
Distributed Garbage Collectio n

J . Dana Eckar t
Richard J . LeBlanc

Georgia Institute of Technolog y

ABSTRAC T

There are two basic approachs to the problem of storage reclamation, process- an d
processor-based, named for the view point used to recognize when a particula r
piece of storage can be reclaimed . Examples of the processor approach includ e
mark/sweep and copying algorithms and their variants, while reference countin g
schemes use a process view of the collection . It is argued that the process
approach is better suited for distributed computation where links between dynami-
cally allocated objects may cross processor boundaries . In addition, the proces s
approach allows the heap to be more conveniently shared with other processes i n
those cases when different processes might not have their own virtual addres s
spaces . A new algorithm using the process approach is given . Its space require-
ment per object is better than that for reference counting . In addition, a restricted
form of pointer replacement is supported which allows circular structures so con-
structed to be properly collected .

I . Introduction

Garbage collection, or more generall y
storage reclamation, is a common com-
ponent of many interpreters . There are
two basic approaches to the problem of gar-
bage collection, which will be referred to a s
process- and processor-based collection .
The distinction between these two
approaches is important in the design of a n
algorithm for collecting structures which
have links across machine boundaries in a
distributed system . A distributed system
(for purposes of this discussion) consists o f
a collection of machines, each with its own
local memory, connected by a network such
that pointers on one machine may directl y
address memory locations on another
machine . Although related work in paralle l
or "on-the-fl y " garbage collection111 i21 [31 14 1

01 uses multiple processors, it differs due t o
the assumption that a single memory can b e
directly operated on by all of the proces-
sors .

Permission to copy without fee all or part of this material is granted provide d

that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear ,
and notice is given that copying is by permission of the Association fo r

Computing Machinery. To copy otherwise, or to republish, requires a fee and/

or specific permission.

Distributed garbage collection has bee n
examined by both Bishop i6] and Hudak . i7 1

For Bishop the purpose was to divide dat a
among separate memory areas l based upon
its expected longevity . Areas with longer
lived objects would be collected less fre-
quently, thus reducing overhead due to gar-
bage collection . Hudak's desire for investi-
gating the problem is that distributed sys-
tems can take advantage of the natura l
parallelism found in functional languages .
In this way, the inefficiencies, associate d
with garbage collection, of an applicativ e
language can be overcome . The algorithm
presented below was designed with the
latter motivation . In either case, if the
computations and results can be distribute d
over various machines in a system ; a collec-
tion algorithm must take this distributio n
into account .

Bishop's algorithm requires each
machine, X, to keep track of the object s
(and the machines on which they exist )
which have active pointers into X's address
space . Normally, Bishop assumed, th e
number of such pointers (organized int o

1 . Each memory area can be viewed as belonging t o
©1987 ACM 0-89791-235-7/87/0006/0264 . . . 754

	

a separate machine in the distributed system .

264

http://crossmark.crossref.org/dialog/?doi=10.1145%2F29650.29678&domain=pdf&date_stamp=1987-07-01


interarea link tables) would be small .
However, in the event that a large numbe r
of pointers from a particular machine, Y ,
were noted, then pointers in the interare a
link tables of machine X emanating fro m
machine Y could be removed and replace d
with a cable from machine Y . The cable i s
a more compact representation and is use d
when the number of interarea links is s o
great that it is just as well to do garbag e
collection on the two machines togethe r
(otherwise the pointers in the interarea lin k
tables are used to indicate live data o n
machine X without the need for consultin g
other machines in the system during a gar-
bage collection) . Thus if machine X has a
cable from Y then Y's address space will b e
collected whenever the address space of X
is collected . The collection on each indivi-
dual machine might be a copying (o r
mark/sweep) algorithm, in which case thi s
would mean that both X and Y should fin-
ish copying (or marking) all live data
before a flip (or sweep) is performed .

