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Abstract

Studies from neuroscience show that part-mapping com-
putations are employed by human visual system in the pro-
cess of object recognition. In this work, we present an ap-
proach for analyzing semantic-part characteristics of ob-
ject category representations. For our experiments, we use
category-epitome, a recently proposed sketch-based spa-
tial representation for objects. To enable part-importance
analysis, we first obtain semantic-part annotations of hand-
drawn sketches originally used to construct the correspond-
ing epitomes. We then examine the extent to which the
semantic-parts are present in the epitomes of a category and
visualize the relative importance of parts as a word cloud.
Finally, we show how such word cloud visualizations pro-
vide an intuitive understanding of category-level structural
trends that exist in the category-epitome object representa-
tions.

1. Introduction

Studies from neuroscience show that structural part-
mapping computations are employed by the human visual
system in the process of recognition [5]. Put another way,
the presence of certain parts seems to be anticipated by the
visual system when it attempts to recognize an object. The
knowledge of what these parts are and their relative impor-
tance for the overall task of recognition can lead to insights
regarding the neuro-visual representation of objects.

In a recent work, Sarvadevabhatla et al. [7] describe the
construction of sketch-based spatial representations for ob-
ject categories termed category-epitomes. The epitomes
are constructed to as sparse as possible while still being
machine-recognizable (see Figure 2). To study these epit-
omes, one possibility would be to visually examine them
for structural similarities on a per-category basis. How-
ever, if the number of such epitomes is large, visual ex-

Figure 1: Sparsified yet recognizable freehand sketch rep-
resentations of object category bicycle on the left. Ex-
amining such a large number of instances visually for struc-
tural similarities can be ineffective. Instead, the approach
we propose captures the structurally significant parts as a
semantic-part word cloud (on the right). The size of a part’s
name in the word cloud reflects its importance across the set
of sparsified representations of the category.

amination can be ineffective. An alternate approach would
be to examine the distribution of semantic-parts1 in the
epitomes of each category. As we show in this work,
such an approach can lead to an intuitive understanding
of category-specific “signature” structural elements (parts)
which persist in category-epitomes (see Figure 1). More-
over, the category-epitomes we study have been obtained
using human-drawn sketches as a starting point. Therefore,
our approach also creates the possibility of analyzing the
underlying human neuro-visual representations as well.

2. Related Work
Determining the relative importance of part-level struc-

tural primitives for object category understanding has been

1E.g. spokes, seat, wheel, handle etc. are the semantic parts of a
bicycle. We use the term semantic-parts to distinguish from the common
interpretation of an object part as a certain spatial, unnamed portion of an
object.
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Figure 2: Original sketches (top row) and corresponding category-epitomes (bottom row) for various object categories. Figure
has been taken from [7].

explored only to a limited extent. Guo et al. [3] present
an importance measure of shape parts based on their abil-
ity to reconstruct the whole object shape of 2-D silhou-
ettes. However, the authors interpret parts to mean seg-
ments on the contour of the object. Ma et al. [6] propose
a perception-based method to segment a sketch into seman-
tically meaningful parts. Interestingly, they demonstrate the
effectiveness of utilizing semantic parts rather than just con-
sider parts as unnamed “regions” of the object. To the best
of our knowledge, the relative importance of the semantic
parts has not been studied.

3. Construction of a part-annotated sketch
database

As the first step towards the semantic-part based un-
derstanding of category-epitomes, we manually annotated
hand-drawn sketches from 13 categories2 from the sketch
database of Eitz et al. [2] for our analysis. A direction of re-
search we intend to pursue in future involves simultaneous
analysis of image and sketch based categories (whose part-
level segmentations have been provided). With this in mind,
the 13 categories we examine were chosen to overlap with
PASCAL-parts [1] – an image dataset containing part-level
segmentations of 20 object categories. From the 20 cate-
gories in PASCAL-parts, we retained only those containing
at least two dominant labeled parts. For example, category
tv had only one dominant labeled part (screen) and there-
fore was not admissible. Within the sketches of a category,
we considered only the correctly classified sketches since
category-epitomes, by definition, cannot be constructed for
misclassified sketches. Please refer to Section 4 of [7] for
details regarding category-epitome construction.

