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ABSTRACT
We present the largest kinship recognition dataset to date,
Families in the Wild (FIW). Motivated by the lack of a sin-
gle, unified dataset for kinship recognition, we aim to pro-
vide a dataset that captivates the interest of the research
community. With only a small team, we were able to collect,
organize, and label over 10,000 family photos of 1,000 fami-
lies with our annotation tool designed to mark complex hier-
archical relationships and local label information in a quick
and efficient manner. We include several benchmarks for two
image-based tasks, kinship verification and family recogni-
tion. For this, we incorporate several visual features and
metric learning methods as baselines. Also, we demonstrate
that a pre-trained Convolutional Neural Network (CNN) as
an off-the-shelf feature extractor outperforms the other fea-
ture types. Then, results were further boosted by fine-tuning
two deep CNNs on FIW data: (1) for kinship verification,
a triplet loss function was learned on top of the network of
pre-train weights; (2) for family recognition, a family-specific
softmax classifier was added to the network.

1. INTRODUCTION
Automatic kinship recognition in visual media is essen-

tial for many real-world applications: e.g., kinship verifica-
tion [6, 8, 11, 26, 29, 30, 31, 32], automatic photo library
management [27, 22], historic lineage and genealogical stud-
ies [2], social-media analysis [10], along with many security
applications involving missing persons, human trafficking,
crime scene investigations, and even our overall human sens-
ing capabilities– ultimately, enhancing surveillance systems
used in both real-time (e.g., vBOLO [28] mission12) or offline
(e.g., searching for a subject in a large gallery [3, 24]). Thus,
a gallery of imagery annotated with rich family information
should yield more powerful multimedia retrieval tools and
complement many existing facial recognition systems (e.g.,

1vBOLO: joint effort of two DHS Centers of Excellence,
ALERT & VACCINE (http://www.northeastern.edu/alert)
2https://web-oup.s3-fips-us-gov-west-1.amazonaws.com/
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Figure 1: Sample faces chosen of 11 relation-
ship types of FIW. Parent-child : (top row)
Father-Daughter (F-D), Father-Son (F-S), Mother-
Daughter (M-S) Mother-Son (M-S). Grandparent-
grandchild : (middle row) same labeling convention
as above. Siblings: (bottom row) Sister-Brother
(SIBS), Brother-Brother (B-B), Sister-Sister (S-S).

FBI’s NGI3). However, even after several years (i.e., since
2010 [8]) there are only a few vision systems capable of han-
dling such tasks. Hence, kin-based technology in the visual
domain has yet to truly transition from research-to-reality.

We believe the reason that kinship recognition technology
has not yet advanced to real-world applications is two-fold:

1. Current image datasets available for kinship tasks are
not large enough to reflect the true data distributions
of a family and their members.

2. Visual evidence for kin relationships are less discrimi-
nant than class types of other, more conventional ma-
chine vision problems (e.g., facial recognition or object
classification), as many hidden factors affect the simi-
larities of facial appearances amongst family members.

To that end, we introduce a large-scale image dataset for
kinship recognition called Families in the Wild (FIW). To
the best of our knowledge, FIW is by far the largest and
most comprehensive kinship dataset available in the vi-
sion and multimedia communities (see Table 1). FIW in-
cludes 11, 163 unconstrained family photos of 1, 000 families,
which is nearly 10x more than the next-to-largest, Family101
[7]. Also, it is from these 1, 000 families that 418, 060 image
pairs for the 11 relationship types (see Figure 1 & Table 2).

Thus far, attempts at image-based kinship recognition
have focused on facial features, as is the case in this work.
Kinship recognition is typically conducted in one or more of
the following modes: (1) kinship verification, a binary classi-
fication problem, i.e., determine whether or not two or more
persons are blood-relatives (i.e., kin or non kin); (2) fam-
ily recognition, a multi-class classification problem, where
3https://www.eff.org/2014/fbi-to-have-52M-face-photos

ar
X

iv
:1

60
4.

