 20ms, with an overlap of 50%(10ms) between adjacent

frames. The ~F and ~M features were derived from these
sequences of MFCC vectors. We trained two background
GMMs with 64 and 128 Gaussian components respectively.
The number of Gaussian component in the features is rep-
resented as subscript in the feature such as ~F64, ~M64.

ROC curves are used to analyze the performance. “Area
Under ROC curve” (AUC) [7] is a well known metric used to
characterize ROC curves. AUC is used to compare results
in different cases. Higher AUC values indicate better de-
tection performance. We first show results for detection of
events at recording (bag) level using miSVM and BPMIL in
Section 5.1 and 5.2 respectively. The instance level results
for temporal localization of events are provided in Section
5.3.

5.1 miSVM Results
For the miSVM framework linear SVMs are used in all ex-

periments. We use LIBLINEAR [14] in our implementation
of the miSVM framework. The slack parameter C in the
SVM formulation is obtained by 4 fold-cross validation over
the training set. A comprehensive analysis through compar-
ison of results in different cases is provided. The mean AUC
over all events is shown in the last row of each table.

5.1.1 Comparison with supervised SVM
We start by showing comparison of our proposed frame-

work with fully supervised AED where strong labels are
available. For supervised learning the time stamps in the



Table 2: AUC comparison with supervised SVM
Events AUC (miSVM) AUC (supSVM)
Cheering 0.632 0.682

Children’s Voices 0.678 0.668
Clanking 0.714 0.727
Clapping 0.646 0.697
Drums 0.60 0.640

Engine Noise 0.623 0.671
Hammering 0.557 0.568
Laughing 0.527 0.741

Marching Band 0.551 0.558
Scraping 0.723 0.850
Mean 0.625 0.680

Table 3: AUC for different number of components
in GMM (miSVM)

Events AUC (~F64) AUC (~F128)
Cheering 0.632 0.638

Children’s Voices 0.678 0.633
Clanking 0.714 0.744
Clapping 0.646 0.667
Drums 0.60 0.636

Engine Noise 0.623 0.642
Hammering 0.557 0.587
Laughing 0.527 0.540

Marching Band 0.551 0.554
Scraping 0.723 0.735
Mean 0.625 0.637

annotations are used to obtain pure examples of each event,
following which an SVM is trained using feature represen-
tations of these examples. Table 2 shows this comparison.
Comparison is shown for ~F64 features. In Table 2 “supSVM ”
refers to supervised SVM. As is expected, supervised SVMs
perform better than miSVM. However, there are several
events for which the performance obtained with weak labels
is comparable to that obtained with strong labels. Although
the performance of supervised SVMs can potentially be im-
proved by obtaining more strongly labeled examples for each
event, Table 2 illustrates that miSVM too can achieve fairly
decent performance using only weak labels.

5.1.2 Number of Gaussian Components
Table 3 shows AUC results for ~F64 and ~F128 features. It

can be noted that there are several events for which increas-
ing the number of Gaussians leads to about 2−4% absolute
improvement in AUC values. At the same time there are
events such as Cheering and Marching Band where this im-
provement is not observed, or the performance goes down
as in Children’s Voices. A performance drop of about 4%
is observed in this case. The optimal cluster size is known
to be event specific in AED, and this holds for MIL-based
audio event detection as well.

5.1.3 Adding ~M Features
We now observe the effect of adding the ~M features to the

system, along with ~F . Table 4 shows a comparison of AUC
values when only ~F is used and when it is combined with ~M
features. The results shown are obtained with 64 Gaussian
components in the GMM. It can be observed that adding ~M

features obtained by maximum a posteriori adaptation leads

Table 4: Effect of ~M features addition (miSVM)

Events AUC (~F64) AUC ([~F64, ~M64])
Cheering 0.632 0.668

Children’s Voices 0.678 0.723
Clanking 0.714 0.859
Clapping 0.646 0.680
Drums 0.60 0.639

Engine Noise 0.623 0.575
Hammering 0.557 0.660
Laughing 0.527 0.641

Marching Band 0.551 0.745
Scraping 0.723 0.744
Mean 0.625 0.693

Table 5: Overall Results with miSVM
Events AUC Events AUC
Cheering 0.668 Engine Noise 0.642

