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ABSTRACT

Detection of emotional and aesthetic highlights is a challenge
for the affective understanding of movies. Our assumption
is that synchronized spectators’ physiological and behavioral
reactions occur during these highlights. We propose to em-
ploy the periodicity score to capture synchronization among
groups of spectators’ signals. To uncover the periodicity
score’s capabilities, we compare it with baseline synchro-
nization measures, such as the nonlinear interdependence
and the windowed mutual information. The results show
that the periodicity score and the pairwise synchronization
measures are able to capture different properties of specta-
tors’ synchronization, and they indicate the presence of some
types of emotional and aesthetic highlights in a movie based
on spectators’ electro-dermal and acceleration signals.

Categories and Subject Descriptors

1.5.4 [Pattern Recognition]: Applications—signal process-
ing; 1.5.2 [Pattern Recognition|: Design Methodology—
pattern analysis
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1. INTRODUCTION

Many studies have focused on matching spectators’ phys-
iological signals with affective states and the appearance
of highlights in movies [5]. Since physiological reactions
are considered to be an important component of emotions
[15], [4], their measurements provide insight into spectators’
aesthetic experience elicited by particular scenes [24]. In
the field of affective computing, researchers have attempted
to investigate emotion recognition in responses to multi-
media content using electroencephalography (EEG) signals,
peripheral physiological signals and facial expressions [14],
[22]. The combination of spectators’ physiological signals
has been proposed in [5]. Because the spectators were watch-
ing separately a movie without any social context, they could
not interact among themselves as it is the case in our studies.

Spectators can display similar behaviors or have similar
physiological reactions when they are watching a movie to-
gether because: (i) the aesthetic choices of the filmmaker
are made to elicit specific emotional reactions (e.g. special
effects, empathy and compassion toward a character, etc.)
and (4) watching a movie together causes spectators’ affec-
tive reactions to be synchronized through processes of emo-
tional contagion [10]. For these reasons we gain insight on
the impact of synchronization among group of spectators.

The first concept of synchronization came from the rhythm
adjustment of oscillating objects [19]. In social sciences in-
terpersonal synchrony consists of three components: rhythm,
simultaneous movement and smooth meshing of interactions
[2], [7]. One important step was made by [21] to intro-
duce generalized synchronization of coupled chaotic systems.

n [17], [18] the authors proposed that a level of the period-
icity score can measure the amount of pattern repetitions in
signals.

In this paper we propose to use periodicity score and base-
line pairwise synchronization measures, such as the nonlin-
ear interdependence [20] and the windowed mutual informa-
tion [13] to uncover relations between occurrence of emo-



tional and aesthetic highlights in films and spectators’ phys-
iological and behavioral reactions. Our goal is to verify if
a level of synchronization that is computed over time win-
dows of spectators’ electro-dermal and acceleration signals
indicates the occurrence of different types of emotional and
aesthetic highlights in movies. We then evaluate our results
with respect to the annotations made by a movie critic.

In section 2 we detail the adaptation of synchronization
measures to process spectators’ physiological and behavioral
signals. In section 3 we describe a movie watching in a
ecological situation. In section 4 we present all the results.
In section 5 we discuss and interpret the obtained results.
In section 6 we provide the conclusions of our studies.

2. SYNCHRONIZATION MEASURES

In this section we propose to apply three synchronization
measures: the periodicity score, the nonlinear interdepen-
dence and the windowed mutual information to spectators’
physiological and behavioral signals in order to detect emo-
tional and aesthetic highlights in movies. A high level of all
synchronization measures reveals the synchronized reactions
of spectators while watching a movie.

For spectators’ electro-dermal and acceleration signals {x; }
we consider time windows {z;(I)} ,i=1,..,M,l=1,..,N,
where M is a number of spectators’ signals and N is a num-
ber of time windows.

2.1 Contribution - Periodicity Score

In this subsection we detail the usage of the periodicity
score to measure synchronization of signals [17], [18]. The
overview is described in Figure 1. First, we map specta-
tors’ physiological or behavioral signals to the geometric
framework of real Grassmann manifolds by applying the re-
duced singular value decomposition (RSVD) to their short
time Fourier transform (STFT). We analyze time windows
of spectators’ signals as a sequence of points encoded on the
Grassmann manifold preserving their intrinsic dependencies.
Next, we associate a level of the periodicity score with the
synchronized spectators’ physiological and behavioral sig-
nals during emotional and aesthetic highlights in movies.
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Figure 1: Physiological or behavioral signals are mapped to
points on a Grassmann manifold applying RSVD to their
STFT over time windows.

