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ABSTRACT
Accurate, efficient, global observation of natural events is impor-
tant for ecologists, meteorologists, governments, and the public.
Satellites are effective but limited by their perspective and by at-
mospheric conditions. Public images on photo-sharing websites
could provide crowd-sourced ground data to complement satellites,
since photos contain evidence of the state of the natural world. In
this work, we test the ability of computer vision to observe natu-
ral events in millions of geo-tagged Flickr photos, over nine years
and an entire continent. We use satellites as (noisy) ground truth
to train two types of classifiers, one that estimates if a Flickr photo
has evidence of an event, and one that aggregates these estimates
to produce an observation for given times and places. We present a
web tool for visualizing the satellite and photo observations, allow-
ing scientists to explore this novel combination of data sources.
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1. INTRODUCTION
Monitoring the state of the natural world over time and space

is crucial for a variety of scientific fields. Satellites can observe
at a large scale but only for phenomena that can be seen from
far above, and are affected by clouds and atmospheric conditions.
Even a seemingly simple task such as monitoring global ground
snow cover is difficult. The MODIS instruments on NASA’s Terra
satellite, for instance, do not produce useful observations for re-
gions obscured by clouds (e.g., ironically, during snow storms!)
and can be misled by materials like sand [23]: is the “snow” on
that tropical island a freak event, or a noisy observation?

Ground stations can of course verify and fill in missing data, but
they are expensive to install in remote areas. Citizen science [1, 2]
uses the public to contribute observations, but requires clever de-
sign and significant incentives to derive accurate data from un-
trained observers. A potentially rich alternative is to mine public
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social media for evidence of natural events, in effect turning bil-
lions of users into citizen scientists without any explicit effort on
their part. This idea is motivated by the growing body of work that
mines social media to predict and observe properties of the world,
including stock markets [3], elections [27], tourism [26], and so on.

Most work has used textual data like Twitter feeds, but social
images are potentially a richer source of information. Everyday
consumer photos often include incidental evidence about the natu-
ral world, e.g., a family portrait might show flowering plants in the
background. In addition, unlike textual data, photos record visual
documentation that can be analyzed and inspected; the danger of
text analysis and importance of validation were recently illustrated
by Google Flu Trends, which showed initial promise in tracking the
spread of influenza from web search queries [7] but later proved
largely inaccurate [15]. However, mining useful semantic informa-
tion from unstructured image collections is a significant challenge.

In this paper, we test the feasibility of using noisy image col-
lections to observe nature, using modern deep learning-based com-
puter vision to recognize visual content automatically. As a case
study, we investigate two particular phenomena: continental-scale
snowfall and vegetation coverage. Although not as dramatic as
events like earthquakes or tsunamis, these are nonetheless impor-
tant properties of the environment that are key indicators of climate
change, for instance. From a practical perspective, they also are
relatively easy to recognize, occur frequently in social images, and
have (noisy) satellite ground truth available to let us test at a large
scale (over an entire continent, daily, for nine years) instead of just
on occasional occurrences. This last property lets us measure statis-
tically meaningful results on how a system may perform in practice,
and this insight could be applied to other events in the future.

We first collect millions of geo-tagged, timestamped, public pho-
tos from Flickr, and daily snow and weekly vegetation satellite
maps for North America. By cross referencing the photo geo-tags
and timestamps with the maps, we automatically label each im-
age with whether or not it was taken in a place with actual snow
or green vegetation. We then train state-of-the-art Convolutional
Neural Networks and Support Vector Machines to recognize these
phenomena in individual images. Of course, these classifiers are
imperfect, in part because social image data is noisy with inaccurate
timestamps and geo-tags, and the satellite data is also incomplete.
We thus train an additional classifier that aggregates evidence from
multiple images taken at a given time and place, yielding more ac-
curate observations. We evaluate at a large scale, training and test-
ing on millions of Flickr images and quantitatively evaluating the
performance at hundreds of thousands of places and times. Finally,
we present a tool to visualize the combination of satellite and social
photo-derived observations. The tool is general and can be applied
to a wide range of phenomena with minimal additional effort.
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2. RELATED WORK
Automatically crowd-sourcing data from public social media has

been investigated for a variety of applications, from predicting elec-
tion outcomes [27], to quantifying tourism patterns [18,26], to pre-
dicting the stock market [3], to estimating land use [24]. The vast
majority of this work is based on textual analysis, even for photo
collections [24, 26, 27]. For example, Zhang et al. [28] analyze
Flickr photos to estimate ecological phenomena (including snow)
but using text tags, which (as they point out) is limited by how ac-
curately and precisely photographers tag photos. We explore the
more difficult but potentially more accurate approach of using vi-
sual analysis to extract semantics.

