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ABSTRACT
Person discovery in the absence of prior identity knowledge
requires accurate association of visual and auditory cues. In
broadcast data, multimodal analysis faces additional chal-
lenges due to narrated voices over muted scenes or dubbing
in different languages. To address these challenges, we define
and analyze the problem of dubbing detection in broadcast
data, which has not been explored before. We propose a
method to represent the temporal relationship between the
auditory and visual streams. This method consists of canon-
ical correlation analysis to learn a joint multimodal space,
and long short term memory (LSTM) networks to model
cross-modality temporal dependencies. Our contributions
also include the introduction of a newly acquired dataset of
face-speech segments from TV data, which we have made
publicly available. The proposed method achieves promis-
ing performance on this real world dataset as compared to
several baselines.
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1. INTRODUCTION
Making large multimedia corpora easily accessible through

search, retrieval and fast browsing tools is a crucial task
given the daily production of broadcast TV and internet con-
tent. As the retrieval of information on people in videos is of
high interest for users, research efforts have been devoted to
unsupervised segmentation of videos into homogeneous seg-
ments according to person identity, like speaker diarization
[21, 17, 29], face diarization [5, 35], and audio-visual (AV)
person diarization [10, 25, 16, 8]. Combined with names ex-
tracted from overlaid text, AV person diarization makes it
possible to identify people in videos [9].

Solving the AV person diarization and naming tasks re-
quires associating visual person tracks or overlaid names
with auditory voices, which has several difficulties. Firstly,
the visible person may not be the current speaker. This
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issue occurs when anchors or invited speakers are comment-
ing on video footage displaying famous people who might be
talking or when several persons appear to be talking in the
background. This cannot be solved with existing systems
which visually detect talking faces [4, 1, 26, 8] to reinforce
the AV association. Secondly, another recurrent issue in in-
ternational TV is dubbing. The problem is common when
an interviewed person, shown in the video, is speaking in a
different language than that of the target audience, and is
dubbed by a narrator. Such situations are problematic for
person diarization, as they often lead to associating a face
track (or a face cluster) or an overlaid person name with
the wrong voice, potentially creating multiple ambiguities
in person diarization and naming (e.g. if the same voice is
dubbing several persons).

In this paper, we focus on dubbing detection in broadcast
data, which involves modelling the synchrony of audio and
lip motion. This task can be used to handle the two issues
mentioned above, by detecting which of the talking persons
(if any) actually produces the audio discourse. Although it
is related to several research problems (AV speech recog-
nition, voice over detection, spoofing in AV biometry), to
the best or our knowledge, this dubbing problem has not
been addressed previously. To initiate further research, we
acquired the DW-dubbing corpus comprising 4722 segments
of 2 seconds with the corresponding face track and audio.
In addition, from a methodological perspective, we propose
to exploit the recently revived LSTM networks to model the
joint dynamics of synchronized AV segments in a multimodal
space obtained via canonical correlation analysis (CCA). Ex-
periments demonstrate the benefit of our method over sev-
eral baselines. In summary, our contributions are:
• We address for the first time the problem of dubbing

detection in broadcast data;
• We propose a method relying on LSTM and multi-

modal feature extraction, which achieves promising re-
sult on this problem;
• We make publicly available a dubbing dataset collected

from TV news for future research.

2. RELATED WORK
Dubbing detection shares some similarities to several prob-

lems discussed below along with the related works.

Talking faces. Person diarization and naming require match-
ing audio segments with face tracks of talking people. To
detect talking people, mean squared intensity differences [4]
or motion entropy [1] within mouth regions were typically
used, potentially combined with head motion [26]. Such
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Figure 1: System overview: feature extraction, di-
mensionality reduction over concatenated feature
from block of frames, mutual information extrac-
tion via Canonical-Correlation Analysis (CCA), and
temporal modelling with LSTM.

visual-based approaches could be further enhanced using
multimodal contextual information, like audio segment-face
track overlap duration, or face size and position [8]. It is
interesting to see that none of the existing systems relied on
temporal models for this task. Also, when several persons
are seen talking, or in dubbing situations, audio and video
need to be jointly considered.