The annotation of part contours in the sketches was
performed by 10 annotators who used an annotation tool
developed in-house (see Figure 3). In the figure, the

2airplane, bicycle, bus, car (sedan), cat,
cow, dog, flying bird, horse, person walking,
potted plant, sheep, train

Figure 3: Screenshot of our annotation system. The sketch
to be annotated and the list of parts can be seen towards the
left side. The reference image to guide the annotators for
part names and locations is on the right.

sketch to be annotated is on the left. As an annotation
guide, a prototypical image of the category, labeled with
parts, was also provided alongside the sketch. The an-
notators were provided basic guidelines on annotation to
ensure reasonably compact boundary contours enclosing
each semantic-part. At the end, we obtained semantic-
part contour annotations for 283 sketches across 13 object
categories for an average of 22 sketches per category. A
sample annotation can be viewed in Figure 4. For each
annotated sketch, the corresponding sparsified representa-
tion (category-epitome) was obtained from the epitome data
provided by [7] at http://val.serc.iisc.ernet.
in/eotd/epitome_images/.

4. Our approach

An overview of our approach can be seen in Figure 5.
In the figure, locations with numbers circled in orange cor-
respond to important processing stages which we shall re-
fer to in the discussion that follows. We utilize an exam-
ple from the category bicycle for the purpose of illus-

http://val.serc.iisc.ernet.in/eotd/epitome_images/
http://val.serc.iisc.ernet.in/eotd/epitome_images/


Figure 4: User annotated sketch from category bicycle

tration. Let S be the original full-sketch image from cate-
gory C, E its category-epitome and A, the set of 2-D con-
tour points which correspond to user-annotated boundaries
of semantic-parts in S. Since the category-epitome is con-
structed from its full-sketch counterpart, we have E ⊆ S
(i.e. the set of sketch strokes in the epitome is a subset of the
strokes in the corresponding full-sketch). Let us also sup-
pose the cardinality of A is na and the number of semantic-
parts in C is M .

4.1. Obtaining candidate part contours

In some instances, part contours may enclose an insignif-
icant number of pixels from epitome E. As the first step, we
filter out such contours. For each part contour, we com-
pute the number of stroke pixels nfull in S that lie within
the part’s boundary. We also compute the number of stroke
pixels nepi in E that lie within the part’s boundary. If the
ratio nepi

nfull
is larger than a threshold, the contour is added to

the candidate contour list. In Figure 5, the candidate con-
tours are shown in bold (region labeled 1©). Note that multi-
ple occurrences of the same semantic-part type (e.g. spokes
of the bicycle) which satisfy the threshold criterion are
counted independently. To avoid undue importance to mul-
tiple occurrences of the same part type, we normalize by the
corresponding part contour counts in full sketch to obtain a
‘coarse’ part-importance factor pim for each semantic-part
(see 2© in Figure 5). We term it a ‘coarse’ importance fac-
tor since it implicitly takes raw pixel counts into account for
determining part importance. Shortly, we shall see how the
spatial structure of the stroke is also utilized in determining
the final semantic-part importance.

4.2. Obtaining ‘fine-grained’ part-importance
weights

The process of annotating a part typically results in a 2-
D closed contour. Points on the contour tend to be in close
proximity with the boundary pixels of the object. We ex-
ploit this observation to obtain a ‘fine-grained’ part impor-
tance factor for each part enclosed by a candidate contour.

Let B(j) = {b(j)i = (x
(j)
i , y

(j)
i )}nb

i=1, j = 1 . . . na be
the sets of points comprising user-annotated boundary con-
tours. Examples of such contours can be in the annotation
image A in Figure 5 (region 3©). For a given ‘part contour
set’ B(j), let S(j) = {s(j)k = (x

(j)
k , y

(j)
k )}ns

k=1, j = 1 . . . na
be the ‘full-sketch point’ set of 2-D locations of stroke pix-
els enclosed by the part contour in the full sketch S. Sim-
ilarly, let E(j) = {e(j)l = (x

(j)
l , y

(j)
l )}ne

l=1, j = 1 . . . na
be the ‘epitome point’ set of 2-D locations of stroke pixels
enclosed by the part contour in epitome E.