A few papers have applied computer vision to recognize envi-
ronmental properties in images. Most of these use video (e.g. from
static webcams) so that changes over time can be easily detected.
For example, Laffont et al. [13] investigate detecting transient at-
tributes of scenes over time, Glasner et al. [8] predict tempera-
ture, Murdock et al. [20, 21] estimate cloud cover, Li et al. [19]
estimate smog, and Fedorov et al. [5, 6] detect snow on mountain
peaks. Compared to webcams, public photos give greater cover-
age: whenever a user uploads a photo to Flickr, they are contribut-
ing a potentially useful observation about the world at that time
and place. Most work with photos has only estimated static prop-
erties of places like land use [17] and demographics [16, 29], and
typically over limited spatial areas, in contrast to estimating time-
varying events on a daily basis on a continental scale as we do.

The closest paper to our work is Wang et al. [25], which like
us tries to recognize snowfall in images. Their results were quite
preliminary, however, and used simple visual features like color
histograms. Here we apply cutting-edge deep learning classifiers,
and evaluate at a large scale with millions of images at thousands of
times and places. Our web-based tool also allows users to navigate
and visualize the results, not only letting people validate data from
the satellite and the photos and vice-versa, but also giving greater
insight into the situations in which crowd-sourced observation of
the natural world is likely to succeed and when it is likely to fail.

3. OUR APPROACH
A major goal in this paper is to investigate the extent to which

modern image classification could be used to accurately predict en-
vironmental conditions at a given time and place, given a collection
of social images taken then and there. We investigate two specific
types of conditions: (1) whether there was snow on the ground, and
(2) whether there was green vegetation. Both of these properties
change over time and over geospatial location on Earth. To do this
we require two key steps: deciding whether or not there is evidence
of snow or greenery in an individual image, and then integrating
this (very noisy) evidence across multiple images to estimate the
actual real-world natural state at that time and place.

Data. We collected images geo-tagged in North America and
time-stamped between 2007–2015 using Flickr’s public API (sim-
ilar to [4]). We removed photos with inaccurate geo-tags (thresh-
olding at 12 on Flickr’s GPS precision score) and suspicious time-
stamps (e.g. time taken after time uploaded), yielding 77.6 million
images. We otherwise did not filter images in any way, so our set
includes much noisy and confusing image content (e.g. indoor im-
ages). Throughout our experiments, we used the 2007–2010 data
for training and reserved 2011–2015 as a separate test set.

For the ground truth for training and testing, we used public data
from NASA’s Terra satellite [9, 14, 23], which gives daily snow
and bi-weekly vegetation cover maps gridded into 0.05◦×0.05◦

latitude-longitude bins (roughly 5km×5km at the middle latitudes).

Unfortunately, this data is neither complete nor fully accurate, pri-
marily because many satellites cannot make accurate observations
through clouds. For each day and each bin (which we call a “day-
geobin”), the satellite data records the percentage of the bin that
was visible, the percentage of the visible area that was covered by
snow or greenery, and confidence scores. To identify day-geobins
with reliable ground truth, we excluded low-confidence bins, com-
puted a probability as a function of the snow (or greenery) and vis-
ibility percentages, and labeled those below 0.15 as non-snow (or
greenery) day-geobins, and over 0.85 as snow (or greenery) day-
geobins. (This is similar to what was done in [28] except that they
coarsened to 1◦ bins, and used unspecified separate thresholds on
visibility and coverage). The remaining day-geobins were ignored.

Image classification. We take a machine learning approach to
image classification. In training, we consult the satellite data to
find all day-geobins where there is a high confidence of the event
occurring or not occurring, and label all these images as positive
or negative exemplars, respectively. The disadvantage to this ap-
proach is that it is very noisy: many images are taken indoors and
have no evidence of the natural world, for instance, and many im-
ages have incorrect geo-tags and timestamps. The advantage is that
it permits cheap, scalable training with little human effort.

We consider two types of features: text tags and visual content.
For text tags, we built a vocabulary consisting of the 1,000 most fre-
quent tags in the training set and represented each image as a 1000-
d binary vector indicating presence or absence of each tag. We then
trained a linear Support Vector Machine [11] to predict whether
or not the tags have evidence of the event. For visual features,
we learned a model using Convolutional Neural Networks (CNNs),
which are the state-of-the-art in image classification [12]. We used
the AlexNet network architecture and the Caffe open-source soft-
ware framework [10], and followed the popular procedure of ini-
tializing CNN weights based on a network trained on ImageNet,
and then fine-tuning using our training set [22].

