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Abstract

Recently, Convolutional Neural Networks (Con-
vNets) have shown promising performances in
many computer vision tasks, especially image-
based recognition. How to effectively use Con-
vNets for video-based recognition is still an open
problem. In this paper, we propose a compact,
effective yet simple method to encode spatio-
temporal information carried in3D skeleton se-
quences into multiple2D images, referred to as
Joint Trajectory Maps (JTM), and ConvNets are
adopted to exploit the discriminative features for
real-time human action recognition. The pro-
posed method has been evaluated on three public
benchmarks, i.e., MSRC-12 Kinect gesture dataset
(MSRC-12), G3D dataset and UTD multimodal hu-
man action dataset (UTD-MHAD) and achieved the
state-of-the-art results.

1 Introduction
Recognition of human actions from RGB-D (Red, Green,
Blue and Depth) data has attracted increasing attention in
multimedia signal processing in recent years due to the ad-
vantages of depth information over conventional RGB video,
e.g. being insensitive to illumination changes. Since the first
work of such a type[9] reported in 2010, many methods[17;
12; 23; 10] have been proposed based on specific hand-
crafted feature descriptors extracted from depth. With the
recent development of deep learning, a few methods[18;
19] have been developed based on Convolutional Neural Net-
works (ConvNets). A common and intuitive method to rep-
resent human motion is to use a sequence of skeletons. With
the development of the cost-effective depth cameras and algo-
rithms for real-time pose estimation[14], skeleton extraction
has become more robust and many hand-designed skeleton
features[22; 24; 5; 20; 16] for action recognition have been
proposed. Recently, Recurrent Neural Networks (RNNs)[3;
15; 28; 13] have also been adopted for action recognition
from skeleton data. The hand-crafted features are always
shallow and dataset-dependent. RNNs tend to overemphasize
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the temporal information especially when the training datais
not sufficient, leading to overfitting. In this paper, we present
a compact, effective yet simple method that encodes the joint
trajectories into texture images, referred to as Joint Trajectory
Maps (JTM), as the input of ConvNets for action recognition.
In this way, the capability of the ConvNets in learning dis-
criminative features can be fully exploited[25].

One of the challenges in action recognition is how to prop-
erly model and use the spatio-temporal information. The
commonly used bag-of-words model tends to overemphasize
the spatial information. On the other hand, Hidden Markov
Model (HMM) or RNN based methods are likely to overstress
the temporal information. The proposed method addresses
this challenge in a different way by encoding as much the
spatio-temporal information as possible (without a need to
decide which one is important and how important it is) into
images and letting the CNNs to learn the discriminative one.
This is the key reason that the proposed method outperformed
previous ones. In addition, the proposed encoding method
can be extended to online recognition due to the accumulative
nature of the encoding process. Furthermore, such encoding
of spatio-temporal information into images allows us to lever-
age the advanced methods developed for image recognition.

2 The Proposed Method

The proposed method consists of two major components, as
illustrated in Fig. 1, three ConvNets and the construction of
three JTMs as the input of the ConvNets in three orthogonal
planes from the skeleton sequences. Final classification ofa
given test skeleton sequence is obtained through a late fusion
of the three ConvNets. The main contribution of this paper
is on the construction of suitable JTMs for the ConvNets to
learn discriminative features.

We argue that an effective JTM should have the following
properties to keep sufficient spatial-temporal information of
an action:

• The joints or group of joints should be distinct in the
JTM such that the spatial information of the joints is well
reserved.

• The JTM should encode effectively the temporal evolu-
tion, i.e. trajectories of the joints, including the direction
and speed of joint motions.

http://arxiv.org/abs/1611.02447v2


Figure 1: The framework of the proposed method.

• The JTM should be able to encode the difference in mo-
tion among the different joints or parts of the body to
reflect how the joints are synchronized during the action.

Specifically, JTM can be recursively defined as follows

JTMi = JTMi−1 + f(i) (1)

wheref(i) is a function encoding the spatial-temporal infor-
mation at frame or time-stampi. Since JTM is accumulated
over the period of an action,f(i) has to be carefully defined
such that the JTM for an action sample has the required prop-
erties and the accumulation over time has little adverse impact
on the spatial-temporal information encoded in the JTM. We
propose in this paper to use hue, saturation and brightness to
encode the spatial-temporal motion patterns.

2.1 Joint Trajectory Maps
Assume an actionH has n frames of skeletons and
each skeleton consists ofm joints. The skeleton se-
quence is denoted asH = {F1, F2, ..., Fn}, whereFi =
{P i

1, P
i
2, ..., P

i
m} is a vector of the joint coordinates at frame

i, andP i
j is the3D coordinates of thejth joint in framei.