For each member in the ‘full-sketch point’ set, s(j)k =

(x
(j)
k , y

(j)
k ) ∈ S(j), we find the closest-by-distance match-

ing point b
(j)
i = (x

(j)
i , y

(j)
i ) from B(j). i.e. b

(j)
i =

argminx d(s
(j)
k , b

(j)
x ). We retain only those matches

s
(j)
k , b

(j)
i whose distance is less than a threshold. Intuitively,

this procedure enables us to identify stroke pixels of the full
sketch which “hug” the candidate contour’s boundary. Let
n
(j)
valid full be the number of such stroke pixels s

(j)
k . Valid

matches found using the above procedure are shown in red
for a candidate part boundary in Figure 5 – refer to region
4©. A similar procedure gives us n

(j)
valid epi – the number

of stroke pixels in the epitome which “hug” the candidate
contour’s boundary (See region 5© in Figure 5). The ratio

w
(j)
part =

n
(j)
valid epi

n
(j)
valid full

provides a fine-grained importance for

the part enclosed by the boundary – the higher the value of
w

(j)
part, the more the number of pixels from both full sketch

and the epitome which commonly “hug” the annotated part
boundary. The part-importance is depicted in Figure 5 by
the height of cylinders adjoining numbered regions 7©, 8©.
As we can see, the ‘wheel’ is more prominently present
in the epitome compared to the ‘bicycle frame’ thereby ac-
cording the former a larger part-importance (w(j)

part) value.

4.3. Obtaining category-wise part weights

The above procedure of obtaining fine-grained impor-
tance weight w(j)

part is repeated for each part (indexed by
j = 1, 2 . . . na) enclosed by a candidate contour boundary
B(j) by utilizing pixel location sets S(j) and E(j). These
weights are combined along with the coarse importance
weights pim obtained in Section 4.1 to obtain the image-
level part-wise importance weights fi, i = 1, 2, . . .M (re-
gion labeled 6© in Figure 5). The part-wise aggregation of
these weights over all the ‘full sketch’-epitome pairs of a



Figure 5: Determining part-importances given the full sketch S, the corresponding category-epitome E and the set of user
annotations A from the category bicycle. The output is a vector of semantic-part importances. Locations with numbered
orange circles indicate key aspects of the pipeline. The sketches and annotation data have been color-coded for visualization
purposes. This figure is best viewed in color.

Figure 6: Importance of semantic structural parts for object categories : Each image shows a word cloud of parts for epitomes
of each category. The size of the part name indicates its relative importance across epitomes of the category. The above
depictions are for LENGTH stroke sequence ordering.

airplane bicycle bus car cat

cow dog flying bird horse person walking

potted plant sheep train

category results is normalized to obtain a probability distri-
bution of part-level importance. This distribution can then
be visualized as a semantic-part word cloud (see Figure 1)
to determine the “signature” structural elements (semantic-
parts) which persist in the epitomes of a category.

The pseudo-code for the procedure described in this sec-
tion can be viewed in Appendix A. In the pseudo-code, por-
tions highlighted in red indicate procedures whose details
are provided separately.

5. Analyzing semantic-part word clouds

Before we proceed, it is important to point out that the
category-epitome of a full sketch implicitly depends upon
the order in which individual strokes of the full sketch are
considered. For example, the epitome can be constructed
by considering the temporal order in which the sketches
were originally added. Yet another epitome can be con-
structed if we consider strokes in decreasing order of stroke



airplane bicycle bus car cat

cow dog flying bird horse person walking

potted plant sheep train

Figure 7: Importance of semantic structural parts for object categories : Each image shows a word cloud of parts for epitomes
of each category. The size of the part name indicates its relative importance across epitomes of the category. The above
depictions are for TEMPORAL stroke sequence ordering.

airplane bicycle bus car cat

cow dog flying bird horse person walking

potted plant sheep train

Figure 8: Importance of semantic structural parts for object categories : Each image shows a word cloud of parts for epitomes
of each category. The size of the part name indicates its relative importance across epitomes of the category. The above
depictions are for ALTERNATE stroke sequence ordering.

length. Essentially, for each full sketch, there can be as
many category-epitomes as the number of stroke orderings.

