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Abstract the temporal information especially when the training data
, not sufficient, leading to overfitting. In this paper, we famas
Recently, Convolutional Neural Networks (Con- a compact, effective yet simple method that encodes the join
vNets) have shown promising performances in  (aiectories into texture images, referred to as Joinebtayy
many computer vision tasks, especially image- \japs (JTM), as the input of ConvNets for action recognition.
based recognition. How to effectively use Con- In this way, the capability of the ConvNets in learning dis-
vNets for video-based recognition is still an open criminative features can be fully exploité25].

problem. In this paper, we propose a compact,
effective yet simple method to encode spatio-
temporal information carried i3D skeleton se-
guences into multiple D images, referred to as
Joint Trajectory Maps (JTM), and ConvNets are
adopted to exploit the discriminative features for
real-time human action recognition. The pro-
posed method has been evaluated on three public
benchmarks, i.e., MSRC-12 Kinect gesture dataset
(MSRC-12), G3D dataset and UTD multimodal hu-
man action dataset (UTD-MHAD) and achieved the
state-of-the-art results.

One of the challenges in action recognition is how to prop-
erly model and use the spatio-temporal information. The
commonly used bag-of-words model tends to overemphasize
the spatial information. On the other hand, Hidden Markov
Model (HMM) or RNN based methods are likely to overstress
the temporal information. The proposed method addresses
this challenge in a different way by encoding as much the
spatio-temporal information as possible (without a need to
decide which one is important and how important it is) into
images and letting the CNNs to learn the discriminative one.
This is the key reason that the proposed method outperformed
previous ones. In addition, the proposed encoding method
can be extended to online recognition due to the accumalativ
1 Introduction nature of the encoding process. Furthermore, such encoding
of spatio-temporal information into images allows us telev

Recognition of human actions from RGB-D (Red, Green,age the advanced methods developed for image recognition.
Blue and Depth) data has attracted increasing attention in

multimedia signal processing in recent years due to the ad-
vantages of depth information over conventional RGB video2 The Proposed Method

e.g. being insensitive to illumination changes. Since ttst fi The proposed method consists of two major components, as

work of such a typd9] reported in 2010, many methofiz; . ool .
12: [23;[10 have been proposed based on specific hano||t_llustrated in Fig[l, three ConvNets and the constructibn o

. . hree JTMs as the input of the ConvNets in three orthogonal
crafted feature descriptors extracte_d from depth. W'tf‘ th‘?:)Ianes from the skeleton sequences. Final classificatian of
recent development of deep learning, a few methfics;

19 h : iven test skeleton sequence is obtained through a lat@fusi

ave been developed based on Qonyqlutlonal Neural Negf the three ConvNets. The main contribution of this paper
works (ConvNets). A common and intuitive method to rep—_.ﬁ on the construction of suitable JTMs for the ConvNets to
resent human motion is to use a sequence of skeletons. WI#

the development of the cost-effective depth cameras awnd alg ez?Nrn discrimtirr:a:ive fef?tu;_es.JTM hould h the followi
rithms for real-time pose estimati§h4], skeleton extraction ¢ argue that an efiective should have the following

has become more robust and many hand-designed skeletBﬁoPerties to keep sufficient spatial-temporal informaiid

featured22;[24; 5 20[ 1k for action recognition have been an action:

proposed. Recently, Recurrent Neural Networks (RNISS) e The joints or group of joints should be distinct in the
15;28;[13 have also been adopted for action recognition  JTM such that the spatial information of the joints is well
from skeleton data. The hand-crafted features are always reserved.

shallow and dataset-dependent. RNNs tend to overemphasize .
e The JTM should encode effectively the temporal evolu-

*Both authors contributed equally to this work tion, i.e. trajectories of the joints, including the direct
TCorresponding author and speed of joint motions.
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Figure 1: The framework of the proposed method.