Hudak's algorithm makes use of what he
calls a marking tree . Since the results of a
computation for a functional language for m
a tree, the mark process of a mark/swee p
algorithm is spawned on the root of the tree
and is recursively spawned on each subtree .
When marking reaches the leaves of th e
tree, they are coloured and then the direc t
ancestors are recursively coloured until th e
root is coloured . When the root of the tree
is coloured, then the sweep phase can safel y
begin . Hudak's algorithm actually general-
izes to directed graphs . This algorithm is
useful because the colouring of the root o f
the result tree determines when the swee p
phase can begin. Unfortunately, thi s
approach requires that there only be on e
originator of computation on the distribute d
system, otherwise the machines in the sys-
tem would have to poll each other in order
to determine when all of the results (of the
independent processes) had been com-
pletely marked .

The above two techniques are
processor-based, since each processor col-
lects structures based on processor boun-
daries . For example, in the mark/swee p
algorithm all of the live data on a machine
must be marked before sweeping begin s
otherwise some live data might be

collected . In fact, algorithms which ar e
typically called garbage collectors generall y
fall into this category . Process-based algo-
rithms are those which do not require any
knowledge of the state of the machine as a
whole (e .g . has marking been completed? )
in order to collect unused storage . Refer-
ence counting algorithms do exactly that .

Reference counting does not require a
global action, since each structure contains
enough information to determine when it i s
no longer being used . An object in the sys-
tem gets this information from the proces s
which created and used it . For example, i n
Lisp, the car, cdr and cons operator s
would pass information to objects on which
they were invoked .

We feel that process-based collectors ar e
better suited for applications on distribute d
systems . Since the life expectancy o f
objects is difficult to judge, it is likely tha t
some machines in the network will hav e
more objects of a particular life expectance
than others . In such a situation, processor -
based collectors like Bishop's algorith m
could adversely affect other computation s
in the network due to one machine's nee d
for garbage collection . The process
approach does not suffer from this prob-
lem .

2 . The Reference Marking Algorith m

Reference counting is well suited fo r
distributed garbage collection because dat a
structures can be collected independently
from other computations . Because each
object must keep a count of the number o f
references to it, reference counting require s
log N additional bits for each object, wher e
N is the total number of objects which ca n
exist at one time . Like reference counting ,
reference marking is also a process-based
collector but the space needed by the collec-
tor is bounded, three bits for each objec t
and one additional bit for each pointer i n
the object .

The algorithm presented below is base d
on an idea proposed by Spector isl in which
pointers to structures are divided into tw o
classes : defining and borrowed . A defin-
ing reference is the first, and often th e
only, reference to an object . If a copy of
the pointer is made then the copy is a

one

265



borrowed reference since a portion of the
data structure is being borrowed . While
Spector states that such an algorithm woul d
be well suited for garbage collection in " . . .
systems which keep dictionaries of define d
objects or in languages which control th e
way new user objects are defined .", he does
not provide an algorithm . A particular dif-
ficulty in designing such an algorithm i s
that special care must be taken when value s
are returned from function calls in a lis t
processing language such as Lisp . Consider
the following Lisp example :

(def loo (x) (cons 'z (cdr x))
(foo '(a b c))

foo will return the list (z b c), where the
tail (b c) is a borrowed structure . The tai l
is borrowed since (cdr x) will return a cop y
of the pointer which already points to (b c) .
When foo returns, some or all of the argu-
ment, (a b c), which was used must be col-
lected . Yet if this is done without regard
for the value returned by foo a danglin g
reference will be left . What is needed is a
mechanism for changing the borrowe d
reference into a defining one, as well as
allowing the proper collection of the head
of (a b c) .

2 .1 The Algorith m

For convenience, we suppose that th e
algorithm is being used for a Llsp-like func-
tional language, Lisp* . The major differ-
ences between Lisp* and Lisp are that it
requires all referenced variables to appear
as formal parameters in function declara-
tions and no pointer replacement is
allowed .

As was discussed above, the primary
problem is recognizing when a borrowe d
reference should become a defining one ,
and to not continue collection beyond tha t
point in the data structure when such a
change is made. This necessitates recogniz-
ing shared objects . To do this two mark
colours are used : red and green. By assum-
ing that all of the arguments to a functio n
call are the same colour, by marking th e
result value with a different colour and the n
collecting arguments with respect to the
function colour, the shared objects can be

identified . All arguments to a function ca n
be made the same colour by alternating th e
colour assigned to function calls . Any
colour assignment may be used for the ini-
tial function invocation ; red will be chosen
as the default .