AV speech recognition. Modeling the relationship be-
tween audio and visual streams can be traced back to early
researches in multimodal speech recognition [30]. Typical
examples include coupled hidden Markov Model (CHMM)
[22] or asynchronous HMM to model anticipation and reten-
tion phenomena. More recently, multimodal deep networks
[23] showed good performance. However, the approach did
not include temporal models: it relied on neural networks
applied to groups of frames, whose outputs were averaged
over time. Furthermore, the task is limited to the recogni-
tion of simple sounds [27] with little noise (head movements,
illumination).

AV biometry and synchronization. The dubbing prob-
lem somehow resembles AV spoofing detection, where the
task is to detect when visual attackers pretend to match
with a playback audio. As an early work, cross-modal fusion
with latent semantic analysis or canonical correlation analy-
sis were applied, but only tested attacks composed of a sin-
gle photograph, potentially animated with simple synthetic
movements [3]. To deal with real face tracks with differ-
ent voices, [32] investigated co-inertia or coupled HMM ap-
proaches to detected uncorrelated AV signals or unsynchro-
nization. However, the method was applied to a constrained
biometric environment, with specific test sentences used as
input to the system. In addition, synchrony detection has
also been addressed for speaker location & association [11, 7]
in scenes with two people, and has focused more on mutual
information modeling than temporal aspects. Mutual infor-
mation was also shown to be important in monologue detec-
tion where a system needs to identify real speakers among
sets of confusers [24, 15]. However, temporal modeling us-
ing HMM to evaluated likelihood of word utterance given
joint AV distribution only yielded limited results [24]. An-
other related problem is to distinguish narrated vs genuine
voices in TV news addressed in [19], where only primitive
lip features were used without joint modality space or tem-
poral modeling, and the dataset was very small (40 video
clips). In contrast to the above works, our approach utilizes
both cross-modal correlation analysis and temporal model-
ing with state-of-the-art LSTM. Furthermore, our dataset
is collected from TV with unconstrained settings and unre-
stricted speech content.

AV modeling with Neural networks. In addition to the
AV speech recognition [23], there has been more attention
towards using deep neural networks (DNNs) for AV speaker
naming with audio and visual streams. [14] used DNNs to

Figure 2: Example of mouth boxes. Mouth region
is detected based on landmarks. Features are com-
puted in 3×5 grid and grouped in a block of 5 frames.

jointly learn recognition models from 2 input streams. This
work is further extended in the temporal domain with mul-
timodal LSTM by [31]. Nevertheless, these works require
identity information and are thus closer to biometric joint
recognition than unsynchronization speech detection.

3. MULTIMODAL FRAMEWORK
The overview of our system is illustrated in Fig. 1. First,

features are extracted per frame for each modality. Subse-
quently, blocks of frames are concatenated and dimensional-
ity reduction is applied. This is followed by cross-modality
correlation modelling, whose outputs are modelled in the
temporal domain using an LSTM to get the high level rep-
resentation used for classification.

3.1 Feature extraction
Our goal is to build a full neural network to represent

audio-visual speech. However, in this paper, we rely on stan-
dard features which should be sufficient for the task.

Visual stream. First, to obtain face tracks, we rely on the
tracking-by-detection method described in [20]. Then, the
mouth region is localized within each frame. This is done by
detecting landmarks using the DLIB implementation of [18].

To characterise the mouth dynamics, dense optical flow
is computed using the OpenCV implementation of [6]. The
average flow is subtracted to remove head motion, and the
residual flows are quantized into 8 bins based on their an-
gular values, with 1 additional bin for close to static points.
The mouth region is divided into 3 × 5 spatial regions in
which flow histograms are computed, resulting in a vector
of 3× 5× 9 = 135 dimensions.