e The JTM should be able to encode the difference in mo

tion among the different joints or parts of the body to
reflect how the joints are synchronized during the action. o
Specifically, JTM can be recursively defined as follows

JTM; = JTM;_1 + f(i) (1)
(1) (2) (3)

wheref (i) is a function encoding the spatial-temporal infor-

mation at frame or time-stamp Since JTM is accumulated

over the period of an actiorf,(i) has to be carefully defined Figyre 2: The trajectories projected onto three Cartesian
such that the JTM for an action sample has the required progsjanes for action “right hand draw circle (clockwise)” in

erties and the accumulation over time has little adversa@hp yTp-MHAD [2]: (1) the front plane; (2) the top plane; (3)
on the spatial-temporal information encoded in the JTM. Wehe side plane.

propose in this paper to use hue, saturation and brightoess t
encode the spatial-temporal motion patterns.

) ) 2.2 Encoding Joint Motion Direction
2.1 Joint Trajectory Maps

Assume an actionH has n frames of skeletons and TO capture the motion information in the JTM, it is proposed
each skeleton consists ofi joints. The skeleton se- !0 use hue to represent the motion direction. Different &ind
quence is denoted a = {Fy, F,,...,F,}, whereF, = of co_lormaps can be chosen. In this paper, the jet colormap,
{Pi, Pi .. Pilisavector of the joint coordinates at frame ranging from blue to red, and passing through the colors,cyan
i, and P} is the3D coordinates of thth joint in framei. ~ Yellow, and orange, was adopted. Assume the color of a joint
The skeleton trajectory’ for an action ofn frames consists trajectory isC' and the length of the trajectory, and let

of the trajectories of all joints and is defined as: Ci,1 € (0, L) be the color at positioh For theq"" trajectory
T, from1ton—1, acolorC;, wherel = —5 x L is specified
T={NTs, T, To1} (2)  tothe joint trajectory, making different trajectories béateir

o . . own color corresponding to their temporal positions in the
whereT; = 1_{’5117 12;;; t:n}i: Fir1 — Fi and thekth joint  goqence as illustrated in Fig. 3. Herein, the trajectot wi
trajectory istj, = ;™" — Py Atthis stage, the functiofi(i)  color is denoted a6'_t, and the functiory (i) is updated to:
is the same a$;, that is,

Fa) =T = {8, ...t }. 3) f@) ={C14},Cts,..,C4,, ). (4)

The skeleton trajectory is projected to the three orthoonalhis ensures that different actions are encoded to a same
planes, i.e. three Cartesian planes, to form three JTMs2Fig length colormap. The effects can be seen in Elg. 4, sub-
shows the three projected trajectories of the right hamt joi figures (1) to (2). Even though the same actions with differen
for action “right hand draw circle (clockwise)” in the UTD- number of cycles will be encoded into different color shapes
MHAD dataset. From these JTMs, it can be seen that théhe direction can still be reflected in color variation and th
spatial information of this joint is preserved but the difee  differences between actions can still be captured due to the
of the motion is lost. different spatial information.



The trajectory adjusted by saturation is denoted/&S;

and the functiory (4) is refined as:
~— - - (@) = {MCst,, MCy th, ... MC,s t:} (8)

e — The encoding effect can be seen in Fiddre 4, sub-figures (3) to
(4), where the slow motion becomes diluted (e.g. trajectory
— P N T\ of knees and ankles) while the fast motion becomes saturated

| g (e.g. the green part of the circle).

