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ABSTRACT
Deep neural networks generally involve some layers with mil-
lions of parameters, making them difficult to be deployed
and updated on devices with limited resources such as mo-
bile phones and other smart embedded systems. In this
paper, we propose a scalable representation of the network
parameters, so that different applications can select the most
suitable bit rate of the network based on their own storage
constraints. Moreover, when a device needs to upgrade to
a high-rate network, the existing low-rate network can be
reused, and only some incremental data are needed to be
downloaded. We first hierarchically quantize the weights of
a pre-trained deep neural network to enforce weight shar-
ing. Next, we adaptively select the bits assigned to each
layer given the total bit budget. After that, we retrain the
network to fine-tune the quantized centroids. Experimental
results show that our method can achieve scalable compres-
sion with graceful degradation in the performance.

CCS Concepts
•Computing methodologies→ Neural networks; Dis-
crete space search; •Information systems → Clustering
and classification;
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1. INTRODUCTION
Deep neural networks (DNN) or deep learning have evolved

into the state-of-the-art technique for many artificial intel-
ligence tasks including computer vision [9], [14]. In this pa-
per, we focus on the convolutional neural network (CNN),
which was originally developed in 1998 by LeCun et al. with
less than 1M parameters (weights) to classify handwritten
digits [10]. In 2012, CNN was used as a key component
in [9] to achieve the breakthrough in ImageNet Large Scale
Visual Recognition Challenge 2012 (ILSVRC2012), and the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’16, October 15-19, 2016, Amsterdam, Netherlands
c© 2016 ACM. ISBN 978-1-4503-3603-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2964284.2967273

proposed AlexNet has 60M parameters and needs 240MB of
storage space. In 2014, Simonyan et al. further improved
the accuracy by 10% [14], and the VGG-16 model they de-
veloped has 138M parameters.

Although the performance of DNN is very promising, its
application in low-end devices such as mobile phones faces
some challenges. For example, many devices have limited
storage spaces. Therefore storing millions of DNN param-
eters on these devices could be a problem. If the DNN
network needs to be updated, usually via wireless chan-
nels, downloading the large amount of network parameters
will cause excessive delay. Moreover, running large-scale
DNNs with floating-point parameters could consume too
much energy and slow down the algorithm. Therefore, effi-
cient compression of the DNN parameters without sacrificing
too much the performance becomes an important topic.

There have been some recent works on the compression
of neural networks. Vanhoucke et al. [11] proposed a fixed-
point implementation with 8-bit integer (vs 32-bit floating-
point) activations. Denton et al. [3] exploited the linear
structure of the neural network by finding an appropriate
low-rank approximation of the parameters and keeping the
accuracy within 1% of the original model. Kim et al. [7]
applied tensor decomposition to the network parameters and
proposed an one-shot whole network compression scheme
that can achieve significant reductions in model size, runtime
and energy consumption.

Many works focus on binning the network parameters into
buckets, and only the values in the bucket need to be stored.
HashedNets [2] is a recent technique to reduce model size by
using a hash function to randomly group connection weights,
so that all connections within the same hash bucket share
a single parameter value. Gong et al. [4] compressed deep
convnets using vector quantization, which resulted in 1% ac-
curacy loss. Both methods studied the fully-connected (FC)
layer in the CNN, but ignored the convolutional (CONV)
layers. Recently, Han et al. [5] introduced a deep neural
network compression pipeline by combining pruning, quan-
tization and Huffman encoding, which can reduce the stor-
age requirement of neural network by 35 × or 49 × without
affecting their accuracy.

In this paper, motivated by the successful applications of
scalable coding in various image and video coding standards
such as JPEG 2000, H.264, and H.265/HEVC [16, 13, 15], we
propose a scalable compression framework for DNNs, which
has not been addressed before. Our goal is to represent
the DNN parameters in a scalable fashion such that we can
easily truncate the representation of the network according
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to the storage constraint and still get near-optimal perfor-
mance at each rate. Moreover, if the network needs to be
upgraded with higher rate and better performance, the ex-
isting low-rate network can be reused, and only some incre-
mental data are needed. This is better than recompressing
and re-transmitting the network as in [5, 7].