STFT. As shown in Figure 1 that we apply STFT to
given time windows z;(l), i = 1,..., M, and we yield xilf in
the time and frequency domain, where ¢ is the time frame
index and f is the frequency band index. Each time window
z;(1) is split into segments with an overlap of 50% to apply
STFT in this paper. Let S%!(¢, f) be the squared magnitude
of the STFT, as follows

i il 2
Syt f) = [zl (1)

RSVD. Then, we map time windows {z;(l)} of all sig-
nals on Grassmann manifolds to recover the intrinsic de-
pendencies among them [6]. The real Grassmann mani-
fold G(k,n) parametrizes all k—dimensional subspaces of
the vector space R". A sequence of corresponding matri-
ces SYY(t, f), i = 1,..., M can be mapped to the points on
the manifold G(k,n) using RSVD as shown in the figure 1.
If we compute RSVD of matrix S5'(¢, f), as follows:

silt, ) =U'sveT, (2)

then the columns of the n x k orthogonal matrix U’ are a
non-unique basis for the column space of S;;.’l(t, f). Thus,
U' can be used to represent the matrix S;’l(t, f), and can be
identified with a point on the Grassmann manifold G(k,n).
Once the time windows are mapped to a sequence of points
on G(k,n), the pairwise distances between these points can
be found using a function of the angles between subspaces.
Let U and U’ be two k— dimensional subspaces, we measure
the similarity dmm(Ui, Uj) of two points on the Grassmann
manifold G(k,n) using the minimum correlation distance [9]

dmin(U",U”) = sin Oy, 3)

where 0 < 07 < 62 < ...
between two subspaces.

Periodicity Score. Finally, we introduce the basics of
persistent homology: filtrations and persistence diagrams
[17], [18], [8] plotted in Figure 2. Once the sequence of
S’fc’l(t, f),i=1,..., M matrices is mapped to G(k,n) and de-
fines a metric space (U = {U*,...,UM}, dmin(-,-)), we recall
the definition of the Vietoris-Rips complex Ripsq(U) as the
set of the simplices [U?, ..., U?] such that dpn(U*, U?) < «
for i,j = 1,...,q. There is an inclusion of Ripsa(U) in
Ripsg(U) for any o < . The sequences of inclusions are
called filtrations Filto(U). An example is given in Figure
2(a). Persistence diagrams allow us to study the evolution
of the topology of a filtration, and to capture properties of
the metric which is used to generate the filtration. Exist-
ing connected components are merged for 0—th homology,
when « increases shown in Figure 2(b). Persistent homology
tracks the birth (appearance) b and death (disappearance)
d of all connected components shown in Figure 2(c).

The maximum persistence mp(dgm(z;(1))) of a persis-
tence diagram dgm(z;(l)) is defined as follows [18]
mp(dgm(x;i(1))) = (b7d>e{ga7i<(%(l))pers(b, d), (4)
where pers(b,d) = d — b for (b,d) € dgm(z;(l)), and as
oo otherwise. Finally, we can provide the periodicity score

S(zi(1)) [18]

< 0r < 5 are principle angles

mp(dgm(zi(l)))
7 :

The normalized maximum persistence mp(dgm(z;(1))) of a
persistence diagram dgm(x;(l)) can help us to quantify syn-
chronization among signals because it is capable of measur-
ing their intrinsic geometric dependencies. The persistent
score can measure synchronization among groups of signals
based on the connectivity of signal clusters. Our approach
to synchronization contains the multivariate measure which
ascribes a single value to all signals in comparison with uni-
variate measures, such as the nonlinear interdependence and
the windowed mutual information which can only be com-
puted over pairs of signals. When S(z;(l)) equals 0, it means

S(xi(l)) = ()



that we can not explore any structure in our data. If a value
of S(z;(1)) rises close to 1, we find some strong connectivity
structure of data (synchronization).
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Figure 2: We show an example of : (a) the filtered Vietoris-
Rips complex, (b) a number of connected components for
different values of filtration parameter «, (c) the persistent
diagram.