To further enhance the motion patterns in the JTM, the
brightness is modulated by the speed of joints so that mo-
tion information is enhance in the JTM by rapidly changing
the brightness according to the joint speed. In partictier,
brightness is set to range frobp,;,, t0 b,,4... Given a trajec-
tory t; whose speed i}, its brightness! in the H SV color
space is calculated as

Figure 3: The trajectories of different body parts haverthei
different colors reflecting the temporal orders.

e

2.3 Encoding Body Parts
J

To distinguish different body parts, multiple colormaps ar Bi = X (bmaz — bmin) + bmin (9)
employed. There are many ways to achieve this. For example, 7 maz{v}

each joint is assigned to one colormap, or several groups Sfhe trajectory adjusted by brightness is denoted /&8, t:
and the functiory (7) is updated to:

joints are assigned to different colormaps randomly. Gbnsi
ering arms and legs often have more motion than other body
parts, we empirically generate three colormaps,(C2, C3) (@) = {MCyti, MCy_th, ..., MCy_t }. (10)

to encode three body part€:1 is used for the left body part i i

(consisting of left shoulder, left elbow, left wrist, lefahd, ~ The effect can be seen in Fig 4, sub-figures (3) to (5), where
left hip, left knee, left ankle and left foot);2 for the right  texture becomes apparent (e.g. the yellow parts of theegircl
body part ( consisting of right shoulder, right elbow, right Fmally, motion magnitude is encod_ed with saturation and
wrist, right hand, right hip, right knee, right ankle andiig  brightness together. The trajectory is denoted\&6, 1},
foot), andC3 for the middle body part (consisting of head, and the functiory (:) is refined as:

neck, torso and hip center:1 is the same a€, i.e. the jet N i i i

colormap,C2 is a reversed colormap ¢f1, andC3 is a col- Fi) ={MCupty, MCap-ty, ) MClp iy }- (11)
ormap ranging from light gray to black. Here, the trajectoryAs illustrated in Fig[#, sub-figures(3) to (6), it not only-en
encoded by multiple colormaps is denoted&€’_t;,, andthe  riches the texture information but also highlights the dast

function f(¢) is formulated as: motion.
f@) ={MCt,, MCth, ..., MOt }. (5)
&
The effects can be seen in Hig. 4, sub-figures (2) to (3). ae £ y . g
. . . o Ny T

2.4 Encoding Motion Magnitude s ' Ny R
Motion magnitude is one of the most important factors in hu- o o @ ol
man motion. For one action, large magnitude of motion usu- PRICS o % ' LY
ally indicates more motion information. In this paper, it is 1) (2) (3)
proposed to encode the motion magnitude of joints into the 4 o
saturation and brightness components, so that such encod- ° A . e
: . - (] ® o [ ] ‘o )
ing not only encodes the motion but also enriches the texture | . S id o .8 -

- . . s - o%e * o8 L4
of trajectories which are expected to be beneficial for Con s 'S s { .
vNets to learn discriminative features. For joints withig & @ PR o o
motion magnitude or speed, high saturation will be assigned P— — »

as high motion usually carries more discriminative informa
tion. Specifically, the saturation is set to range frepy, @ ®) ®
t0 s;mqae- Given a trajectory, its saturaticfﬁ); in HSV color

space could be calculated as Figure 4: lllustration of visual differences for differeteich-
Vi niques in JTM.
T __ J _ . .
Sj = ma:c{v} X (Smaw szn) + Smin (6)
2.5 Training and Recognition

_ _ _ In the experiments, the layer configuration of the three Con-
v = HP;Jr1 - Pjl2 (7)  vNets was same as the one[8]. The implementation was

Wherev;- is thejth joint speed at théh frame.



derived from the publicly available Caffe toolbdiX] based are: “lift outstretched arms”, “duck”, “push right”, “godgs”,

on one NVIDIA GeForce GTX TITAN X card and the pre- “wind it up”, “shoot”, “bow”, “throw”, “had enough”, “beat
trained models over ImageNi] were used for initialization  both”, "change weapon” and “kick”. For this dataset, cross-
in training. The network weights are learned using the mini-subjects protocol is adopted, that is odd subjects foritrgin
batch stochastic gradient descent with the momentum beinand even subjects for testing. Table 2 lists the performahce
setto 0.9 and weight decay being set to 0.0005. At each iterdhe proposed method and the results reported before.