Besides colour, objects have two addi-
tional features each of which may b e
encoded into a single bit . They are
shared-object and original-colour. The
first is a boolean value which indentifie s
shared objects, and the second records th e
original colour with which an object wa s
coloured .

Two optimizations are used in order t o
increase the efficiency of the algorithm .
First, if all of the arguments to a functio n
call are borrowed references then it i s
unnecessary to mark the result since noth-
ing will be collected . This optimization i s
useful for functions like append where
recursive calls usually pass only borrowe d
references as parameters . The second
optimization takes advantage of the way i n
which the primitive functions work. Con-
sider car: if the argument to car is a defin-
ing reference, then the first cell of the
structure can be returned to free storag e
without the need for any marking (likewis e
for cdr), otherwise nothing is collected .
The remaining primitive functions have
similar actions based on each function' s
semantics .

The above optimizations also require
that the colour assigned to function call
should only be alternated when a use r
defined (i .e. non-primitive) function is
invoked . Since the result will be coloure d
opposite to the function colour, this make s
the result the same colour as the parent
function . In addition, since marking of th e
result is not done when all arguments are
borrowed references, the function colour o f
such user defined functions is changed t o
the opposing colour before the body is
evaluated . This ensures that the result will
be of the appropriate colour .

The appendix contains pseudo-cod e
which describes the reference marking algo-
rithm . In order to more clearly understand
reference marking, we present the follow-
ing detailed example :

9'

266



green

green

false

'b '

D

green

green

false

B

Y

(def append (x y)
(cond (x (cons (car x)

(append (cdr x) y)))
(t y)) )

(def skip2 (x) (cdr (cdr x)))

(skip2 (append (list a) (list b c)) )

To further aid in describing the algo-
rithm, the cons cells generated and the
information they contain is presented as th e
steps are given . Starting from the top ,
working down line by line, the informatio n
encoded is : the current-colour of the cell ;
the shared-object flag ; the original-colou r
of the cell ; the car (with the reference kind2
appearing to the left if a pointer to a cell) ;
and finally the cdr (again with the referenc e
kind to the left when needed) .

1. skip2 is invoked and assigned the
colour red .

2. append is invoked and assigned th e
colour green .

3. The two arguments to append are
evaluated . x and y are constructed by
the primitive function list with thei r
initial colouring being the colour o f
list, green . The arguments x and y of
append are defining references .

3 .1 The body of append is begun. con d
finds that a copy of the argument x i s
non-nil and thus begins evaluation o f
the corresponding function, cons ,
assigning it the colour green .

2 . 13 is used to denote a borrowed reference while D
refers to a defining reference .

3 .1 .1 cons in turn needs to evaluate (car x)
and (append (cdr x) y) as its argu-
ments . The first is evaluated an d
returns the atom a .

3 .1 .2 A recursive call to append is made
requiring that (cdr x) be evaluated t o
give the first parameter and a copy o f
y made for the other. This invocatio n
of append is coloured red .

3 .1 .3 After the arguments for this invoca-
tion of append have been evaluated
and both found to be borrowed refer-
ences, the function colour is change d
to green . Since x has the value nil the
first condition of cond is false and the
second action is taken, returns y . No
marking is necessary since both argu-
ments were borrowed references .

3 .2 cons is now performed yielding the
result :

Note that the constructed object took
its colour from the function colour o f
cons .

3.3 In turn, this is also the returned value
of append . Since there is a parame-
ter with a defining reference ,
finishjunction will first mark(value ,
red) giving :

valu e

The first element of the list has bot h
current-colour and original-colou r
coloured red, but the second element ,
refered to by the borrowed reference ,
only has the current-colour being red .
finishjunction will then collect(x ,

green) and collect(y,green) yielding :

value
green

green

false

'b'

green

green

false
'c '

red

green

fals e

'b '

D --~

green

green

false
'c ,

B

red

red

false

'a'

267



reference to :

green

green

false

value
red red

red

green
valu e

r
greengreen

tru efalse

'b'

false

'c '

Note in particular that the head of th e
list is a copy, and that the original lis t
(a) has been collected .