2.2 Nonlinear Interdependence

The nonlinear interdependence measures the geometrical
similarity between the state space trajectories of two dynam-
ical systems that are reconstructed from two time series {xz;}
and {z;} i, = 1,..., M using time-delay embedding [23].
For each time window z;(l) the mean square Euclidean dis-
tance to its K nearest neighbours z;(n), n =1,..., K is

R SCZ K Z l’z - z ))27 (6)

and the mean squared Euclidean distance conditioned by the
equal time partners of the K nearest neighbours of z;(l) is

R (@Dl (1) = 4 S @) —w;m) (7)

The nonlinear interdependence measure is defined as [20]

SE (@i ()| (1) = %ﬁ\(jj)@)) (8)

To make the nonlinear interdependence symmetric, we con-
sider S® (z;(1)|zi(l)) and we then average these parameters.

2.3 Windowed Mutual Information

From an information theory viewpoint, any signal can be
treated as a collection of random variables which describes
the evolution of a system over time. In this context, the win-
dowed mutual information may capture nonlinear dependen-
cies between signals that are not revealed in the covariance
of signals [13]. The straightforward approach to estimation
of the windowed mutual information consists of partitioning
the supports of two time windows z;(l), z;(l) into finite size
bins, and the approximation by the finite sum

I(z: (1) Zp w, q) log( ((w,?)

e

where p(w, q) is the joint probability density function of z; (1)
and z; (1), p(w) and p(q) are the marginal probability density
functions, respectively.

3. EXPERIMENT

The spectators’ physiological and behavioral signals were
recorded with a sampling frequency of 10 Hz during a movie
projection (Taxi Driver, 1976) in a theater (Griitli cinema,
Geneva) [12]. The duration of the movie is 113 min. In this
paper we use 12 spectators’ electro-dermal activity and ac-
celeration (x,y, z axes, accelerometer attached to the hand of
the spectator) signals (M = 12). All signals are filtered by
third order lowpass Butterworth filter with cutoff frequency
0.3 Hz, and they are segmented into overlapping time win-
dows with a time step and a window length equal 2 s and 5 s,
respectively. The selection of these parameters was done to
indicate highlights in meaningful time period for the whole
duration of the movie.

Annotation of the movie was performed offline by a movie
critic, who annotated the movie based on the following five
types of emotional and aesthetic highlights [1], [3].
"Form-highlights” (the manner in which the subject is pre-
sented in the film):

- H1: Spectacular (technical choice, special effects);

- H2: Subtle (use of camera, lighting, music).
”Content-highlights” (the presented subject in the film):

- H3: Character development (characters’ emotions and re-
sponses to dramatic events);

- HJ: Dialogue (motivation of actions and tensions among
characters);

- H5: Theme development (unusual close up, urban theme).
For each type of highlights, non-highlights are scenes with-
out the particular type of the highlights (possibly, containing
the other highlight type).

In these studies the periodicity score (PS) and pairwise syn-
chronization measures: the nonlinear interdependence (NI)
and the windowed mutual information (WMI) are applied
to the spectators’ physiological and behavioral signals to un-
cover different properties of their synchronization.

4. RESULTS

We employ the two side Welch’s t-test at the significance
level (o = 0.1) to test the hypothesis. We verify if an in-
crease/a drop of the synchronization of the spectators’ physi-
ological and behavioral reactions might appear during a par-
ticular type of highlights [16], [11].

Figure 3(a) shows the mean values of the PS which are
computed over the spectators’ physiological signals for all
types of highlights. The values of the PS increase marginally
significantly for the scenes in the movie containing spectacu-
lar highlights H1 (t=1.77, p<0.1, r=0.12) and theme devel-
opment highlights H5 (t=1.90, p<0.1, r=0.14) in comparison
to the scenes without those particular types of highlights.
Figure 3(b) plots the results for the behavioral signals. The
values of the PS rise significantly and marginally signifi-
cantly for the scenes consist of spectacular highlights HI
(t= 2.55, p=0.01, r=0.15) and subtle highlights H2 (t=1.77,
p<0.1, r=0.09), respectively. Moreover, the values of the
PS drop marginally significantly for character development
highlights H% (t=-1.71, p<0.1, r=0.11).