The skeleton trajectoryT for an action ofn frames consists
of the trajectories of all joints and is defined as:

T = {T1, T2, · · · , Ti, · · · , Tn−1} (2)

whereTi = {ti1, t
i
2, ..., t

i
m} = Fi+1 − Fi and thekth joint

trajectory istik = P i+1

k − P i
k. At this stage, the functionf(i)

is the same asTi, that is,

f(i) = Ti = {ti1, t
i
2, ..., t

i
m}. (3)

The skeleton trajectory is projected to the three orthogonal
planes, i.e. three Cartesian planes, to form three JTMs. Fig. 2
shows the three projected trajectories of the right hand joint
for action “right hand draw circle (clockwise)” in the UTD-
MHAD dataset. From these JTMs, it can be seen that the
spatial information of this joint is preserved but the direction
of the motion is lost.

Figure 2: The trajectories projected onto three Cartesian
planes for action “right hand draw circle (clockwise)” in
UTD-MHAD [2]: (1) the front plane; (2) the top plane; (3)
the side plane.

2.2 Encoding Joint Motion Direction

To capture the motion information in the JTM, it is proposed
to use hue to represent the motion direction. Different kinds
of colormaps can be chosen. In this paper, the jet colormap,
ranging from blue to red, and passing through the colors cyan,
yellow, and orange, was adopted. Assume the color of a joint
trajectory isC and the length of the trajectoryL, and let
Cl, l ∈ (0, L) be the color at positionl. For theqth trajectory
Tq from1 ton−1, a colorCl, wherel = q

n−1
×L is specified

to the joint trajectory, making different trajectories have their
own color corresponding to their temporal positions in the
sequence as illustrated in Fig. 3. Herein, the trajectory with
color is denoted asC tik and the functionf(i) is updated to:

f(i) = {C ti1, C ti2, ..., C tim}. (4)

This ensures that different actions are encoded to a same
length colormap. The effects can be seen in Fig. 4, sub-
figures (1) to (2). Even though the same actions with different
number of cycles will be encoded into different color shapes,
the direction can still be reflected in color variation and the
differences between actions can still be captured due to the
different spatial information.



Figure 3: The trajectories of different body parts have their
different colors reflecting the temporal orders.

2.3 Encoding Body Parts
To distinguish different body parts, multiple colormaps are
employed. There are many ways to achieve this. For example,
each joint is assigned to one colormap, or several groups of
joints are assigned to different colormaps randomly. Consid-
ering arms and legs often have more motion than other body
parts, we empirically generate three colormaps (C1, C2, C3)
to encode three body parts.C1 is used for the left body part
(consisting of left shoulder, left elbow, left wrist, left hand,
left hip, left knee, left ankle and left foot),C2 for the right
body part ( consisting of right shoulder, right elbow, right
wrist, right hand, right hip, right knee, right ankle and right
foot), andC3 for the middle body part (consisting of head,
neck, torso and hip center).C1 is the same asC, i.e. the jet
colormap,C2 is a reversed colormap ofC1, andC3 is a col-
ormap ranging from light gray to black. Here, the trajectory
encoded by multiple colormaps is denoted asMC tik, and the
functionf(i) is formulated as:

f(i) = {MC ti1,MC ti2, ...,MC tim}. (5)

The effects can be seen in Fig. 4, sub-figures (2) to (3).

2.4 Encoding Motion Magnitude
Motion magnitude is one of the most important factors in hu-
man motion. For one action, large magnitude of motion usu-
ally indicates more motion information. In this paper, it is
proposed to encode the motion magnitude of joints into the
saturation and brightness components, so that such encod-
ing not only encodes the motion but also enriches the texture
of trajectories which are expected to be beneficial for Con-
vNets to learn discriminative features. For joints with high
motion magnitude or speed, high saturation will be assigned
as high motion usually carries more discriminative informa-
tion. Specifically, the saturation is set to range fromsmin

to smax. Given a trajectory, its saturationSi
j in HSV color

space could be calculated as

Si
j =

vij

max{v}
× (smax − smin) + smin (6)

wherevij is thejth joint speed at theith frame.

vij = ‖P i+1

j − P i
j‖2 (7)

The trajectory adjusted by saturation is denoted asMCs tik
and the functionf(i) is refined as:

f(i) = {MCs ti1,MCs ti2, ...,MCs tim} (8)

The encoding effect can be seen in Figure 4, sub-figures (3) to
(4), where the slow motion becomes diluted (e.g. trajectory
of knees and ankles) while the fast motion becomes saturated
(e.g. the green part of the circle).