In our analysis that follows, we keep the stroke ordering
fixed over the set of categories. Details on stroke order-



ings and their effect on category-epitomes that result can be
found in Sections 4, 5 of [7].

The procedure described in Section 4 is used to gen-
erate semantic-part word clouds for the 13 object cat-
egories we have chosen. Figure 6 shows the word
clouds for the LENGTH-based stroke ordering. Remem-
ber that the size of the semantic-part’s name indicates
its dominance in the sparsified representations (epito-
mes). Categories which exhibit one or two dominant
parts (e.g. horse, dog, potted plant) indicate
that such parts are consistently present in most of the
epitomes. This, in turn, suggests a consistency in which
sketches of the category are drawn. word clouds of cate-
gories with more variety in depictions (e.g. airplane,
person walking) tend to contain many parts whose
names are similar in size. Another interesting trend ex-
ists across semantically related categories. For instance,
‘leg’ is found to be the common defining signature part for
the animal categories (cow, dog, horse, person
walking, sheep). Similarly, for the vehicular cate-
gories (car, bus, bicycle, train), ‘wheel’ is a
dominant part and for the flying categories (airplane,
bird), ‘wing’ is a dominant part.

The trends mentioned above can also be seen for the
TEMPORAL stroke ordering (see Figure 7). We can ob-
serve that the part importance trends are fairly same for
each category across the stroke orderings. The epitomes
created under TEMPORAL stroke ordering scheme tend to
contain the sequence of strokes added towards the begin-
ning. Since the part importance trends for TEMPORAL are
not very dissimilar from the LENGTH-based ordering, this
suggests, somewhat counter-intuitively, that people do not
necessarily draw the “signature” parts of a sketch first. The
ALTERNATE stroke ordering consists of an alternating com-
bination of longest strokes and decorative strokes (tempo-
rally reversed order). However, even in this case, the es-
sential dominance of “signature” parts remains more or less
unchanged across the categories (Figure 8). These results
across the stroke ordering schemes suggest that the “signa-
ture” semantic parts live up to their name – they capture the
discriminative structural elements of the category and are
invariant to the manner in which sketch strokes are consid-
ered in the process of epitome construction.

A more traditional, tabular version of the part word
clouds with numerical values for various stroke orderings
can be viewed in Tables 1, 2 and 3.

6. Discussion and Future Work
In this paper, we have presented a novel framework

for analyzing the structural characteristics of category-
epitomes. We have shown that semantic-part annotations of
sketches can be utilized to gain an intuitive understanding
of category-level and sketch-stroke-ordering level structural

trends in category-epitomes. The database of part-annotated
sketches of object categories is another significant contri-
bution of our work since we can now simultaneously ana-
lyze relationships with photographic image counterparts at
a semantic-part level. Finally, the word cloud based anal-
ysis we have presented is quite general and can be applied
to any spatial visual object representation wherein the part
labelings have been provided.

At present, we have confined our analysis to the sketch
database of Eitz et al. [2]. To examine the generalizability
of our approach and results, it would be interesting to apply
it to the part-segmented sketch database of Huang et al. [4].
Another possible extension would be to apply the sketch-
part segmentation method suggested by the aforementioned
authors for the entire set of categories (instead of the 13 we
have chosen) from the database of Eitz et al. [2].



A. Pseudo-code

Algorithm 1 Algorithm to determine contribution of struc-
tural part strokes to category-epitome
1: procedure GETEPIPW(catName, strokeOrd)
2: . catName - Name of the category (e.g. bicycle)
3: . strokeOrd - Stroke sequence ordering

(TEMPORAL,LENGTH,ALTERNATE)

4: . Get list of structural parts for the category
5: P ←GETLISTOFPARTS(catName)
6: . Get part annotations U for sketches in the category
7: U ←GETUSERANNOTATIONS(catName)
8: . Initialize accumulator for weight of each part across epitomes of the category
9: epi wts freq ← zeros(length(P ), 1)