In Figure 3(c) the mean values of the NI for the electro-
dermal signals are plotted. The synchronization increases
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Figure 3: Mean values of synchronization measures: PS ((a),
(b)), NI ((c), (d)), WMI ((e), (f)) for one particular type of
highlight scenes (H1, H2, H3, Hj, H5) versus scenes without
the type of highlights in the movie. Left charts correspond
to elctro-dermal activity signals and right charts correspond
to acceleration signals. * stands for a p-value < 0.1, x* for
a p-value < 0.05 and * % x for a p-value < 0.01.
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significantly and marginally significantly for spectacular high-
lights H1 (t=4.99, p<0.01, r=0.52) and theme development

highlights H5 (t=1.91, p<0.1, r=0.14), respectively. Figure

3(d) gives information on the synchronization among the be-

havioral signals. The values of the NI falls significantly and

marginally significantly for subtle highlights H2 (t=-3.55,

p<0.01, r=0.16) and theme development highlights H5 (t=-

1.78, p<0.1, r=0.13), respectively.

Figure 3(e) for the WMI shows a significant decrease of de-
pendencies among the physiological signals of the spectators
for dialogue highlights Hj (t=-10.9, p<0.01, r=0.55) and
theme development highlights H5 (t=-2.32, p<0.05, r=0.18).
In Figure 3(f), we also observe a significant drop of depen-
dencies among behavioral signals but only for subtle high-
lights H2 (t=-2.58, p=0.01, r=0.14).

5. DISCUSSION

We can detect some types of highlights applying syn-
chronization measures. The obtained results show that the
values of the PS and NI increase marginally significantly
and significantly, respectively, for spectacular highlights H1.

These observations are in line with our previous works [16],
[11], [12]. This can be justified by the nature of the scenes
since H1 corresponds to spectacular scenes where the direc-
tor uses special effects, such as an increasing saturation of
red color during final shooting scenes, playing with lights
and a location of the camera. These may evoke strong emo-
tional reactions and emotional contagion.

The slow movement of a camera and music during sub-
tle highlights H2 could decrease the spectators’ behavioral
reactions. Due to discrepancies among the spectators we
observe a drop of the NI and the WMI while the PS might
still capture some synchronization in their behaviors.

The PS falls marginally significantly for the spectators’
behavioral reactions during character development highlights
H& while the pairwise synchronization measures could not
expose any marginally significant drop/increase of the syn-
chronization. Some group of the spectators could only react
similarly to the attitude of the main characters which could
be caused by the ambiguity of their personality.

Also, we observe a significant drop of the WMI values
for the spectators’ physiological signals in the case of dia-
logue highlights H4. This can occur because of two reasons:
long average duration of highlights H4 may cause that the
spectators’ emotions fade in time, and the main character is
also an ambiguous movie character who could elicit different
reactions across the audience.

The results also report that the values of the PS and NI
increase marginally significantly for the theme development
highlights H5. The rise of spectators’ synchronization might
be caused partially by the overlapping of spectacular and
theme development scenes in this particular movie. But
the WMI also measures a significant drop in the statistical
dependencies. It can be explained by a lack of any mutual
dependence between signals.

6. CONCLUSIONS

In this paper we suppose that the occurrence of synchro-
nized spectators’ behaviors and physiological reactions are
linked to the presence of emotional and aesthetic highlights
in a movie. To detect these highlights, we propose to ap-
ply the periodicity score (PS) to measure synchronization
among groups of spectators’ signals that can not be iden-
tified by other measures. To explore the PS’s properties,
we compare it with the baseline pairwise synchronization
measures: the nonlinear interdependence (NI) and the win-
dowed mutual information (WMI). We show that the PS as
well as the NI, can indicate the appearance of spectacular
highlights HI and theme development highlights H5 based
on the spectators’ physiological reactions. These results can
be explained by special effects related to spectacular scenes
in the urban landscape when strong physiological and be-
havioral reactions of spectators are supposed to be evoked.
Also, the PS depicts the appearance of the spectacular high-
lights based on the spectators’ behavioral signals. The PS as
the NI and the WMI could identify the appearance of subtle
highlights H2 based on acceleration signals of the spectators.
Moreover, the PS only decreases indicating character devel-
opment highlights H3in comparison with the other methods.

In the future work, we will collect more multimodal sig-
nals to verify our preliminary studies. Also, we will attempt
to reveal more topological features that could uncover dif-
ferent types of synchronization in spectators’ physiological
and behavioral data while watching different movies.
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