Audio stream. Every 10ms, we extract from 20ms win-
dows Mel-frequency cepstral coefficient (MFCC) features with
13 coefficients and energy level together with first and sec-
ond derivatives, resulting in a vector of 42 dimensions.

3.2 Multimodal processing
As often done in gesture recognition [28] and in NN-based

AV speech recognition [23], we consider observations over
a short interval (0.2s as in [28, 23]) to capture short-term
temporal dynamics. Here, a block of 5 visual frames are
grouped together (675-dim vector), which corresponds to 20
audio frames (840-dim vector). Principal component analy-
sis (PCA) is applied separately to each modality to keep 95%
of the variance, resulting in vectors of NV = 100 (visual) and
NA = 90 (audio) dimensions.

Canonical-correlation analysis (CCA). The two modal-
ity streams contain different types of information. For ex-
ample, audio may contain features about identity, semantics,
or emotions which are irrelevant for our task and may have
little correlation with the visual stream. To capture the syn-
chrony between the two modalities, we use CCA, a power-
ful multivariate statistical technique. Its principle consists
of learning matrices, one for each modality, which project
the paired modality samples into a common space where
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Figure 3: Temporal models. LSTM illustration.
Red circles denote sigmoid activation of the gates
while blue circles denote tanh activation of the
states. × circles denote point-wise multiplication.

the cross-correlation between the projected samples is max-
imized. For instance, let XA ∈ IRNA×N and XV ∈ IRNV×N

be N audio and visual samples, respectively. Looking at
a one dimensional subspace, CCA looks for the projection
weights wA ∈ IRNA and wV ∈ IRNV such that:

max
wA,wV

corr
[
wT

AXA, w
T
VXV

]
s.t. ||wA|| = 1, ||wV|| = 1.

Such optimization is conducted by finding wA and wV us-
ing the eigenvalue decomposition method on the correlation
matrix, and then generalized to find the common subspace
in which the audio stream and visual stream are most cor-
related [13] Thus, features from this subspace can represent
how two modalities harmonize with each other, which will
be important to detect dubbing events.

3.3 Temporal modeling and classification
In this Section, we introduce the LSTM architecture and

then describe how it is used in our dubbing detection task.

Long Short Term Memory. In sequence modelling, the
typical challenge is to learn a model mapping an input se-
quence {x0, x1, ..., xn} to an output sequence {y0, y1, ..., yn}
where predictions at step t should use the knowledge from
x0 to xt. To tackle this challenge, RNNs were introduced
and shown to learn both high level representation of input
signals and temporal dependencies. However, due to gradi-
ents multiplications during back propagation through time,
they suffered from exploding or vanishing gradients, making
it hard to learn long range dependencies [2].

LSTMs were introduced to overcome these issues [12]. The
key ideas were to add a memory cells Ct to store useful
information to model long term dependencies, as well as
explicit gating mechanisms to regulate the memory updates,
as illustrated in Fig. 3 and indicated by the formulae below:

Gates : ft = sigm(Wxfxt + Whfht−1 + bf ), (1)
it = sigm(Wxixt + Whiht−1 + bi), (2)
ot = sigm(Wxoxt + Whoht−1 + bo), (3)

States : C̃t = tanh(Wxcxt + Whcht−1 + bc), (4)

Ct = ft × Ct−1 + it × C̃t, ht = ot × ct (5)
Output : yt = Wyht + by, (6)

where W. and b. denote weight matrices and biases. The
mechanism works as follows. First, new information are pro-
cessed from current states xt and ht−1 to yield C̃t. Then,
to update Ct, the LSTM can selectively decide how much
information from the past needs to be ”remembered” or for-
gotten by passing Ct−1 through the forget gate ft, and re-
placed (reset) by new information C̃t through the input gate
it. Finally, through the output gate ot, the LSTM selects
which Ct components to use to generate the hidden states
ht, from which the LSTM output yt is produced. Impor-

a) b)