10: . For each correctly classified test image in the category
11: for f = 1 : length(U) do
12: [I, epi I]←GETIMAGES(U [f ], strokeOrd)
13: . I = full sketch, epi I = corresponding category-epitome
14: . Get weights of parts as present in category-epitome epi I
15: epi wts f ←GETPARTSTATS(U [f ], I, epi I, P )
16: . Update accumulator for part weights with contribution from current epit-

ome
17: epi wts freq ← epi wts freq + epi wts f
18: end for

19: . Normalize the part weights
20: pt wts freq ← epi wts freq

max(epi wts freq)

21: . Sort the part weights in decreasing order
22: [sorted wts, sorted pt ids]←SORT(pt wts freq)
23: . return the list of parts and their weights in sorted order
24: sorted part list← P (sorted pt ids)
25: return [sorted part list, sorted wts]
26: end procedure

Algorithm 2 Analyzes stroke information of an epitome us-
ing the part annotations of corresponding original sketch. Ob-
tains a listing of object parts which are prominent in the epit-
ome and their relative importance.
1: procedure GETPARTSTATS(U, I, epi I, P )
2: . U - part annotations for the sketch
3: . I - Full sketch image
4: . epi I - Category-epitome image
5: . P - list of structural parts for the category

6: . Get frequency count of each part in full sketch
7: parts list freq ←GETPARTCOUNT(U, P )
8: . Get candidate contours
9: cand contour id←GETCANDIDATECONTOURS(U, epi I, P )

10: . Get frequency count of parts w.r.t candidate contour list
11: epi parts list freq ← GETPARTCOUNT(U,P,cand contour id)
12: . Normalize for multiple occurrences of same part
13: p im← epi parts list freq./parts list freq
14: epi wts I ← zeros(1, length(P )
15: for p = 1 : length(cand contour id) do
16: . Count stroke pixels of epitome “hugging” candidate contour’s boundary
17: n valid epi←CTVALIDMATCH(I epi, U, cand contour id[p])
18: .Count stroke pixels of fullsketch “hugging” candidate contour’s boundary
19: n valid full←CTVALIDMATCH(I, U, cand contour id[p])
20: . Get the importance of the corresponding ‘part’
21: w part← n valid epi

n valid full

22: epi part name← U [cand contour id[p]].part name
23: for s = 1 : length(P ) do
24: if P [s] == epi part name then
25: epi wts I[s]← epi wts I[s] + (p im[s]× w part)
26: break
27: end if
28: end for
29: end for
30: return epi wts I
31: end procedure

Algorithm 3 Gets list of candidate contours
1: procedure GETCANDIDATECONTOURS(U, I, epi I, P )
2: . I - Full sketch image
3: . U - part annotation array for full sketch image
4: . epi I - Category-epitome image
5: . P - list of structural parts for the category

6: for p = 1 : length(U) do
7: . Get 2D part contour from user annotation
8: [xd, yd]←GETPARTCONTOUR(U [p])
9: . Get count of stroke pixels within the part contour from the full sketch

image
10: num stroke pixels orig ←COUNTPIXELS(xd, yd, I)
11: . Get count of stroke pixels within the part contour from epitome
12: num stroke pixels epi←COUNTPIXELS(xd, yd, epi I)
13: . If number of stroke pixels within part contour from the epitome is greater

than a threshold, add the part as a candidate part
14: part membership ratio← num stroke pixels epi

num stroke pixels orig

15: if part membership ratio > ε then
16: cand contour ids.INSERT(p)
17: end if
18: end for
19: return cand contour ids
20: end procedure

Algorithm 4 Gets list of candidate parts (which potentially
contribute) in the epitome
1: procedure ANALYZEPARTS(can p id, U, I, epi I, P, p i)
2: . can p id[p] - candidate part
3: . U - part annotations for the sketch
4: . I - Full sketch image
5: . epi I - Category-epitome image
6: . P - list of structural parts for the category
7: . p i - Part-wise importance factor

8: . Count stroke pixels of epitome which “hug” the candidate part’s boundary
9: n valid epi←CTVALIDMATCH(I epi, U, can p id)