02
18

2v
2 

 [
cs

.C
V

] 
 4

 M
ay

 2
01

7

http://www.northeastern.edu/alert
https://web-oup.s3-fips-us-gov-west-1.amazonaws.com/default/assets/File/OUP_COETools_Factsheet_vBOLO_051016_PRINT.pdf
http://dx.doi.org/10.1145/2964284.2967219
https://www.eff.org/deeplinks/2014/04/fbi-plans-have-52-million-photos-its-ngi-face-recognition-database-next-year


Male Female
Sasha

Sasha Child of Steven

Choose name or new to add member.
new

StevenKate ‘new’

0 𝟏 𝟐		
𝟏 0 2		
𝟐 	2 0		

			
𝟑 𝑵𝒂𝒎𝒆
1 𝑆𝑡𝑒𝑣𝑒𝑛
1 𝐾𝑎𝑡𝑒

		𝑺𝒆𝒙
			𝑀
			𝐹

			𝟑 	4					4 0							𝑆𝑎𝑠ℎ𝑎 𝐹
1-Parent of; 2-Spouse of; 4-Child of

I.   F0703.csv

1 2

3

2

II.   P7343.csv
Name x y

Steven 100 60

Kate 50 65

Sasha 200 75

OlderßAGEàYounger

1.   Data Collection

Steven, wife Kate 
Capshaw & daughter 
Sasha.

Steven 
Kate

Steven 
Kate

Metadata

In Family In Photo
Spielberg.Steven

PIDFID
Close

Save

Remove

P7343
P7344
P7345
P7346
P7347 Family Tree

Family ID (FID)
F0001

:
F1000

Family Photos

Family List

Image Search

0 𝟏 𝟐		
𝟏 0 2		
𝟐 	2 0		

			
𝟑 𝑵𝒂𝒎𝒆
1 𝑆𝑡𝑒𝑣𝑒𝑛
1 𝐾𝑎𝑡𝑒

		𝑺𝒆𝒙
	𝑀
	𝐹

𝟑 	4					4 	0					𝑆𝑎𝑠ℎ𝑎 𝐹

2.   Data Annotation 3.   Data Parsing

F0701
F0702
F0703
F0704
F0705

Relationship Matrix
Family Member ID (MID)

Picture ID (PID)
1

2

3

File    Help

Figure 2: Method to construct FIW. Data Collection: a list of candidate families (with an unique FID) and
photos (with an unique PID) are collected. Data Annotation: a labeling tool optimized the process of marking
the complex hierarchical nature of the 1,000 family trees of FIW. Data Parsing: post-processed the two sets
of labels generated by the tool to partition data for kinship verification and family recognition.

the aim is to determine the family an individual belongs to;
(3) kinship identification, a fine-grain categorization prob-
lem, with the goal of determining the types of relationships
shared between two or more people. We focus on (1) and
(2) in this paper, which we briefly discuss next.

Kinship Verification. Previous efforts mainly focused on
the 4 parent-child relationship types. As research in psy-
chology and computer vision found, different relationship
types render different familiar features, and the 4 kin rela-
tions are usually modeled independently. Thus, it is best
to have more kin relationship types accessible– FIW pro-
vides 11 pair-wise types (see Figure 1): 7 existing types (i.e.,
parent- child and siblings), but with sample sizes scaling up
to 105x larger, and 4 types being offered for the first time
(i.e., grandparent-grandchild). Also, existing datasets con-
tain, at most, only a couple of hundred pairs per category
(i.e., 1, 000 in total). Such a insufficient amount leads to
models overfitting the training data. Hence, existing mod-
els do not generalize well to new, unseen test data. However,
FIW now makes 418, 060 pairs available.

Family Recognition. A challenging task that grows more
difficult with more families. This is because families con-
tain large intra-class variations, often overlapping between
classes. Similar to conventional face recognition, when the
targets are unconstrained faces in the wild [12] (i.e., varia-
tion in pose, illumination, expression, and scene) the diffi-
culty level further increases, and the same being true for kin-
ship recognition. These are, unfortunately, challenges that
need to be overcome. Thus, FIW poses realistic challenges
needed to be addressed before deploying to real-world appli-
cations.

Contributions. We make three distinct contributions:

1. We introduce the largest visual kinship dataset to date,
Families in the Wild (FIW).4 FIW is complete with
rich label information for 1, 000 family trees, from which
11 kin relationship types were extracted in numbers
that are orders of magnitude times larger than exist-
ing datasets. This was made possible with an efficient
annotation tool and procedure (Section 2).

2. We provide several benchmarks on FIW for both kin-
ship verification and family recognition, including var-
ious low-level features, metric learning methods, and

4FIW will be available upon publication of this paper.

pre-trained Convolutional Neural Network (CNN) mod-
els. See Section 3 for experimental settings and results.