To further enhance the motion patterns in the JTM, the
brightness is modulated by the speed of joints so that mo-
tion information is enhance in the JTM by rapidly changing
the brightness according to the joint speed. In particular,the
brightness is set to range frombmin to bmax. Given a trajec-
tory tij whose speed isvij , its brightnessBi

j in theHSV color
space is calculated as

Bi
j =

vij

max{v}
× (bmax − bmin) + bmin (9)

The trajectory adjusted by brightness is denoted asMCb tik
and the functionf(i) is updated to:

f(i) = {MCb ti1,MCb ti2, ...,MCb tim}. (10)

The effect can be seen in Fig 4, sub-figures (3) to (5), where
texture becomes apparent (e.g. the yellow parts of the circle).
Finally, motion magnitude is encoded with saturation and
brightness together. The trajectory is denoted asMCsb tik
and the functionf(i) is refined as:

f(i) = {MCsb ti1,MCsb ti2, ...,MCsb tim}. (11)

As illustrated in Fig. 4, sub-figures(3) to (6), it not only en-
riches the texture information but also highlights the faster
motion.

Figure 4: Illustration of visual differences for differenttech-
niques in JTM.

2.5 Training and Recognition
In the experiments, the layer configuration of the three Con-
vNets was same as the one in[8]. The implementation was



derived from the publicly available Caffe toolbox[7] based
on one NVIDIA GeForce GTX TITAN X card and the pre-
trained models over ImageNet[8] were used for initialization
in training. The network weights are learned using the mini-
batch stochastic gradient descent with the momentum being
set to 0.9 and weight decay being set to 0.0005. At each itera-
tion, a mini-batch of 256 samples is constructed by sampling
256 shuffled training JTMs. All JTMs are resized to 256×
256. The learning rate is to10−3 for fine-tuning and then it
is decreased according to a fixed schedule, which is kept the
same for all training sets. For each ConvNet the training un-
dergoes 100 cycles and the learning rate decreases every 20
cycles. For all experiments, the dropout regularisation ratio
was set to 0.5 in order to reduce complex co-adaptations of
neurons in nets. Three ConvNets are trained on the JTMs in
the three Cartesian planes and the final score for a test sample
are the averages of the outputs from the three ConvNets. The
testing process can easily achieved real-time speed (average
0.36 seconds/sample).

3 Experimental Results
The proposed method was evaluated on three public bench-
mark datasets: MSRC-12 Kinect Gesture Dataset[4],
G3D [1] and UTD-MHAD[2]. Experiments were conducted
to evaluate the effectiveness of each encoding scheme in the
proposed method and the final results were compared with
the state-of-the-art reported on the same datasets. In all ex-
periments, the saturation and brightness covers the full range
(from 0%∼ 100% mapped to 0∼ 255) in HSV color space.

3.1 Evaluation of Different Encoding Schemes
The effectiveness of different encoding schemes (correspond-
ing to the sub-figures in 4) was evaluated on the G3D dataset
using the front JTM and the recognition accuracies are listed
in Table 1.

Techniques Accuracy (%)
Trajectory:ti1 63.64%

Trajectory:C ti1 74.24%
Trajectory:MC ti1 78.48%
Trajectory:MCs ti1 81.82%
Trajectory:MCb ti1 82.12%
Trajectory:MCsb ti1 85.45%

Table 1: Comparisons of the different encoding schemes on
the G3D dataset using the JTM projected to the front plane
alone.

From this Table it can be seen that the proposed encod-
ing techniques effectively captures the spatio-temporal infor-
mation and the ConvNets are able to learn the discriminative
features from the JTM for action recognition.

3.2 MSRC-12 Kinect Gesture Dataset
MSRC-12[4] is a relatively large dataset for gesture/action
recognition from 3D skeleton data captured by a Kinect sen-
sor. The dataset has 594 sequences, containing 12 gestures by
30 subjects, 6244 gesture instances in total. The 12 gestures

are: “lift outstretched arms”, “duck”, “push right”, “goggles”,
“wind it up”, “shoot”, “bow”, “throw”, “had enough”, “beat
both”, ”change weapon” and “kick”. For this dataset, cross-
subjects protocol is adopted, that is odd subjects for training
and even subjects for testing. Table 2 lists the performanceof
the proposed method and the results reported before.

Method Accuracy (%)
HGM [21] 66.25%

ELC-KSVD [27] 90.22%
Cov3DJ[6] 91.70%

Proposed Method 93.12%

Table 2: Comparison of the proposed method with the exist-
ing methods on the MSRC-12 Kinect gesture dataset.

The confusion matrix is shown in figure 5. From the con-
fusion matrix we can see that the proposed method distin-
guishes most of actions very well, but it is not very effective
to distinguish “goggles” and “had enough” which shares the
similar appearance of JTM probably caused by 3D to 2D pro-
jection.
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Figure 5: The confusion matrix of the proposed method for
MSRC-12 Kinect gesture dataset.