4. sklp2 now possess a defining refer-
ence to the list (a b c) and the evalua-
tion of its body is begun .

5. Each cdr is performed in turn, return-
ing as its value the borrow_cdr of it s
argument . After the first cdr, the
value is :

Note that the borrowed reference ,
contained in the first object, has
become a defining reference and tha t
the second object in the list is no
longer a shared-object . The second
cdr then gives :

Here, pro pig ate_colour_change has
propigated the current-colour to the
last object while at the same time
assigning the original-colour of the
second object the value of its current-
colour .

6. finish function is called upon exit
from sklp2 . Since the parameter wa s
a defining reference, mark(value ,
green) and collect(x, red) are per -
formed . Upon completion ,
finish_function returns a defining

As a side note, the final result is collected ,
after being displayed, by examining the ta g
of its first cell and using that for the call t o
collect . The initial evaluation request, /ni t
is then collected by collect(Init, red) .

3 . Correctness of Reference Markin g

To show that reference marking behaves
correctly it is necessary to show that it
eventually collects all dead data and that
live data is never collected . Data is live i f
it is reachable from some pointer on the
execution stack; otherwise it is dead . The
execution of a program is viewed as a tre e
of function calls, where the arguments to
the call, represented by the siblings, ar e
evaluated in parallel . Internal nodes of the
tree indicate arbitrary function calls whil e
leaves correspond to calls to primitive func-
tions .

Claim 1 : A borrowed reference to a
shared-object becomes a defining refer-
ence . At the same time the referenced
object also has shared-object set to
false. The two operations form an
atomic action.

Claim 2: Arguments to functions which ar e
defining references, are completely col-
lectable, with respect to that function' s
colouring, up to borrowed references o f
unshared objects .

Claim 3: Upon return, each function invo-
cation collects all of the data whic h
would be dead after return . No live
data will be collected .

In order to see the first claim, remembe r
that mark colours objects which are pointe d
to by borrowed references and ceases to
colour further along that path in the data
structure . Thus, when collect is freeing
data and encounters an object of a non-
collectable colour, that object is marked a s
shared. Since collect is only performed o n

value
redred

greenred

false false

green

green

false

'b ''a '

'a '

D

'b '

D

'c '

B

red

red

false

red

red

false

red

false

nan

268



parameters to the function under considera-
tion, it must be the case that this objec t
marks the beginning of a shared structur e
which is being used as part of the result
which the function is returning . Borrowed
references to shared objects are not
replaced by defining references immedi-
ately (and the object again become s
unshared) . For efficiency reasons thi s
change occurs during either a subsequent
call to collect, mark or when the pointer i s
being borrowed as in the primitive func-
tions car and cdr.

Remember that since mark colours
objects pointed to by borrowed references ,
it is important to insure that this doesn' t
cause a 'break' in the colouring of a dat a
structure that would cause collect to not
finish collecting the entire structure . Th e
second claim is that this will never happen .
There are two actions in the algorithm
which are relevant : (1) when a borrowe d
reference to a shared-object is made into a
defining reference, remember that th e
original-colour colour is opposite of th e
current-colour . This informs collect that
collection should continue but with respec t
to the original-colour ; (2) when a collectio n
on a data structure is performed and it col-
lects up to a borrowed reference, th e
current-colour of the object to which it
points is changed back to its original -
colour . The first action allows the upper-
most portion of a data structure to be
marked with a different colour, but instruc-
tions are left so that the lower portion o f
the structure will be collected with th e
appropriate (opposite) colour . The second
prevents results which have been marke d
but later dicarded which never caused a n
object to be marked as shared-object fro m
having an opposing colour in the middle o f
a data structure . If this colouring remaine d
then it might prevent the collection of th e
lower portion of the data structure .