3. We fine-tune two CNNs: one with a triplet-loss layer
on top, and the other with a softmax loss. Both yield a
significant boost in performance over all other bench-
marks for both tasks (Section 3.2).

2. FAMILIES IN THE WILD
We now discuss the procedure followed to collect, orga-

nize, and label 11, 193 family photos of 1, 000 families with
minimal manual labor. Then, we statistically compare FIW
with other related datasets.

2.1 Building FIW
The goal for FIW was to collect around 10 photos for

1, 000 families, each with at least 3 family members. We
now summarize the method for achieving this in a three
step process, which is visually depicted in Figure 2.

Step 1: Data Collection. A list of over 1, 000 candidate
families was made. To ensure diversity, we targeted groups
of public figures worldwide by searching for <ethnicity OR
country> AND <occupation> online (e.g., MLB [Baseball]
Players, Brazilian Politicians, Chinese Actors, Denmark +
Royal Family). Family photos were then collected using var-
ious search engines (e.g., Google, Bing, Yahoo) and social
media outlets (e.g., Pinterest) to widen the search space.
Those with at least 3 family members and 8 family photos
were added to FIW under an assigned Family ID (FID).

Step 2: Data Annotation. A tool was developed to
quickly annotate a large corpus of family photos. All photos
for a given FID are labeled sequentially. Labeling is done by
clicking a family member’s face. Next, a face detector ini-
tializes a resizable box around the face. Faces unseen by the
detector are discarded, as these are assumed to be poorly
resolved. The tool then prompts for the name of the mem-
ber via a drop-down menu. For starters, option new adds
a member to a family under a unique member ID (MID),
which prompts for the name, gender, and relationship types
shared with others previously added to the current family
(or FID). From there onward, labeling family members is
just a matter of clicking.

Step 3: Dataset Parsing. Two sets of labels are gen-
erated in Step 2: (1) image-level, containing names and



Table 1: Comparison of FIW with related datasets.

Dataset No.
Family

No.
People

No.
Faces

Age
Varies

Family
Trees

CornellKin[8] 150 300 300 5 5

UBKinFace[21, 19] 200 400 600 X 5

KFW-I[16] 5 1,066 1,066 5 5

KFW-II[16] 5 2,000 2,000 5 5

TSKinFace[18] 787 2,589 5 X X
Family101[7] 101 607 14,816 X X
FIW(Ours) 1,000 10,676 30,725 X X

corresponding facial locations; (2) family-level, containing
a relationship matrix that represents the entire family tree.
Relationship matrices are then referenced to generate lists of
member pairs for the 11 relationship types. Next, face detec-
tions are normalized and cropped with [14], then are stored
according the previously assigned FID→ MID. Lastly, lists
of image pairs are generated for both kinship verification
and family recognition.

2.2 Database Statistics
Our FIW dataset far outdoes its predecessors in terms of

quantity, quality, and purpose. FIW contains 11, 193 family
photos of 1, 000 different families. There are about 10 images
per family that include at least 3 and as many as 24 family
members. We compare FIW to related datasets in Table
1 and 2. Clearly, FIW provides more families, identities,
facial images, relationship types, and labeled pairs– the pair
count of FIW is orders of magnitude bigger than the next-
to-largest (i.e., KFW-II).

3. EXPERIMENTS ON FIW
In this section, we first discuss visual features and related

methods used to benchmark the FIW dataset. We then
report and review all benchmark results. Finally, we dis-
cuss the two methods used to fine-tune the pre-trained CNN
model: (1) training a triplet-loss for kinship verification and
(2) learning a softmax classifier for family recognition. Top
scores were obtained for both in the respective task.

3.1 Features and Related Methods
All features and methods covered here were used to bench-

mark FIW. First, we review handcrafted features, Scale In-
variant Feature Transformation (SIFT) and Local Binary
Patterns (LBP), which are both widely used in kinship ver-
ification [16] and facial recognition [20]. Next, we introduce
VGG-Face, the pre-trained CNN model used here as an off-
the-shelf feature extractor. Lastly, we review other related
metric learning methods.