3.3 G3D Dataset
Gaming 3D Dataset (G3D)[1] focuses on real-time action
recognition in gaming scenario. It contains 10 subjects per-
forming 20 gaming actions: “punch right”, “punch left”,
“kick right”, “kick left”, “defend”, “golf swing”, “tennis
swing forehand”, “tennis swing backhand”, “tennis serve”,
“throw bowling ball”, “aim and fire gun”, “walk”, “run”,
“jump”, “climb”, “crouch”, “steer a car”, “wave”, “flap” and
“clap”. For this dataset, the first 4 subjects were used for
training, the fifth for validation and the remaining 5 subjects
for testing as configured in[11].

Table 3 compared the performance of the proposed method
and that reported in[11].

The confusion matrix is shown in figure 6. From the confu-
sion matrix we can see that the proposed method recognizes
most of actions well. Compared with LRBM, our proposed
method outperforms LRBM in spatial information mining.



Method Accuracy (%)
LRBM [11] 90.50%

Proposed Method 94.24%

Table 3: Comparison of the proposed method with previous
methods on G3D Dataset.

LRBM confused mostly the actions between “tennis swing
forehand” and “bowling”, “golf” and “tennis swing back-
hand”, “aim and fire gun” and “wave”, “jump” and “walk”,
however, these actions were quite well distinguished in our
method because of the good spatial information exploitation
in our method. As for “aim and fire gun” and “wave”, our
method could not distinguish them well before encoding the
motion magnitude, which means the temporal information
enhancement procedure is effective. However, in our method,
“tennis swing forehand” and “tennis swing backhand” are
confused. It’s probably because the front and side projections
of body shape of the two actions are too similar, and scores
fusion is not very effective to improve each other.
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Figure 6: The confusion matrix of the proposed method for
G3D Dataset.

3.4 UTD-MHAD
UTD-MHAD [2] is one multimodal action dataset, captured
by one Microsoft Kinect camera and one wearable inertial
sensor. This dataset contains 27 actions performed by 8 sub-
jects (4 females and 4 males) with each subject perform each
action 4 times. After removing three corrupted sequences,
the dataset includes 861 sequences. The actions are: “right
arm swipe to the left”, “right arm swipe to the right”, “right
hand wave”, “two hand front clap”, “right arm throw”, “cross
arms in the chest”, “basketball shoot”, “right hand draw x”,
“right hand draw circle (clockwise)”, “right hand draw cir-
cle (counter clockwise)”, “draw triangle”, “bowling (right
hand)”, “front boxing”, “baseball swing from right”, “tennis
right hand forehand swing”, “arm curl (two arms)”, “tennis
serve”, “two hand push”, “right hand know on door”, “right
hand catch an object”, “right hand pick up and throw”, “jog-
ging in place”, “walking in place”, “sit to stand”, “stand to
sit”, “forward lunge (left foot forward)” and “squat (two arms
stretch out)”. It covers sport actions (e.g. “bowling”, “ten-
nis serve” and “baseball swing”), hand gestures (e.g. “draw

X”, “draw triangle”, and “draw circle”), daily activities (e.g.
“knock on door”, “sit to stand” and “stand to sit”) and train-
ing exercises (e.g. “arm curl”, “lung” and “squat”). For this
dataset, cross-subjects protocol is adopted as in[2], namely,
the data from the subject numbers 1, 3, 5, 7 used for training
while 2, 4, 6, 8 used for testing.

Table 4 compared the performance of the proposed method
and that reported in[2].

Method Accuracy (%)
Kinect & Inertial [2] 79.10%

Proposed Method 85.81%

Table 4: Comparison of the proposed method with previous
methods on UTD-MHAD Dataset.

Please notice that the method used in[2] is based on Depth
and Inertial sensor data, not skeleton data alone.
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Figure 7: The confusion matrix of the proposed method for
UTD-MHAD.

The confusion matrix is shown in figure 7. This dataset is
much more challenging compared to previous two datasets.
From the confusion matrix we can see that the proposed
method can not distinguish some actions well, for example,
“jog” and “walk”. A probable reason is that the proposed
encoding process is also a normalization process along tem-
poral axis (Section 3.2). The actions “jog” and “walk” will
be normalized to have a very similar JTM after the encoding.

4 Conclusion

This paper addressed the problem of human action recogni-
tion by applying ConvNets to skeleton sequences. We pro-
posed an effective method to encode the joints trajectoriesto
JTM where the motion information can be encoded into tex-
ture patterns. ConvNets learn discriminative features from
these maps for real-time human action recognition. The ex-
perimental results showed that the techniques for encoding
worked effectively. The proposed method can benefit from
effective data augmentation process which would be our fu-
ture work.
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