To prove the third claim, mark and col-
lect are examined in more detail . Since the
result of a function may borrow from it s
arguments (represented in the tree by th e
results of the children of the current func-
tion node), it is necessary to mark the
result first so that any shared-object which
is also a part of one of the arguments wil l
be coloured with the colour opposite to the

one which will be used by collect . The
colours will he different since mark and
collect use opposite colours for thei r
respective tasks . Those portions of th e
arguments which appear prior to an object
marked with a different colour and before
borrowed references are dead data (since
the only way in which it would still be live
would be for it to be passed back as a par t
of the result and this is exactly what the
colouring of the result is used to detect) .
All of the dead data is therfore collected .
To see that the result now considers tha t
protion of the argument which was bor-
rowed to be defining, remember that th e
collect action marked the object of dif-
ferent colour as a shared-object and by
claim two above, the borrowed reference s
will eventually become a defining refer-
ence .

By induction on the level of function cal l
nesting (i .e . height of the execution tree)
and claim three above, reference marking
collects all and only inactive memory . The
base case, that of a tree with one interio r
node, is true by an application of claim
three . The inductive hypothesis is that if
claim three is true for all children of a n
interior node then it is true for that node .
By the inductive hypothesis, all of the chil-
dren have collected their dead data an d
have not collected any live data . By argu-
ments similar to those used in showin g
claim three, the parent node also properl y
collects dead data and returns no live dat a
to free storage .

4 . Extending and Enhancing the Algorith m

While reference marking is, in general ,
not capable of properly collecting arbitrary
circular structures, if pointer replacement i s
restricted to cells that are reachable from a
defining argument of the most recent non-
primitive function invocation, then pointe r
replacement can be supported . If a pointer
is replaced, then the replaced pointer must
be remembered until the user defined func-
tion in which the replacement occurred i s
exited . At that time, the structure to whic h
it points should be collected as if it were a n
argument to the function . This allows the
proper collection of the pointer which wa s
replaced . To properly collect the resulting ,
possibley circular, structure it is necessar y

269

269



to add an additional colour so that n o
attempt is made to free cells which have
already been returned to free storage .
Unfortunately this also requires another bi t
per object to record the current-colour .

Allowing reassignment in a language ca n
make it difficult to recognize parts of a
computation which may be performed in
parallel . However, by restricting pointe r
reassignment in the above way, the effec t
of a reassignment is localized . Thus ther e
are fewer problems in recognizing whe n
parallel computation is safe .

5. Simulations and Results

Each processor, in the simulation, is a
stack machine which directly runs Lisp* .
The machines in the network are con-
structed so that the simulation occurs with
respect to a global logical clock . Each
machine is allowed to perform its computa-
tion for a short time, with all intermachin e
communications being queued by th e
receiving machine . A machine is chosen t o
be run next based upon its local clock . The
machine with the minimum clock value is
always run next with the minimum being
recalculated each time a machine return s
control to the main loop . Both idle an d
waiting times are also recorded for eac h
machine . Idle time is accrued when ther e
are no requests to be evaluated (either fo r
the user or for collection purposes) . Wait-
ing time is the amount of time that a
machine must wait for memory to be deal -
located in order to satisfy the allocation
request of some evaluation . All of the col-
lection algorithms were implemented usin g
stack traversal of data structures .

Bishop ' s algorithm has been imple-
mented using a mark/sweep algorithm on
each machine in the distributed system .
Only cables have been assumed to exis t
between machines since the interconnec-
tivety of the network was assumed to b e
high. Thus no inter-area link tables ar e
used . The mark phase of the mark/swee p
algorithm must occur as an atomic actio n
but the sweep phase is incremental and it is
indeed possible to begin another mar k
phase on a machine before the sweep phas e
has been completed (in which case the
sweep

	

phase

	

is

	

terminated) .

Multiprocessing on each processor is no t
simulated, thus when a process is blocked
that machine may only service data retrieva l
requests for other machines in the network .

Reference marking, reference counting
and Bishop's algorithm using mark/swee p
were simulated on a single processor . For
test programs designed to create large
amounts of short lived data and varying
amounts of long lived data, all of the algo-
rithms required less than 6% of the tota l
computation time . As expected, Bishop' s
algorithm (which is a simple mark/sweep o n
one processor) improved its performanc e
dramatically with larger memory sizes .
Both reference counting and marking
required the same amount of time regard -
less of memory size, with reference count-
ing using approximately 3 .0 - 3.5% and
reference marking only 2 .4 - 2 .7% of the
total compuatation time .