10: . Count stroke pixels of full sketch which “hug” the candidate part’s boundary
11: n valid full←CTVALIDMATCH(I, U, can p id)
12: . Get the importance of this candidate part
13: w component← n valid epi

n valid full

14: epi part name← U [f ].part name
15: epi weights I ← zeros(length(P ), 1)
16: . Account for multiple occurences of same part in the epitome
17: for s = 1 : length(P ) do
18: if P [s] == epi part name then
19: epi weights I[s] ← epi weights I[s] + p i[s] ×

w component[s]
20: end if
21: end for
22: return epi weights I
23: end procedure



Algorithm 5 Counts the number of stroke pixels of image
that lie “close” to candidate part’s contour
1: procedure CTVALIDMATCH(I, U, cand part id)
2: . I - Sketch image (full or epitome)
3: . U - array of part annotations for sketches in the category
4: . cand part id - Index into array U

5: . Get 2D part contour from user annotation
6: [xd, yd]← U.GETPARTCONTOUR(cand part id)
7: . Get stroke pixels from image which lie inside candidate part’s mask
8: [x lc, y lc]←GETSTROKEPIXELS(xd, yd, I)
9: . For each stroke pixel p from image which lies inside candidate part’s mask

10: . Find the nearest pixel p’ on the candidate part boundary
11: [min index,min dist]←
12: GETNEAREST([xd yd], [x lc y lc],′K′, 1)
13: . Retain the matches whose distance is less than a threshold
14: filtered ids←FILTERLIST(min dist, THRESH)
15: [xd f, yd f ]←INDEX(xd, yd,min index, filtered ids) . [xd f

yd f] - Filtered matching boundary points
16: num valid matches←LENGTH(xd f, yd f,′ unique′)
17: return num valid matches
18: end procedure



Category Epitome part-list and weights (TEMPORAL)
airplane window (1.000), wing (0.373), fuselage (0.190), vertical stabilizer (0.183), wind shield (0.159), hori-

zontal stabilizer (0.151), engine (0.095), door (0.048), nose (0.008)
bicycle spoke (1.000), frame (0.441), wheel (0.304), handlebars (0.147), seat (0.127), pedal (0.093), chain

(0.088)
bus window (1.000), wheel (0.421), body (0.220), windshield (0.101), headlight (0.094), door (0.088),

steering (0.044), roof (0.038)
car (sedan) wheel (1.000), window (0.963), frame (0.481), door (0.315), headlight (0.259), windshield (0.148),

bumper (0.111), bonnet (0.074), seat (0.056), steering (0.037), radiator grille (0.037)
cat whiskers (1.000), paw (0.531), eye (0.449), ear (0.449), leg (0.245), nose (0.224), tail (0.204), mouth

(0.143)
cow leg (1.000), ear (0.481), eye (0.462), patch (0.327), horn (0.308), tail (0.308), udder (0.269), mouth

(0.231), nose (0.173)
dog leg (1.000), eye (0.405), ear (0.333), nose (0.286), body (0.286), head (0.286), tail (0.262), mouth

(0.190)
flying bird wing (1.000), beak (0.500), head (0.500), body (0.500), tail (0.500), eye (0.455), leg (0.091)
horse leg (1.000), hoofs (0.310), eye (0.264), head (0.264), tail (0.264), mane (0.230), mouth (0.138), nose

(0.138), body (0.069)
person walking leg (1.000), hand (0.940), foot (0.860), head (0.520), eye (0.480), mouth (0.240), chest (0.240), hair

(0.140), nose (0.100)
potted plant leaf (1.000), stem (0.382), pot (0.224), flower (0.127)
sheep leg (1.000), eye (0.359), ear (0.321), mouth (0.269), body (0.269), tail (0.167), nose (0.000)
train wheel (1.000), window (0.578), coach (0.311), engine (0.156), chimney (0.139), smoke (0.128), coupler

(0.122), track (0.117), front (0.061), door (0.028)

Table 1: Category-wise part-importances for TEMPORAL stroke ordering. Part-importances are listed in decreasing order of
importance relative to the most dominant part (shown with weight 1)



Category Epitome part-list and weights (LENGTH)
airplane wing (1.000), window (0.692), fuselage (0.522), vertical stabilizer (0.423), wind shield (0.340), hori-

zontal stabilizer (0.223), engine (0.121), door (0.067), nose (0.023)
bicycle frame (1.000), wheel (0.936), spoke (0.727), seat (0.239), chain (0.189), handlebars (0.149), pedal