Figure 4: LSTM model. a) At each step i the LSTM
learns to predict the feature vector xi+1 from the
next time step. b) The LSTM is applied to the input
sequence, and the sequence of hidden states hi are
averaged and used as input for classification.

tantly, the strategy to open or close gates is data driven and
automatically learned from the data through the trainable
W. and b.. Also, the weighted addition of C̃t and Ct−1 is
crucial for LSTMs to avoid the vanishing gradient issue and
to propagate gradient through long intervals.

Multimodal LSTM. Let X = {x0, x1, ..., xn} be a se-
quence of CCA projections for one segment. Because our
task is binary, we have only one supervised signal denoting
the class (Authentic or Dubbing). Straightforwardly, one
could thus define the output sequence as a series of only 0s
or of only 1s when appropriate and learn the LSTM classi-
fier. However, such an approach does not constrain enough
the network parameters, thus quickly leads to overfitting.
Furthermore, in one dubbing segment, not all frames look
asynchronous, thus forcing the label to 0 at every step can
be misleading for the network to learn.

To overcome this challenge, similarly to [34, 33], we pro-
pose to train the LSTM in an unsupervised fashion with a
bottleneck hidden layer h of size Nh: at each step t, the
LSTM needs to predict the feature xt+1 of the next step, as
shown in Fig. 4a. This architecture can learn good features
for two related reasons. First, the hidden layer must be able
to extract and compress the essential information from the
input vector to make predictions. Since an input vector xi

is composed of two feature vectors of equal size coming from
each modality, several hidden units will be able to capture
the existing correlation between modalities, whereas others
will perform intra-modality predictions (see Fig. 6). Second,
to make better predictions and learn retention and antici-
pation temporal phenomena across modalities, the LSTM
must also rely on features observed several steps in the past.

Finally, on a test sequence, the extracted hidden repre-
sentations are mean pooled over the whole segment to form
a single vector used for classification, as shown in Fig. 4b.

4. EXPERIMENTS
We describe below our experimental protocol and analysis

of the talking face and dubbing detections results.

4.1 Experimental protocol
DW-Dubbing dataset1. We collect face tracks with their
corresponding audio from Deutsche-Welle broadcast programs
including debates and documentaries. Each track was di-
vided into 2s segments. Segments with multiple arguing
voices, inaudible speeches, or profile faces were discarded.
The statistics of the dataset is shown in Tab. 1. Data from
different videos were split into subsets used for unsuper-
vised training, training and test data.The language of au-

1 http://www.idiap.ch/scientific-research/resources
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Training set Testing set Unsupervised set
Authentic 617 444 1598
Dubbing 440 209 0

Silence 406 237 771

Table 1: Number of segments belonging to different
splits and classes in the DW-dubbing dataset

CV Acc. Testing Acc.
MSD [4] 80.67 77.79
Mv [1] 78.92 82.16

HOF + SVM 78.39 79.06
HOF + LSTM 81.59 83.08

Table 2: Talking face detection results.

thentic speech/speaker segments was English, and dubbing
segments taken from DW international documentaries had
English voice dubbing a wide range of languages including
Spanish, German, or other minority languages.

Protocol. For all models below, the authentic segments
of the unsupervised set and of the training set were used
to learn the PCA, CCA, and LSTM representations. Linear
SVM classifiers were trained from the authentic and dubbing
segments from the training set, using cross validation (CV)
to determine hyperparameters. Evaluation was done on the
test set, using accuracy as performance measures, along with
recall and precision of authentic segments.