While results are not yet available for
multiple machine networks, tests have bee n
designed to observe a behavior whic h
should be unique to Bishop's algorithm .
The test involves two machines, X and Y ,
with a cable from X into Y (i .e . X has
pointers into the address space of Y) .
Almost all of Y's address space is garbag e
while X's is almost all live data . When Y
needs to do a collection, the live data on
both machines must be completely marked
before a sweep phase can begin . However ,
Y must wait longer than it ordinarily migh t
since much more marking will be require d
for X than for Y . Worse still, the data ma y
not even belong to the same process . Thus
those processes which are using machine X
might be unfairly penalized by action s
taken on machine Y since a garbage collec-
tion might not have been necessary fro m
their prespective . Likewise, processes on
machine Y must wait for the live data on X
to be marked . 19j

6 . Conclusion

We have argued that process-based
rather than processor-based garbage collec-
tion techniques are better suited for collect-
ing unused storage on distributed systems .
The reference marking algorithm is a n
improvement over reference countin g
(another process-based collector) since th e

270

270



space required to store the collection infor-
mation is independent of the number of
objects which can exist in the system . In
addition, simulations indicate that reference
marking is comparible in speed with other
algorithms, especially when memory spac e
is at a premium .

REFERENCE S

1. Guy L . Steele Jr . (Sept 1975), Multiprocessing Compactifying Garbage Collection, Com-
munications of the ACM, 18(9), pp 495 - 508 .

2. Edsger W . Dijkstra and Leslie Lamport et al (Nov 1978), On-the-Fly Garbage Collection :
An Exercise in Cooperation, Communications of the ACM, 21(11), pp 966 - 975 .

3. Jeffrey L . Dawson (1982), Improved Effectiveness from a Real Time Lisp Garbage Col -
lector, Conference Record of the 1982 ACM Symposium on Lisp and Functional Program-
ming, pp 159 - 167 .

4. Mordechai Ben-Ari (July 1984), Algorithms for On-the-fly Garbage Collection, ACM
Transactions on Programming Languages and Systems, 6(3), pp 333 - 344 .

5. Ashwin Ram and Janak H . Patel (June 1985), Parallel Garbage Collection Without Syn-
chronization Overhead, 12th Annual Symposium on Computer Architecture, pp 84 - 90 .

6. Peter B. Bishop (May 1977), Computer Systems With a Very Large Address Space and
Garbage Collection, Massachusetts Institute of Technology, PhD Dissertation, TR-178 .

7. Paul Hudak and Robert M . Keller (1982), Garbage Collection and Task Deletion in Dis-
tributed Applicative Processing Systems, Conference Record of the 1982 ACM Symposiu m
on Lisp and Functional Programming, pp 168 - 178 .

8. David Spector (March 82), Minimal Overhead Garbage Collection of Complex List Struc-
ture, ACM SIGPLAN Notices, 17(3), pp 80 - 82 .

9. J . Dana Eckart (Aug 1987), Garbage Collection in Distributed Systems, Ph .D . Disserta-
tion, Georgia Institute of Technology .

Appendix

type pointer = record ease ptr_type : (atom, cell) i s
atom :

name : access string ;
cell :

kind : (borrow, define) ;
ptr : access object ;

end record ;

type Colour = (red, green) ;

type object = record
original_colour, current_colour : Colour ;
shared_object : boolean ;
car, cdr : pointer ;

end record ;

function borrow_car(P : pointer) : pointer is return borrow(prop_car(P)) ; end borrow_car ;

function borrow_cdr(P : pointer) : pointer is return borrow(prop_cdr(P)) ; end borrow_car ;