tion, a mini-batch of 256 samples is constructed by sampling

256 shuffled training JTMs. All JTMs are resized to 266 Method Accuracy (%)
256. The learning rate is tt0 2 for fine-tuning and then it HGM [2]] 66.25%
is decreased according to a fixed schedule, which is kept the ELC-KSVD[27] 90.22%
same for all training sets. For each ConvNet the training un- Cov3DJ[6] 91.70%
dergoes 100 cycles and the learning rate decreases every 20 Proposed Methoq 93.12%

cycles. For all experiments, the dropout regularisatidio ra
was set to 0.5 in order to reduce complex co-adaptations ofable 2: Comparison of the proposed method with the exist-
neurons in nets. Three ConvNets are trained on the JTMs ithg methods on the MSRC-12 Kinect gesture dataset.

the three Cartesian planes and the final score for a test eampl

are the averages of the outputs from the three ConvNets. The The confusion matrix is shown in figué 5. From the con-

testing process can easily achieved real-time speed @®erasysjon matrix we can see that the proposed method distin-

0.36 seconds/sample). guishes most of actions very well, but it is not very effeetiv
. to distinguish “goggles” and “had enough” which shares the
3 Experimental Results similar appearance of JTM probably caused by 3D to 2D pro-

The proposed method was evaluated on three public benckection.
mark datasets: MSRC-12 Kinect Gesture Dataf#t

G3D[1] and UTD-MHAD [2]. Experiments were conducted it outstretched armg 00 00z 004 001
to evaluate the effectiveness of each encoding scheme in tt duck- ]
proposed method and the final results were compared witl push right
the state-of-the-art reported on the same datasets. Ix-all e goggles
periments, the saturation and brightness covers the fufjga wind it up-
(from 0%~ 100% mapped to 6 255) in HSV color space. shoot.
3.1 Evaluation of Different Encoding Schemes m?ZW’

The effectiveness of different encoding schemes (corrabpo
ing to the sub-figures i 4) was evaluated on the G3D datase
using the front JTM and the recognition accuracies arediste

had enough

change weapan

in Table[1. et o
Techniques Accuracy (%)
Trajectory:t; 63.64% Figure 5: The confusion matrix of the proposed method for
Trajectory:C'_t} 74.24% MSRC-12 Kinect gesture dataset.

Trajectory: M C 't} 78.48%

Trajectory: M C;_t} 81.82%

Trajectory: M C,_t 82.12% 3.3 G3D Dataset
Trajectory: M Cypt] 85.45% Gaming 3D Dataset (G3D[f] focuses on real-time action

) . ) recognition in gaming scenario. It contains 10 subjects per
Table 1: Comparisons of the different encoding schemes ofbrming 20 gaming actions: “punch right”, “punch left”,

the G3D dataset using the JTM projected to the front planekick right”, “kick left”, “defend”, “golf swing”, “tennis

alone. swing forehand”, “tennis swing backhand”, “tennis serve”,
“throw bowling ball”, “aim and fire gun”, “walk”, “run”,
From this Table it can be seen that the proposed encodjump”, “climb”, “crouch”, “steer a car”, “wave”, “flap” and
ing techniques effectively captures the spatio-tempafali  “clap”. For this dataset, the first 4 subjects were used for

mation and the ConvNets are able to learn the discriminativeraining, the fifth for validation and the remaining 5 sultgec

features from the JTM for action recognition. for testing as configured ifL1].
) Table[3 compared the performance of the proposed method
3.2 MSRC-12 Kinect Gesture Dataset and that reported ifil1].

MSRC-12[4] is a relatively large dataset for gesture/action The confusion matrix is shown in figure 6. From the confu-
recognition from 3D skeleton data captured by a Kinect sension matrix we can see that the proposed method recognizes
sor. The dataset has 594 sequences, containing 12 gesguresrhost of actions well. Compared with LRBM, our proposed
30 subjects, 6244 gesture instances in total. The 12 gasturenethod outperforms LRBM in spatial information mining.