SIFT [15] features have been widely applied in object and
face recognition. As done in [16], we resized all facial images
to 64 × 64, and set the block size to 16 × 16 with a stride
of 8. Thus, there were a total of 49 blocks for each image,
yielding a feature vector of length 128× 49 = 6, 272D.

LBP [1] has been frequently used for texture analysis and
face recognition, as it describes the appearance of an image
in a small, local neighborhood around a pixel. Once again,
we followed the feature settings of [16] by first resizing each
facial image to 64 × 64, and then extracting LBP features
from 16× 16 non-overlapping blocks with a radius of 2 pix-

Table 2: Pair counts for FIW and related datasets.
KFW-II
[16]

Sibling
Face [10]

Group
Face [10]

Family
101[7]

FIW
(Ours)

B-B 5 232 40 5 86,000

S-S 5 211 32 5 86,000

SIB 5 277 53 5 75,000

F-D 250 5 69 147 45,000

F-S 250 5 69 213 43,000

M-D 250 5 62 148 44,000

M-S 250 5 70 184 37,000

GF-GD 5 5 5 5 410

GF-GS 5 5 5 5 350

GM-GD 5 5 5 5 550

GM-GS 5 5 5 5 750

Total 1,000 720 395 607 418,060

els and number of neighbors (i.e., samples) set to 8. We
then generated a 256D histogram from each, yielding a final
feature vector of length 256× 16 = 4, 096D.

VGG-Face CNN [17] uses a“Very Deep”architecture with
very small convolutional kernels (i.e., 3 × 3) and convolu-
tional stride (i.e., 1 pixel). This model was pre-trained on
over 2.6 million images of 2, 622 celebrities. For this, each
face image was resized to 224 × 224 and then fed-forward
to the second-to-last fully-connected layer (i.e., fc7) of the
CNN model, producing a 4, 096D feature vector.

Metric Learning methods are commonly employed in the
visual domain, some designed specifically for kinship recog-
nition [5, 16, 18] and some as generic metric learning meth-
ods [4]. We chose two representative methods from these
two categories to report benchmarks on, Neighborhood Re-
pulsed Metric Learning (NRML) [16] and Information The-
oretic Metric Learning (ITML) [4].

3.2 Fine-Tuned CNN Model
Weights of deep networks are trained on larger amounts of

generic source data, then fine-tuned on target data, which
utilize a wider, more readily available source domain that
resembles the target in either modality, view, or both [9].
Following this notion, and motivated by recent success with
deep learning on faces [17, 23, 25], we fine-tuned the VGG-
Face model, improving results for both kinship verification
and family recognition.

Kinship Verification. In kinship verification, for each fold
we select the families which have more than 10 images in the
rest four folds. 90% images of each family are used to fine-
tune the model and the rest for validation. An average of
8, 295 images are selected. The experimental results of this
part can be found in Table 3 and Figure 3. This is so far
the best results on FIW. Specifically, we remove the last
fully-connected layer which is used to identify 2, 622 people
and employed a triplet-loss [20] as the loss function. The
second-to-last fully-connected layer was the only non-frozen
layer of the original CNN model, with an initial learning
rate of 10−5 that decreased by a factor of 10 every 700 iter-
ations (out of 1, 400). Batch size was 128 images, and other
network settings were the same as the original VGG-Face
model. Training was done on a single GTX Titan X with
about 10GB GPU memory. Fine-tuning was done using the
renown Caffe [13] framework.
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Figure 3: Relationship specific ROC curves depicting performance of each method.

Table 3: Verification accuracy scores (%) for 5-fold experiment on FIW. No family overlap between folds.

F-D F-S M-D M-S SIBS B-B S-S GF-GD GF-GS GM-GD GM-GS Avg.

SIFT 56.1 56.5 56.4 55.3 58.7 50.3 57.4 59.3 66.9 60.4 56.9 57.7±4.0

LBP 55.0 55.3 55.4 55.9 57.1 56.8 55.8 58.5 59.1 55.6 60.1 56.8±1.7

VGG-Face 64.4 63.4 66.2 64.0 73.2 71.5 70.8 64.4 68.6 66.2 63.5 66.9±3.5

Fine-Tuned CNN 69.4 68.2 68.4 69.4 74.4 73.0 72.5 72.9 72.3 72.4 68.3 71.0±2.3

Family Recognition. As visual kinship recognition is es-
sentially related to facial features, we froze the weights in
the lower levels of the VGG-Face network, and replaced the
topmost layer with a new softmax layer to classify the 316
families. Other settings are the same as those used for kin-
ship verification.