(0.124)
bus window (1.000), wheel (0.629), body (0.346), windshield (0.150), door (0.132), roof (0.063), steering

(0.045), headlight (0.044)
car (sedan) wheel (1.000), window (0.767), frame (0.619), door (0.254), headlight (0.162), windshield (0.131),

bonnet (0.106), radiator grille (0.040), bumper (0.032), seat (0.027), steering (0.024)
cat whiskers (1.000), paw (0.867), ear (0.717), leg (0.394), tail (0.334), eye (0.317), nose (0.232), mouth

(0.066)
cow leg (1.000), ear (0.327), patch (0.299), tail (0.261), horn (0.258), udder (0.220), mouth (0.158), nose

(0.114), eye (0.110)
dog leg (1.000), head (0.306), body (0.297), ear (0.290), tail (0.287), nose (0.173), mouth (0.166), eye

(0.104)
flying bird wing (1.000), tail (0.549), body (0.479), head (0.314), beak (0.225), leg (0.011), eye (0.000)
horse leg (1.000), tail (0.295), mane (0.237), hoofs (0.236), head (0.232), eye (0.097), body (0.072), nose

(0.059), mouth (0.058)
person walking leg (1.000), foot (0.751), hand (0.638), head (0.507), chest (0.233), hair (0.094), mouth (0.037), nose

(0.030), eye (0.005)
potted plant leaf (1.000), stem (0.466), pot (0.359), flower (0.171)
sheep leg (1.000), body (0.401), mouth (0.272), ear (0.259), tail (0.171), eye (0.035), nose (0.000)
train wheel (1.000), coach (0.399), window (0.318), engine (0.195), track (0.141), chimney (0.140), coupler

(0.119), smoke (0.095), front (0.078), door (0.013)

Table 2: Category-wise part-importances for LENGTH stroke ordering. Part-importances are listed in decreasing order of
importance relative to the most dominant part (shown with weight 1)



Category Epitome part-list and weights (ALTERNATE)
airplane wing (1.000), window (0.928), fuselage (0.599), vertical stabilizer (0.471), wind shield (0.334), engine

(0.256), horizontal stabilizer (0.193), door (0.054), nose (0.027)
bicycle wheel (1.000), spoke (0.960), frame (0.933), seat (0.263), handlebars (0.260), chain (0.207), pedal

(0.097)
bus window (1.000), wheel (0.567), body (0.316), windshield (0.130), door (0.128), headlight (0.065), roof

(0.056), steering (0.054)
car (sedan) wheel (1.000), window (0.935), frame (0.651), headlight (0.324), door (0.281), windshield (0.142),

bonnet (0.115), radiator grille (0.059), bumper (0.057), steering (0.022), seat (0.010)
cat whiskers (1.000), paw (0.992), ear (0.817), leg (0.447), tail (0.389), eye (0.336), nose (0.229), mouth

(0.183)
cow leg (1.000), ear (0.373), horn (0.308), patch (0.304), tail (0.263), eye (0.257), udder (0.236), mouth

(0.174), nose (0.123)
dog leg (1.000), head (0.328), body (0.324), tail (0.304), eye (0.295), ear (0.294), nose (0.273), mouth

(0.193)
flying bird wing (1.000), tail (0.551), body (0.514), head (0.387), beak (0.295), eye (0.102), leg (0.054)
horse leg (1.000), tail (0.283), hoofs (0.259), head (0.242), mane (0.211), eye (0.196), mouth (0.112), nose

(0.096), body (0.079)
person walking leg (1.000), foot (0.839), hand (0.821), head (0.517), chest (0.247), mouth (0.136), eye (0.125), hair

(0.118), nose (0.072)
potted plant leaf (1.000), stem (0.388), pot (0.345), flower (0.145)
sheep leg (1.000), body (0.440), eye (0.260), mouth (0.251), ear (0.214), tail (0.195), nose (0.000)
train wheel (1.000), window (0.388), coach (0.369), engine (0.176), track (0.153), chimney (0.123), coupler

(0.121), smoke (0.074), front (0.062), door (0.011)

Table 3: Category-wise part-importances for ALTERNATE stroke ordering. Part-importances are listed in decreasing order of
importance relative to the most dominant part (shown with weight 1)
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