To achieve this goal, we propose a three-stage pipeline.
First, a hierarchical representation of weights in DNNs is
developed. Second, we propose a backward greedy search
algorithm to adaptively select the bits assigned to each layer
given the total bit budget. Finally, we fine-tune the com-
pressed model.

The rest of the paper is organized as follows. Sec. 2 is
devoted to hierarchical quantization of the DNN parameters.
In Sec. 3 we formulate the bit allocation as an optimization
problem and propose a backward search solution. A fine-
tuning method is presented in Sec. 4. Experimental results
on MNIST, CIFAR-10 and ImageNet datasets are reported
in Sec. 5, followed by conclusions in Sec. 6.

2. HIERARCHICAL QUANTIZATION
The K-means clustering-based quantization is a popular

technique in the compression of DNN [4], [5]. Therefore, in
this paper, we also choose K-means clustering with linear
initialization [5] to compress the weights in DNN. However,
the framework developed in this paper is quite general and
can also be applied to other quantization techniques, e.g.,
the fixed-point quantization in [11] and other similar tasks
besides classification, e.g., regression problems.

In [5], the authors quantize the weights to enforce weight
sharing with K-means clustering, e.g., they assign 8 bits (256
shared weights) to each CONV layer and 5-bits (32 shared
weights) to each FC layer. However, every time a CONV
layer is assigned a different bit, the K-means clustering has
to be performed again, rendering scalable compression in-
feasible. On the other hand, some DNN layers have a large
number of weights, e.g., the number of weights in the fc6
layer of AlexNet is 38M. Therefore the K-means clustering
can be quite slow, even with the help of GPU.

To address this problem, we adopt the scalable coding con-
cept in image/video coding [16, 13, 15], and represent the
weights hierarchically, i.e., each weight is represented by a
base-layer component and several enhancement-layer com-
ponents; hence, we only need to perform the quantization
step once during the entire scalable compression process,
which also benefits the adaptive bit allocation in Sec. 3.
Note that there are two different kinds of layers in this pa-
per: the network layers in DNN, and the hierarchical quan-
tization layers in the scalable representation of the weights.

Suppose we want to allocate n bits to each weight in a pre-
trained DNN layer. We first perform K-means clustering of
all weights with K = 2 (1-bit quantization), and record the
corresponding cluster indices and centroids. We also record
the corresponding quantization error. This yields the 1-bit
base-layer approximations of all weights. Next, we perform
another K-means clustering with K = 2 on all quantiza-
tion errors, and record the corresponding cluster indices,
centroids, and quantization errors. The gives us the 1-bit
first-enhancement-layer representations of all weights. By
repeating this procedure, we can obtain a n-layer hierarchi-
cal representation of a weight, i.e.,

w ≈ b1 + e1 + ...+ en−1, (1)

where w is a uncompressed weight, b1 and ei are the centroid
of the base layer and the i-th enhancement layer respectively.

This hierarchical quantization only needs to be performed
once, which facilitates future network updating, as we only
need to add or delete certain quantization layers to meet the
new bit rate constraint. For the tradition K-means cluster-
ing used in [4] and [5], we have to perform K-means cluster-
ing every time a new bit budget is required.

After the hierarchical quantization, we can build a code-
book that stores the centroid and cluster index information
of all quantization layers. For a network layer of DNN with
N weights, there are 2n centroids, and the number of clus-
ter indices is Nn. If each uncompressed weight or centroid
is represented by b bits (b=32 for single-precision floating-
point number), the compression rate of the n-bit hierarchical
quantization scheme is

r =
Nb

Nn+ 2nb
. (2)

In contrast, in the conventional K-means method [5], given
the same n-bit quantization, the compression rate is r =
Nb/(Nn+ 2nb).