Aggregating evidence. The classifications on individual images
are not perfect, and mislabeled geo-tags and time-stamps would
yield misleading evidence even if they were. To mitigate this, we
combine classification results from multiple images taken at the
same time and place, taking into account the image classifier’s con-
fidence. In particular, for each day-geobin, we build a histogram
of quantized confidence scores, recording how many of the photos
were classified as snow and non-snow (or green/non-green) at 20
quantized confidence levels. While this improves results compared
to considering single images, it suffers from the problem that users
with many photos have a disproportionate influence. We thus build
a histogram over users instead of photos, so that each of the 20 his-
togram bins counts how many users took at least one photo at that
confidence level. We then trained an SVM to estimate environmen-
tal state from these histograms.

4. EXPERIMENTAL RESULTS
To evaluate the potential of user-contributed social photographs

for estimating properties of the natural world, we trained classifiers
using data from North America for the years 2007–2010. The train-
ing data consisted of any photos taken in any day-geobin in which
the probability of the event according to the satellite was below
15% or above 85%, calculated as described above. To make re-
sults more easily interpretable and to prevent problems with unbal-
anced classes, we randomly sampled from the larger class to yield a
roughly equal number of positive and negative exemplars for each
event. For snow, there were 626,522 such photos taken by 49,462
distinct users in 87,586 distinct day-geobins; for vegetation, there
were 645,694 photos by 35,510 users in 84,921 day-geobins. We
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Figure 1: Classification results on random images from times and places where satellites reported snow (top), no snow (second row),
high vegetation (third row) and low vegetation coverage (bottom). Images are ordered according to the classifier’s confidence, from
highly certain of absence (left), to uncertainty either way (middle), to highly certain of presence (right). Faces obscured for privacy.

tested using data from 2011–2015, again balancing the classes, for
a total of 577,186 test images for snow and 769,992 for vegetation.

Individual image classifier. We first tested accuracy on the in-
dividual image classification problem. This task is extremely dif-
ficult, even for a human, because many images are taken inside or
otherwise do not have useful information about the natural world,
and many images have incorrect timestamps or geo-tags. The tag
features achieve 63.0% accuracy for snow and 67.5% for vegeta-
tion, compared to random baselines of 50.0%. Among the vocab-
ulary of 1,000 tags, the SVM found that snow, snowshoeing, bliz-
zard, ski, and sledding were most positively correlated with snow,
while july, florida, sandiego, baseball, and bikes were most nega-
tively correlated; for vegetation, top positive tags were ferns, red-
woods, fawn, woods, and forest, and top negative tags were lasve-
gas, newmexico, skyscraper, tucson, and desert. Although these
tags are intuitive, they also reveal a problem with tag-based fea-
tures: the classifier can easily learn biases in the data. For instance,
while the tag snow may be a strong indicator of a snowy scene,
the tag july is simply exploiting the bias that relatively few places
in North America have snow in summer. This bias means that the
classifier is unlikely to detect a highly unusual event (e.g., unprece-
dented summer blizzard), reminiscent of the problems discovered
with Google Flu [15]. Also, tag-based analysis places the classifier
at the mercy of the quality and completeness of user-supplied tags.

Visual features, in contrast, are always present and less ambigu-
ous. We saw this reflected in the results, where visual features per-
formed at 69.2% accuracy for snow and 80.5% for vegetation. A
visualization of some sample visual classification results along with
the classifier’s confidences are shown in Figure 1 (see caption for
details). We see that the classifier can generally separate snow im-
ages from non-snow images, although some scenes such as beaches
(second row, eighth column) are similar enough to snow to cause
confusion. The two most extreme “errors” (first row first column,
and second row last column) illustrate cases where the CNN actu-
ally classified the image correctly; here either the satellite data was
erroneous or the photo geotags or timestamps were incorrect.