3.3 Experimental Settings
In this section, we provide benchmarks on FIW using all

features and related methods mentioned in the previous sec-
tion. Dimensionality of each feature is reduced to 100D us-
ing PCA. Experiments were done following a 5-fold cross-
validation protocol. Each fold was of equal size and with no
family overlap between folds.

Experiment 1: Kinship Verification. We randomly se-
lect an equal number of positive and negative pairs for each
fold family. Cosine similarity is computed for each pair in
the test fold. The average verification rate of all folds is
reported in Table 3, showing that kinship verification is a
challenging task. While some relation are relatively easy
to recognize, e.g., B-B, SIBS, S-S through SIFT, LBP, and
VGG-Face features, results of other relations such as parent-

Table 4: Family Recognition accuracy scores (%) for
5-fold experiment on FIW (316 Families). No family
overlap between folds.

1 2 3 4 5 Avg.

VGG 9.6 14.5 11.6 12.7 13.1 12.3±1.8

Fine-tuned 10.9 14.8 12.5 14.8 13.5 13.3±1.6

child are still below 70.0%. Clearly, VGG-Face features are
much better than hand-craft features. Notice grandparent-
child pairs typically have higher accuracies than parent-
child, which we believe is due to the differences in sam-
ple sizes. We also compare with the state-of-the-art metric
learning methods, NRML and ITML (see Figure 3). Show-
ing improved scores for the low-level features, but still out-
performed by the CNN model fine-tuned on FIW.

Experiment 2: Family Recognition. We again follow
the 5-fold cross-validation protocol with no family overlap.
Families with 6 or more members, from which the 5 members
with the most images were used. The results in Table 4 are
from 316 families with 7,772 images. Folds were made up
of one member for each family. Multi-class SVM was used
to model VGG-Face features for each family (i.e., one-vs-
rest). We then improved the top-1 classification accuracy
from 12.3±1.8 (%, VGG-Face) to 13.3±1.6 (%, our fine-
tuned model).

4. DISCUSSION
We introduced a large-scale dataset of family photos cap-

tured in natural, unconstrained environments (i.e., Families
in the Wild). An annotation tool was designed to quickly
generate rich label information for 11, 163 photos of 1, 000
families. Emphasis was put on diversity (i.e., families world-
wide), data distribution (i.e., at least 3 members and 8 pho-
tos per family), sample sizes (i.e., multiple instances of each
member, and at various ages), quality (i.e., only faces seen
by the detector), and quantity (i.e., much more data and
new relationship types).



There are many interesting directions for future work on
our dataset. We currently only verify whether a pair of
images is kin or non kin. However, also predicting the kin
relationship type could lead to more value and practical use-
fulness. Thus, bringing us closer to doing fine-grain catego-
rization on entire family trees. FIW will be an ongoing effort
that will continually grow and evolve. See project page for
downloads, updates, and to learn more about FIW.
Acknowledgements
This material is based upon work supported by the U.S.
Department of Homeland Security, Science and Technol-
ogy Directorate, Office of University Programs, under Grant
Award 2013-ST-061-ED0001. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies, either expressed or implied, of the U.S. De-
partment of Homeland Security.

We would also like to thank all members of SMILE Lab
who helped with the process of collecting and annotating
the FIW dataset.

5. REFERENCES
[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face

description with local binary patterns: Application to
face recognition. IEEE TPAMI, 28, 2006.

[2] M. Almuashi, S. Z. M. Hashim, D. Mohamad, M. H.
Alkawaz, and A. Ali. Automated kinship verification
and identification through human facial images: a
survey. Multimedia Tools and Applications, 2015.

[3] N. Crosswhite, J. Byrne, O. M. Parkhi, C. Stauffer,
Q. Cao, and A. Zisserman. Template adaptation for
face verification and identification. CoRR,
abs/1603.03958, 2016.

[4] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S.
Dhillon. Information-theoretic metric learning. In
Proc. ACM ICML, 2007.

[5] A. Dehghan, E. Ortiz, R. Villegas, and M. Shah. Who
do i look like? determining parent-offspring
resemblance via gated autoencoders. In Proc. IEEE
Conference on CVPR, 2014.