Note that the storage cost is dominated by Nn, compared
to 2nb or 2nb, because the number of connections N in a
DNN is usually very large.

3. ADAPTIVE BIT ALLOCATION
In DNN, the redundancies in different network layers are

different [5, 11]. Therefore it is necessary to design an op-
timal bit allocation algorithm, i.e., given a bit budget, how
to allocate the bits to different network layers in order to
get the best performance. In this paper, we formulate the
following optimization problem.

arg min
{n,C,G}

f(n,C,G)

s.t.
L∑

i=1

Nini + 2nib ≤ µ.
(3)

where n =
[
n1 ... nL

]
is a vector containing the bits

allocated to L network layers, C is the centroid vector, G
is the cluster-by-index matrix for the network layers, Ni is
the number of weights in the i-th network layer, and µ is
the bit budget. We use the cross entropy between the pdf
of the predicted labels and true labels as the cost function
f(·), which is frequently used in classification tasks.

It is hard to solve the combinatorial optimization in Eq.
(3), since the number of bits assigned to each network layer
ni has to be integer and the number of entries in the cluster-

by-index matrix G is
L∑

i=1

Nini, even larger than the number

of weights
L∑

i=1

Ni in the pre-trained DNN. Therefore, we use

a similar method to [5] to first approximate the original un-
compressed weights with high-rate quantized weights. More
specifically, we first use the hierarchical method in Sec. 2
to assign M bits to each CONV layer weight and P bits
to each FC layer weight. This is used as the initialization
step. The centroid vector C and the cluster-by-index matrix
G are then determined and fixed. We use E to denote the
number of bits to store this initial network.

Next, we adaptively allocate bits to network layers such



that u < E. The problem in Eq. (3) is simplified to

arg min
{n}

f(n)

s.t. B =
L∑

i=1

(Ni + 2b)ni ≤ µ.
(4)

For small-scale problems, the optimization above can be
solved by exhaustive grid search, where configurations that
violate the bit constraint are skipped, and the others are
evaluated to find the best solution. The process can be
accelerated by parallel computing, since different configu-
rations are independent. However, for large-scale problems,
exhaustive search becomes infeasible, as the number of con-
figurations grows exponentially with the number of bits. For
example, in AlexNet, there are 5 CONV layers and 3 FC lay-
ers. If 10 bits are assigned to each CONV layer and 5 bits
are assigned to each FC layer, the total number of configu-
rations would be 105 × 53 = 12.5M.

One way to speed up the process is to use random search
[1], since the number of bits assigned to each network layer
can be treated as a hyper-parameter for the DNN. Theoret-
ical analysis in [1] shows that randomly selecting 60 config-
urations can ensure that the top 5% result can be achieved
with a probability of 0.95. For the bit allocation problem
here, we should randomly select a number of configurations
that satisfy the bit constraint. In Sec. 5, random search is
used as a baseline algorithm for comparison.

In this paper, we propose a backward greedy search algo-
rithm to address the bit constraint explicitly and solve the
problem in Eq. (4). We start from the initial high-rate quan-
tized network as discussed above. Denote the bit allocation
in the t-th iteration as nt = [nt

1, . . . , n
t
L], whose correspond-

ing total bit cost is Bt. To find nt+1 at iteration t + 1, we
follow the spirit of the gradient descent method by assigning
one less bit to each network layer respectively, calculating
the corresponding gradient of the total bit cost, and choos-
ing the configuration that has the maximum gradient. In
other words, let nt,j = [nt

1, . . . , n
t
j−1, n

t
j − 1, nt

j+1, . . . , n
t
L],

the bit allocation in the (t+ 1)-th iteration is obtained by

arg max
nt,j

f(nt,j)−f(nt)

Bt,j−Bt

s.t. nt,j ⊂ {nt,1,nt,2, ...,nt,L},

Bt,j =
L∑

i=1

(Ni + 2b)nt,j
i .