Models. To evaluate the contributions of the different ele-
ments, we tested several models. (i) Audio. This uses only
MFCC features as the input for a SVM classifier. (ii) PCA.
It consists of applying another PCA on the concatenation
of the PCA representation of each modality. Keeping 95%
of the representation, we obtained a 75 dimension vector
for each block of frames, which were averaged and used as
input to a SVM classifier. (iii) CCA. For each block, as
shown in Fig. 1, the CCA projections (32 dimensions per
modality) were computed, averaged and fed to a SVM. (iv)
PCA+LSTM. It consists of a LSTM with Nh = 16 applied
to the multimodal PCA representation of the PCA baseline.
(v) CCA+LSTM. A LSTM with Nh = 16 is trained with
the CCA projection vectors of the CCA baseline.

4.2 Experimental Results
Talking faces. In a preliminary experiment, we trained
a LSTM model to detect talking faces from optical flow
histograms computed at every frame. As in dubbing, the
LSTM was trained to predict the next frame observations,
and the average hidden state was used as input to a silent-
vs-speaking classifier. Results in Tab. 2 demonstrate the
benefit of the temporal information over other baselines (see
Sec. 2 for details of [4] and [1]).

Dubbing. Tab. 3 displays the obtained results. Because
one can possibly distinguish dubbing cases based on lan-
guages or quality of voices in the audio, Audio only can
give some positive results. However, using both streams in

Testing
CV Acc. Acc. Prec. Recall

Audio 67.50 76.92 96.31 72.08
PCA 91.01 79.91 97.03 73.65
CCA 74.58 81.80 89.64 83.78

PCA + LSTM 85.44 83.76 94.69 81.53
CCA + LSTM 86.36 88.03 95.78 86.79

Table 3: Dubbing classification results on DW data.

Figure 5: Training and testing accuracies for differ-
ent values of Nh for the CCA+LSTM model.

a) b)

Figure 6: Hidden neurons activation distributions.
Green distributions are from the authentic samples,
red ones from dubbing samples. a) discriminative
neurons. b) non-discriminative neurons.

PCA slightly improves the accuracy, this signifies the im-
portance of multimodal analysis in this task. Nevertheless,
the joint PCA subspace computed by maximizing variance
is not expressive enough and results in confusing class ob-
servations, the classifier cannot be well generalized for the
test set. CCA learns a better space where high or low corre-
lation are expected depending on the class, leading to more
stable results. By modeling the temporal dynamics within
segments rather than averaging, the hidden state represen-
tation extracted from LSTM better discriminates the two
classes and boosts the performance of both types of input.
In this view, CCA offers a more suitable space for LSTM
predictions of normal speech, and LSTM trained on CCA
inputs outperforms LSTM trained from PCA.

This is confirmed by visualizing the activation distribution
of the hidden neurons (i.e. each dimension of the hidden
state). Typical examples are illustrated in Fig. 6 (CCA+
LSTM with Nh = 16). The two left neurons fire stronger
when the two streams are correlated (in green), and are in-
hibited otherwise (in red). Neurons on the right fire similarly
regardless of the classes, suggesting that they are probably
specialized to process single modality inputs, whereas left
ones incorporate cross-modality information, thus contribut-
ing significantly to detecting asynchrony.

Finally, to explore the LSTM parameter space, we vary
the hidden size Nh from 8 to 48. Results are shown in Fig.
5. As Nh increases, the cross validation training accuracy
increases, but not the testing results. This shows that large
hidden size can lead to overfitting on the training set.

5. CONCLUSION
We have addressed dubbing detection in broadcast data,

which involves detecting asynchrony between a visible speaker
and the actual audio. In this context we proposed a mul-
timodal algorithm comprising a CCA step, to capture the
correlation between the 2 modalities, and a LSTM to cap-
ture the joint evolution of audio and mouth features in the
common CCA space. For further research, we have made our
DW-dubbing dataset available. Future improvements may
include features learned with deep networks and deep CCA,
resulting in an end-to-end trainable network. In addition,
to detect more challenging dubbing situations, semantic un-
derstanding of the asynchrony origin will be needed.
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