Method Accuracy (%) X", “draw triangle”, and “draw circle”), daily activitiesd.g.
LRBM [1]] 90.50% “knock on door”, “sit to stand” and “stand to sit”) and train-
Proposed Method  94.24% ing exercises (e.g. “arm curl”, “lung” and “squat”). Forshi

_ _ ~ dataset, cross-subjects protocol is adopted d2jnnamely,
Table 3: Comparison of the proposed method with previoushe data from the subject numbers 1, 3, 5, 7 used for training
methods on G3D Dataset. while 2, 4, 6, 8 used for testing.

Tablel4 compared the performance of the proposed method
LRBM confused mostly the actions between “tennis swingand that reported if2].

forehand” and “bowling”, “golf” and “tennis swing back-

hand”, “aim and fire gun” and “wave”, “jump” and “walk”, Vethod Accuracy (%)

however, these actions were quite well distinguished in our Kinect & Inertial[2] 29 10%

method because of the good spatial information exploitatio INect & Ihertia i
Proposed Method 85.81%

in our method. As for “aim and fire gun” and “wave”, our
method could not distinguish them well before encoding ther0 4. comparison of the proposed method with previous
motion magnitude, which means the temporal informatio ethods on UTD-MHAD Dataset

enhancement procedure is effective. However, in our metho ‘
“tennis swing forehand” and “tennis swing backhand” are
confused. It's probably because the front and side prajesti
of body shape of the two actions are too similar, and score
fusion is not very effective to improve each other.

Please notice that the method useflhis based on Depth
gnd Inertial sensor data, not skeleton data alone.

swipe |efffl
swipe right =
wave

punch righgkE 0.07

Figure 7: The confusion matrix of the proposed method for
Figure 6: The confusion matrix of the proposed method foldTD-MHAD.
G3D Dataset.

The confusion matrix is shown in figulé 7. This dataset is
3.4 UTD-MHAD much more challenging compared to previous two datasets.

. . . From the confusion matrix we can see that the proposed
UTD-MHAD [2] is one multimodal action dataset, captured ethod can not distinguish some actions well, for example,

by one Microsal et camers and one wearable ettalog”and “walk. A probabl reason s tht he proposed
. X : pet y ncoding process is also a normalization process along tem-
jects (4 females and 4 males) with each subject perform eac

action 4 times. After removing three corrupted sequence oral axis (Section 3.2). The actions “jog" and *walk” wil
o g pte q -~ wrighE normalized to have a very similar JTM after the encoding.
the dataset includes 861 sequences. The actions are: “rig

arm swipe to the left”, “right arm swipe to the right”, “right

hand wave”, “two hand front clap”, “right arm throw”, “cross 4 Conclusion
arms in the chest”, “basketball shoot”, “right hand draw x”,
“right hand draw circle (clockwise)”, “right hand draw cir- This paper addressed the problem of human action recogni-

cle (counter clockwise)”, “draw triangle”, “bowling (righ tion by applying ConvNets to skeleton sequences. We pro-
hand)”, “front boxing”, “baseball swing from right”, “teni@  posed an effective method to encode the joints trajecttoies
right hand forehand swing”, “arm curl (two arms)”, “tennis JTM where the motion information can be encoded into tex-
serve”, “two hand push”, “right hand know on door”, “right ture patterns. ConvNets learn discriminative featuremfro
hand catch an object”, “right hand pick up and throw”, “jog- these maps for real-time human action recognition. The ex-
ging in place”, “walking in place”, “sit to stand”, “stand to perimental results showed that the techniques for encoding
sit”, “forward lunge (left foot forward)” and “squat (twowmns ~ worked effectively. The proposed method can benefit from
stretch out)”. It covers sport actions (e.g. “bowling”, rfite  effective data augmentation process which would be our fu-

nis serve” and “baseball swing”), hand gestures (e.g. “draviure work.
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