(5)

The iteration terminates until the bit constraint is satisfied.
The entire backward greedy search algorithm is summarized
in Alg. 1. The intuition behind the gradient defined above
is twofold. First, if two bit allocations have the same cost
function value, the one with smaller total bit cost should be
chosen. Second, if two bit allocations have the same total bit
cost, we should choose the one with lower cost function value
and use the maximum function in Eq. (5) due to Bt,j < Bt.

4. FINE TUNING (FT)
It is shown in [5, 11] that fine-tuning (FT) of the centroids

after the quantization of DNN can significantly improve the
classification performance. In this paper, we also perform
fine-tuning after the adaptive bit allocation to update the
centroids based on Eq. (3) in [5].

The advantage of the proposed scalable compression of
the DNN is that for each target bit rate, we can find a
near-optimal bit allocation. If later on the DNN bit rate

Algorithm 1 Backward Greedy Search Algorithm

1: Initialization: Quantize the network with M bits for
each CONV layer and P bits for each FC layer. Let
t = 0.

2: while Bt > µ do
3: for each network layer j ≤ L do
4: nt,j

j ← nt
j − 1, nt,j

p ← nt
p for p 6= j.

5: Update the weights of DNN based on the hierar-
chical framework in Sec. 2

6: Test with the validation data and record Bt,j and
f(nt,j)

7: end for
8: Select nt+1 based on Eq. (5)
9: t← t+ 1

10: end while

on a device needs to be updated, instead of re-transmitting
a new set of the DNN parameters, we only need to transmit
some incremental data, including the centroid vector C and
cluster-by-index matrix G. The required bit rate is thus
much lower than replacing the entire network.

During the update, some additional bits caused by the
fine-tuning are needed to update the centroids of the previ-
ous compressed model. However, according to the analysis

in Sec. 2, the centroid update will cost 2b
L∑

i=1

ni at most,

while the minimal bits needed to update the cluster-by-index
matrix are min{N1, N2, ...., NL}. The storage cost is domi-
nated by the cluster indices instead of centroids; hence the
overhead introduced by the fine-tuning is negligible. Take
AlexNet as an example, if we use 10 bits to quantize CONV
layers and 5 bits for FC layers, at most 0.52KB are needed
to update these centroids, while we may use at least 5KB
to update the cluster-by-index matrix every time a different
bit budget is given.

5. EXPERIMENTAL RESULTS
We test the proposed scalable compression on 3 networks

designed for the MNIST [10], CIFAR-10 [8] and ImageNet
[12] datasets respectively. We implement the network train-
ing based on the CNN toolbox MatConvNet [17] with our
own modifications. The training is done on a desktop with
a NVIDIA TIAN X GPU with 12GB memory.

5.1 LeNet-5 for MNIST
We use the cnn mnist experiment.m function in MatCon-

vNet to train LeNet-5 for MNIST dataset. There are 2
CONV layers and 2 FC layers. The pre-trained model can
achieve 0.88% Top-1 error and needs a storage of 1720KB.
We use 8 bits to hierarchically quantize each CONV layer
and 5 bits for each FC layer. The initial quantized model
can achieve 0.97% Top-1 error, and the corresponding stor-
age cost is 279KB. In Fig. 1(a), we compare the proposed
backward greedy search method (BS) with the exhaustive
grid search method (GS). We also present the number of
configurations tested on the validation set in Table 1 to
compare the computational complexity. We can see that
our proposed backward search algorithm can achieve com-
parable compression performance to the grid search with
much smaller computational complexity. The only excep-
tion happens when the compression rate is extremely large,
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Figure 1: Top-1 accuracy loss of compressed DNNs
under different bit allocation methods. (a) LeNet-5
and (b) CIFAR-10-quick.