271

271



function borrow(P : pointer) : pointer i s
if P.ptr .ptr_type = cell then return pointer'(cell, borrow, P .ptr) ;
else return P;
end if ;

end borrow ;

function opposite_colour(C : colour) : colour i s
if C = red then return green ; else return red ; end if ;

end opposite_colour ;

function prop_car(P : pointer) : pointer i s
if P .ptr_type = atom or if P = NIL then return P ; end if ;
elsif P .ptr .current_colour <> P.ptr .original_colour then

propigate_colour_change(P) ;
return P .ptr .car ;

elsif P.ptr .car .ptr_type = cell and if P .ptr .car.kind = borrow
and if P .ptr .car <> NIL then

if P.ptr .car.ptr .shared_object the n
P .ptr .car .ptr .shared_object := false ;
P .ptr .car .kind := define ;

end if ;
return P.ptr .car ;

else return P .ptr .car ;
end if ;

end prop_car ;

function prop_cdr(P : pointer) : pointer is
if (P.kind = atom or if P = NIL) return P ;
elsif P .ptr .original_colour <> P. ptr .current_colour then

pro pig ate_colo ur_cha n ge (P) ;
return P .ptr .cdr ;

elsif P.ptr .cdr.ptr_type = cell and if P .ptr .cdr.kind = borrow
and if P .ptr .cdr <> NIL then

if P .ptr .cdr.ptr .shared_object then
P .ptr .cdr .ptr .shared_object := false ;
P.ptr .cdr .kind := define ;

end if ;
return P .ptr .cdr ;

else return P.ptr .cdr ;
end if ;

end prop_cdr ;

procedure propigate_colour_change(P : pointer) i s
if P.ptr .car .ptr_type = cell and if P .ptr .car <> NIL the n

if P .ptr .car.kind = define or P .ptr .car .ptr .shared_object then
P .ptr .car .ptr .current_colour := P.ptr .original_colour ;

end if ;
end if ;
if P.ptr .cdr .ptr_type = cell and P.ptr .cdr <> NIL then

if P .ptr .cdr.kind = define or P .ptr .car .ptr .shared_object the n
P.ptr .cdr.ptr .current_colour := P.ptr .current_colour ;

end if ;
end if ;
P.ptr .original_colour := P .ptr .current_colour ;

end propigate_colour_change ;

272

272



procedure collect(P : in out pointer ; C : colour) i s
if P.ptr_type = atom or if P.ptr = NIL or if P .ptr .current_colour <> C

or if (Not P .ptr .shared_object and P .ptr.kind = borrow) then return ;
elsif P .ptr .shared_object and P .kind = borrow then

P .kind := define ;
P .ptr .current_colour := opposite_colour(P .ptr .current_colour) ;
collect(P, opposite_colour(C)) ;

elsif P .kind = borrow then
if P .ptr .current_colour <> P .ptr .original_colour then

P .ptr .current_colour := P .ptr .original_colour ;
end if ;
return ;

elsif P .ptr .current_colour <> P .ptr .original_colour then collect(P, P.ptr .original_colour) ;
elsif P .ptr .current_colour <> C then

P .ptr .shared_object := true ;
return ;

end if ;
if P.ptr .car.ptr_type = cell and if P .ptr .car .ptr <> NIL then collect(P .ptr .car, C) ; end if ;
if P.ptr .cdr .ptr_type = cell and if P .ptr .cdr .ptr <> NIL then collect(P .ptr .cdr, C) ; end if ;
return_cell(ptr) ;

end collect ;

procedure mark(P : in out pointer ; C : Colour) i s
if P .ptr_type = atom or if P .ptr = NIL or i f

P .ptr .current_colour = C the n
return ;

elsif P .kind = borrow then
if P.ptr .current_colour <> P .ptr .original_colour then propigate_colour_change(P) ; end if ;
if P.ptr .shared_object then P.kind := define; elsif return ; end if ;
P .ptr .current_colour := C ;

else P .ptr .current_colour := C ;
end if ;
if P .ptr .car .ptr_type = cell and P .ptr .car .ptr <> NIL then mark(P .ptr .car, C) ; end if ;
if P .ptr .cdr .ptr_type = cell and P.ptr .cdr.ptr <> NIL then mark(P .ptr .cdr, C) ; end if ;

end mark ;

function finish_function (Value : in out pointer ;
Args : argument_list ; Fun_colour : Colour) : pointer is

mark(Value, opposite__colour(Fun_colour)) ;
for arg in Args do collect(arg, Fun_colour)) ; end for ;
if Value .ptr_type = cell and if Value <> NIL

and if value .kind = borrow and if Value .ptr .shared_object the n
Value .kind := define ;
Value .ptr .shared_object := false ;

end if ;
return Value ;

end finish_function ;

273

273