[6] H. Dibeklioglu, A. Salah, and T. Gevers. Like father,
like son: Facial expression dynamics for kinship
verification. In Proc. IEEE ICCV, 2013.

[7] R. Fang, A. Gallagher, T. Chen, and A. Loui. Kinship
classification by modeling facial feature heredity. In
20th IEEE ICIP, 2013.

[8] R. Fang, K. D. Tang, N. Snavely, and T. Chen.
Towards computational models of kinship verification.
In IEEE ICIP, 2010.

[9] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik.
Rich feature hierarchies for accurate object detection
& semantic segmentation. CoRR, abs/1311.2524, 2013.

[10] Y. Guo, H. Dibeklioglu, and L. van der Maaten.
Graph-based kinship recognition. In ICPR, pages
4287–4292, 2014.

[11] J. Hu, J. Lu, J. Yuan, and Y.-P. Tan. Large Margin
Multi-metric Learning for Face and Kinship
Verification in the Wild. Springer, 2015.

[12] G. B. Huang, M. Ramesh, T. Berg, and
E. Learned-Miller. Labeled faces in the wild: A
database for studying face recognition in

unconstrained environments. Technical report, UMass,
Amherst, 2007.

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature
embedding. CoRR, abs/1408.5093, 2014.

[14] D. E. King. Dlib-ml: A machine learning toolkit.
Journal of Machine Learning Research, 2009.

[15] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60, 2004.

[16] J. Lu, X. Zhou, Y.-P. Tan, Y. Shang, and J. Zhou.
Neighborhood repulsed metric learning for kinship
verification. IEEE TPAMI, 2014.

[17] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep
face recognition. In Proc. BMVC, 2015.

[18] X. Qin, X. Tan, and S. Chen. Tri-subject kinship
verification: Understanding the core of A family.
CoRR, abs/1501.02555, 2015.

[19] M. S. S. Xia and Y. Fu. Kinship verification through
transfer learning. In Proc. IJCAI, 2011.

[20] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet:
A unified embedding for face recognition and
clustering. In Proc. IEEE Conference on CVPR, 2015.

[21] M. Shao, S. Xia, and Y. Fu. Genealogical face
recognition based on ub kinface database. In IEEE
CVPR WORKSHOPS, 2011.

[22] M. Shao, S. Xia, and Y. Fu. Identity and Kinship
Relations in Group Pictures. Springer, 2014.

[23] Y. Sun, X. Wang, and X. Tang. Deep learning face
representation from predicting 10,000 classes. In Proc.
IEEE Conference on CVPR, 2014.

[24] D. Wang, C. Otto, and A. K. Jain. Face search at
scale: 80 million gallery. CoRR, abs/1507.07242, 2015.

[25] M. Wang, Z. Li, X. Shu, J. Tang, et al. Deep kinship
verification. In IEEE 17th International Workshop on
MMSP, 2015.

[26] S. Xia, M. Shao, and Y. Fu. Toward kinship
verification using visual attributes. In IEEE ICPR,
2012.

[27] S. Xia, M. Shao, J. Luo, and Y. Fu. Understanding
kin relationships in a photo. IEEE Transactions on
Multimedia, 2012.

[28] F. Xiong, M. Gou, O. Camps, and M. Sznaier. Person
re-identification using kernel-based metric learning
methods. In ECCV, 2014.

[29] H. Yan, J. Lu, W. Deng, and X. Zhou. Discriminative
multimetric learning for kinship verification. IEEE
Transactions on Information Forensics and Security,
2014.

[30] H. Yan, J. Lu, and X. Zhou. Prototype-based
discriminative feature learning for kinship verification.
IEEE Transactions on Cybernetics, 2015.

[31] X. Zhou, J. Hu, J. Lu, Y. Shang, and Y. Guan.
Kinship verification from facial images under
uncontrolled conditions. In Proc. ACM-MM, 2011.

[32] X. Zhou, J. Lu, J. Hu, and Y. Shang. Gabor-based
gradient orientation pyramid for kinship verification
under uncontrolled environments. In Proc. ACM-MM,
2012.


	1 Introduction
	2 Families in the Wild
	2.1 Building FIW
	2.2 Database Statistics

	3 Experiments On FIW
	3.1 Features and Related Methods
	3.2 Fine-Tuned CNN Model
	3.3 Experimental Settings

	4 Discussion
	5 References