Children’s Voices 0.730 Hammering 0.660
Clanking 0.859 Laughing 0.685
Clapping 0.680 Marching Band 0.745
Drums 0.639 Scraping 0.744

Mean 0.704

to remarkable improvement of results for almost all events.
Events for which ~F features alone results in very poor per-
formance such as Hammering, Laughing and Marching Band
benefit significantly from the ~M features. Absolute improve-
ments of 10.3%, 11.4% and 19.4% respectively are observed
for these three events. For other events too absolute im-
provements in the range of 2.1%− 14.5% can be noted. The
only exception is Engine Noise for which the soft-count ~F
seems to be better. It is likely that although we observe im-
provements in miSVM, the actually improvements may be
classifier dependent.

5.1.4 Overall Results
The overall AUC results across all experiments using miSVM

is shown in Table 5. This is the best result across different
feature representations for audio segments. The correspond-
ing ROC curves are in Figure 1. Events such as Clanking,
Children’s’s Voices, Scraping and Marching Band are easier
to detect compared to other events such as Drums. The
mean AUC over all events is 0.704 which validates the suc-
cess of our proposed framework.

5.2 BP-MIL Results
For the BP-MIL neural network three parameters must

be defined, namely, number of hidden layers, the number of
nodes in each hidden layer (nno) and learning rate(η). We
used a network with one hidden layer in all experiments.
The network is trained for a total of 60 epochs. The learn-
ing rate is either fixed at 0.1 throughout training or 0.1 for
the first 30 epochs and then reduced in each epoch till it
reaches 0.01. Larger values of nno are used for larger di-
mensionality of input features. For ~F64 and ~F128 features 3
different values of nno are used. These are 16, 50 and 100 for
~F64 and 50, 100 and 150 for ~F128. When both ~F and ~M are
used, the values of nno used in the experiments are 256 and
512. Training neural networks in general requires exhaustive
tuning of parameters to get good results. Although results
presented here show reasonable performance for the BP-MIL
framework, we believe that better results can be obtained by
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Figure 1: ROC Curves for different events using
miSVM framework (Best Viewed in Color)

Table 6: Overall Results with BP-MIL
Events AUC Events AUC
Cheering 0.759 Engine Noise 0.698

Children’s Voices 0.767 Hammering 0.603
Clanking 0.764 Laughing 0.632
Clapping 0.781 Marching Band 0.618
Drums 0.601 Scraping 0.785

Mean 0.701

more aggressive parameter tuning. In fact parameter tuning
may give better insight into the BP-MIL framework.

We present only the best results across the different set-
tings. Before looking into these results, we make note of the
fact that for BP-MIL adding ~M features in general leads
to poorer performance. Some improvement is observed only
for Marching Band and Drums. One possible reason for this
might be the substantial increase in total number of weight
parameters with the addition of ~M features. As the network
size increases by a considerable amount due to increase in
input feature size, a substantial increase in training data is
expected for learning the model. However, in the present
case, the size of our data remains unchanged; this might
be one of the reasons for the poor performance for BP-MIL
on the addition of M features. It is possible that with a
larger dataset M features may be beneficial in the neural
network setting as well. Standalone ~F work well for BP-
MIL. Table 6 shows overall results for BP-MIL framework.
The corresponding ROC curves are shown in Figure 2. If
we compare these results with miSVM approach we can ob-
serve that events such as Scraping, Clanking and Children’s
Voices are easier to detect in this case as well. Events such as
Drums and Hammering are harder to detect using BP-MIL
as well. The mean AUC remains almost same as miSVM,
however, one can note a significant difference with respect
to miSVM for several events. An analysis on a larger vocab-
ulary of events might help differentiate the two approaches
more clearly.