LeNet-5 for MNIST
Bit Budget (KB) 200 150 80 60
Compression Rate 8.60 11.47 21.50 28.67

BS Number 26 51 101 115
GS Number 960 640 320 79

CIFAR-10-quick for CIFAR-10
Bit Budget (KB) 120 100 50 30
Compression Rate 4.85 5.82 11.64 19.40

BS Number 26 51 101 115
RS Number 120

Table 1: Number of configurations tested on
MNIST and CIFAR-10 validation set v.s. compres-
sion rate.

e.g., 28.67 in Fig. 1(a). However, after fine tuning, the
performance is still very close to the original one.

5.2 CIFAR-10-quick for CIFAR-10
We use the provided cnn cifar.m in MatConvNet to train

CIFAR-10-quick for CIFAR-10 dataset. There are 3 CONV
layers and 2 FC layers in the network. The reference model
can achieve 19.97% Top-1 error and needs a storage space
of 582KB. We use 10 bits to quantize each CONV layer
and 5 bits for each FC layer. The initial quantized model
can achieve 22.70% Top-1 error and needs 141KB storage
space. Since there are at most 25K configurations which
takes too much time to evaluate, instead of using grid search
as a comparison, we use the random search method (RS) [1].
In each trial, we randomly choose 120 configurations that
satisfy the bit constraint from the configuration pool.

The compression performance is shown in Fig. 1(b) and
the computational complexity is presented in Table 1. It
can be seen that the proposed backward search algorithm
can achieve similar or even better performance than ran-
dom search with much smaller computational complexity,
especially when the bit rate is close to that of the initial
quantized network. The only exception happens when the
compression rate is extremely large, e.g., 20 in Fig. 1(b). For
the fine-tuning in the random search method, we fine-tune
the result that achieves the median classification accuracy
in the 10 trials.

5.3 AlexNet for ILSVRC12
We use the provided cnn imagenet.m to train AlexNet for

ILSVRC12. The reference model is slightly different from
that of the original AlexNet in [9], where the order of pooling
layer and norm layer are swapped. It contains 5 CONV
layers and 3 FC layers. This reference model can achieve
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Figure 2: Accuracy loss of compressed AlexNet v.s.
compression rate.

Bit Budget (MB) 35 20 15 10
Compression Rate 6.86 12 16 24

BS Number 25 81 89 126
RS Number 150

Table 2: Number of configurations tested on
ILSVRC12 validation set v.s. compression rate.

41.39% Top-1 error, 18.85% Top-5 error, and needs 240 MB
to store. We use 10 bits to quantize each CONV layer and
5 bits for each FC layer. This initial quantized model can
achieve 56.09% Top-1 error, 31.63% Top-5 error, and needs
39.5 MB to store. The number of configurations in each
trial of RS is 150. The number of trials is 5 in order to
get 0.95 confidence interval. The result that achieves the
median classification accuracy in the 5 trials is fine-tuned.

The compression performance is shown in Fig. 2, and
the computational complexity is shown in Table 2. We can
see that with much smaller computational complexity, the
proposed backward search can achieve better compression
performance than random search. Moreover, the classifica-
tion performance of proposed scalable compression frame-
work drops little when the compression rate is within 10.
The compression performance is comparable to state-of-the-
art algorithms at fixed rate, e.g., AlexNet is compressed to
47.6 MB with more than 1% Top-1 accuracy loss in [3].

6. CONCLUSIONS AND FUTURE WORK
In this paper, we discuss the scalable compression of deep

neural networks, and propose a three-stage pipeline: hier-
archical quantization of weights, backward search for bit
allocation, and fine-tuning. Its efficacy is tested on three
different DNNs. In [5], the authors can compress AlexNet
to 6.9 MB without loss of accuracy, much smaller than what
is achieved in this paper, due to network pruning is used
[6], which removes many small-weight connections from the
network. This not only compresses the network, but also
reduces the complexity of the implementation. In addition,
entropy coding is used in [5]. However, the quantization
in [5] is fixed and not scalable. This paper focuses on the
scalable quantization and adaptive bit allocation. It is also
shown from Fig. 7 in [5] that pruning does not hurt quanti-
zation. Therefore the pruning and entropy coding can also
be used in our scheme to further improve the performance.
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