Day-geobin classifier. Having classified individual images, we
next test performance of these estimates in accurately classifying
individual day-geobins (e.g. deciding if there was snow on the ground
on a given day and place). Our accuracy on this task for snow was

(a) (b)

(c) (d)
Figure 2: Performance on estimating snow presence for about
98,000 North American day-geobins from 2011–2015, in terms
of (top) ROC and (bottom) Precision-Recall, as a function of
number of (left) photos and (right) distinct users per bin.

about 60.8% for textual features alone, 69.3% for visual features,
and 71.7% for the combination of visual features and textual fea-
tures (in which we combined the two 20-d feature vectors to learn
a single SVM on a 40-d feature space), compared to 50.0% random
baseline; for vegetation, accuracies were 71.3% for tags, 79.4% for
visual features, and 81.9% for the combination.

We have observed that most incorrectly detected day-geobins oc-
cur in places with very few observed photos contributed by few
users (and often only a single photo), since in this scenario the
classifier is basing its entire decision on very little evidence. Fig-
ures 2(a) and (b) plot ROC curves for snow as a function of the
number of photos and number of distinct users in each day-geobin;
vegetation curves are not shown due to space constraints, but the
trend is similar. Accuracy increases when more than one photo is
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Figure 3: Screenshot of visualization tool, for snow coverage on February 28, 2015.

available, reaching about 85% for 40 photos (and eventually sat-
urating at about 90% for 500 photos). Increasing the number of
distinct users improves accuracy more dramatically, up to nearly
95% for 10 users and saturating at about 99% for 50 users. Presum-
ably this boost is because evidence across multiple users is approx-
imately conditionally independent given the event, as opposed to
photos from any single photographer which are highly correlated.
In many applications, it may be more important for scientists to re-
trieve places and times when specific events occurred, as opposed
to accurately classifying at every place and time. Figures 2(c) and
(d) shows precision-recall curves that adopt this retrieval view. At
60% recall, precision nears 90% even for day-geobins with single
users, and reaches 99% for 20 users.

5. A VISUALIZATION TOOL
The quantitative results in the last section suggest that social me-

dia data could provide useful evidence about nature, but gave little
insight into when the analysis would succeed or fail. We have de-
veloped a web-based tool that allows users to explore and compare
satellite and social media data. Figure 3 shows a screenshot of the
tool, visualizing snow coverage on one particular day. We briefly
describe the main features here; please check our project website
for more detailed information.1 The map shows the satellite snow
coverage, where black, gray, and white indicate no-snow, uncertain
(cloud cover) and snow regions, respectively. Blue and red dots on
the map indicate locations where the automatic photo-based clas-
sifier agrees and disagrees with the satellite, respectively, and the
right panel of the interface lists details of these bins including po-
sition and output of the automatic day-geobin classifiers. Users
can click on any geobin of interest to see photos taken at that time
and place (lower left), organized by distinct user, and the visualiza-
tion also shows the classification results estimated for each image.
Clicking a photo shows it in detail, including text tags, geo-tags,
timestamps, and other metadata. (In accordance with the Flickr
Terms of Service, the images are not stored locally and clicking
images leads to the photo page on Flickr.)

Although development of the tool is ongoing and we have not yet
conducted a formal user study to test the tool with real users, we
have informally found several interesting examples of use cases:

1http://vision.soic.indiana.edu/snowexplorer/

1. Verifying suspicious satellite observations: The satellite
reported snow in West Virginia in Aug. 2012, but the clas-
sifier disagreed, and manual inspection of the photos taken
there shows no evidence of snowfall.

2. Complementing missing satellite data: The satellite shows
little evidence of a Jan. 2015 snowstorm in the northeast be-
cause of clouds, whereas the automatic classifier and Flickr
photos confirm widespread snow coverage. The photo classi-
fier also flags snow coverage near Blacksburg, VA on March
28, 2015, while the satellite does not; the images show a trace
amount of snow that likely were not significant enough to be
visible to the satellite.

3. Debugging classification errors: The classifier detected snow
near Roanoke, VA on Jan. 1, 2014 while the satellite did
not; multiple indoor scenes with white walls were incorrectly
classified as containing snow. Meanwhile it also flags snow
near Eugene, OR on the same day, because of photos of a
distant snowy mountain peak that is in an adjacent geospa-
tial bin.

6. CONCLUSION
We presented a technique and visualization tool for combining

automatic image analysis of public Flickr photos with satellite maps
for tracking natural events. We considered snow and vegetation as
test cases, since continental-scale daily coverage data over nearly
a decade is publicly available for these events, but the automatic
classification techniques and visualization tools are general enough
to be applied to a wider range of events. In ongoing work we are
applying it to wildfires, flooding, and flowering of particular flower
species, for example. We hope our work inspires further interest
in using social photo collections and computer vision as a novel
source for environmental data.
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