5.3 Temporal Localization of Events
We now show the performance of the MIL based frame-

work on temporal localization of audio events. To evaluate
the performance on this task we need the ground truth labels
of all instances in all bags. The instances in the bags have
been obtained through uniform segmentation in our work.
Each instance is a one second window segment of the record-
ing which is moved in an overlapping manner to segment the
recording. However, the annotations providing time stamps
of events in the recording does not adhere to this uniform
segmentation. Thus an event might start and end within
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Figure 2: ROC Curves for different events using BP-
MIL framework (Best Viewed in Color)

Table 7: AUC for temporal localization of events
Events AUC (miSVM) AUC (BP-MIL)
Cheering 0.588 0.669

Children’s Voices 0.665 0.705
Clanking 0.925 0.645
Clapping 0.585 0.626
Drums 0.680 0.628

Engine Noise 0.603 0.652
Hammering 0.542 0.572
Laughing 0.548 0.581

Marching Band 0.758 0.701
Scraping 0.684 0.724
Mean 0.658 0.650

a segment and it can also start or end at any point in the
segment. Hence, assigning ground truth labels of instances
for a valid analysis is not straightforward. We use a sim-
ple heuristic to obtain ground truth labels. As described in
Section 4.5 each segment represents a specific time duration
of the recording. Looking into the actual annotations avail-
able, if an event can be marked to be present in at least 50%
of the total length of the segment we call the ground truth
label of that segment as positive; otherwise it is negative.

Once the ground truth labels with respect to an event
have been obtained for all instances over all bags, we can
analyze the performance in the usual fashion. We again
present ROC curves and use AUC as the metric charac-
terizing these curves. The best AUC values across all ex-
periments for temporal localization using both miSVM and
BP-MIL are shown in Table 7. The corresponding ROC
curves are shown in Figure 3. The figures in the upper row
are for miSVM and the figures in the bottom row are for
BP-MIL. Compared to bag-level results, about 5% drop in
mean AUC is observed for both cases. For some events such
as Hammering and Laughing the performance is poor for
both frameworks. For others reasonable performance is ob-
tained. Although these numbers are not exceptionally high,
they are still significant since no temporal information was
used during the training stage. Overall, AUC results val-
idate that our proposed framework can work for temporal
localization as well.

6. DISCUSSIONS AND CONCLUSION
A framework for learning acoustic event detectors from

weakly labeled data has been presented in this paper. The
learned detectors can both detect and temporally localize
events in a recording. We show that we achieve reason-
able performance for both tasks. Specifically, events such as
Clanking, Scraping, and Children’s Voices are easy to detect
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Figure 3: ROC Curves for Temporal Localization
(Top-miSVM, Bottom - BP-MIL)

using both SVM and neural network approaches. On the
other hand events such as Drums, Hammering and Laugh-
ing are hard to detect using both methods. Large-scale im-
plementation of both methods on a larger number of events
might be able to give a better insights for both methods. The
overall performance of both methods is similar. Given the
limited amount of training data, a mean AUC of around 0.7
demonstrates the success of the proposed approach. Larger
datasets are expected to result in better performance for
both cases.

An important factor in this framework is the representa-
tion used to characterize the audio segments, i.e. the in-
stances in the bags. We employed Gaussian mixture based
features (~F and ~M). We do not necessarily claim that these
are the best features for audio event classification; nonethe-
less they have been shown effective for AED in short audio
segments [19]. Other features may be expected to result in
improved overall MIL performance.

The success of our method is an important step towards
reducing the dependence on strongly labeled data for learn-
ing audio event detectors. It shows the pathway to utilize
the vast amount of multimedia data available on the web for
audio event detection. The weak labels for web multimedia
(audio) data can be inferred automatically from associated
metadata which can then be directly used in the proposed
framework. An interesting and extremely useful product of
our proposed framework is the ability to temporally locate
events in the recording. This is significant since this in-
formation was not present in the original data in the first
place. Moreover, the predicted instance level labels can be
further used in an active learning framework to improve per-
formance.

A number of factors still need to be investigated to create
a state-of-art acoustic event detection mechanism in which
learning is done using weakly labeled data. We need to con-
sider a large set of events for a more comprehensive view
of our framework. Moreover, investigations are required
into more effective multiple instance learning methods which

can help improve the overall performance and scalability of
framework. Multimedia event detection requires detection
of higher concepts. In the current work we focused on detect-
ing finer events and their detection can be used for detecting
higher concepts. Higher-level concepts in turn may be used
to guide MIL. All of these are directions of currently ongoing
and future work.
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