
CCAL : An Interpreted Language for Experimentation i n
Concurrent Control*

Phil Kearns

	

Chris Cipriani

	

Mitzi Freema n
Department of Computer Science

	

Tartan Laboratories

	

Department. of Computer Scienc e
The College of William and Mary

	

Pittsburgh . PA 15213

	

University of Pittsburg h
Williamsburg, VA 23185

	

Pittsburgh, PA 1526 0

Abstract

Concurrent Control Abstraction Language . CCAL .
is an interpreted language which provides no par-
ticular control regime to the user . CC/1L instead
supports five primitive operations which manipulate
an abstract model of inter-procedural control . This
model is intrinsically concurrent, and the user is al-
lowed to construct high-level concurrent control op-
erations from the primitives (hence, control abstrac-
tion) . The primary use of CCAI, is as a vehicle b y
which rapid prototyping of application specific con-
trol forms may be done and as a tool for the construc-
tion and evaluation of novel control forms . especially
control forms for highly concurrent and distribute d
systems . The CCAL interpreter is implemented a s
a distributed program on a network of Vaxen an d
Sun-3 workstations under 4 .2bsd and 4.3bsd Unixl .
CCAL programs appear as multi-process program s
in a shared memory system . 13oth true and apparen t
concurrency are possible . This paper describes th e
control abstraction facilities offered by the CCAL
interpreter, its use, and implementation strategies i n
the distributed environment .

Introductio n

The text of a standard procedural high level language
program consists of a number of program coin p0 -

This work supported in part by NSF Grant DCR81-19341 .
1 Unix is a registered trademark of AT&T Bell Laboratories .

Permission to copy without fee all or part of this material is granted provide d
that the copies are not made or distributed for direct commercial advantage ,

the ACM copyright notice and the title of the publication and its date appear ,

and notice is given that copying is by permission of the Association fo r

Computing Machinery . To copy otherwise, or to republish, requires a fee and/

or specific permission .

©1987 ACM 0-89791-235-7/87/0006/0283	 75

nenl..s (procedures, functions, subroutines, coroutines ,
tasks, etc .) . During execution, the locus/loci of con-
trol will migrate between instances of those compo-
nents in accordance with the inter-component, contro l
regime provided by the language. Common example s
of control regimes include :

e non-recursive procedures in Fortran-77 :

e recursive procedures in Pascal or Algol-60 ;

• recursive procedures and coroutines in Simula-
67 ;

• recursive procedures and concurrent tasks (wit h
synchronous rendezvous as the inter-task com-
munication mechanism) in Ada- .

It is commonly accepted that the control regim e
supported by the language is a prime factor in th e
ease of coding certain classes of applications in th e
language. An inappropriate control regime will b e
reflected in an inappropriate mind set on the par t
of the programmer which may lead to code whic h
is intrinsically obscure . error-prone, and difficult t o
maintain . We postulate that this issue becomes eve n
more critical in a concurrent program, where timin g
and synchronization concerns compound the prob-
lem. In a distributed program, all of the problem s
of concurrency are present, but additional complex-
ity is introduced due to the possible loss or corruptio n
of messages and the failure of processors .

Investigating new control regimes is a difficult an d
time-consuming problem – it is generally done i n
the context of the design and implementation of
a new programming language . As such, we con -
tend that many of the problems in the construc-
tion of large programs may be due to the "squeez-
ing" of the application into an inappropriate con-
trol regime . CCAL is an interpreted high-level lan-
guage in which control regimes, including concurren t

'Ada is a registered trademark of the U .B . Governmen t
(Ada Joint Program Office) .

0Q0

283

http://crossmark.crossref.org/dialog/?doi=10.1145%2F960114.29680&domain=pdf&date_stamp=1987-07-01

control regimes, may be constructed within the con -
fines of the language itself (much like the use of dat a
abstraction to create new data types) . Although
there have been several previous works on control ab-
straction, they have either been restricted to purel y
sequential control[THLZ77,Tur84,Tur83,Lew79], o r
have not been intended as a practical mechanism fo r
prototyping control regimes[Fis7O] .

In order to describe the control operations pro-
vided to the user by CCAL, we first present th e
formal operational control model upon which it is
based . This model is a generalization of the Wan g
and Dahl model[WD71] for coroutine semantics . In
addition to serving as the semantic basis for CCA L
control, the model has been used in several for-
mal studies of storage management for high-level
languages[KS83,KQ84,Qua86] . Thus it is possible t o
deal formally with control regimes described and im-
plemented through this model .

2 . The Control Mode l

2 .1 . The Control Stat e

The control state of a program in execution is ex-
pressed as a tuple ,

(II, E, D, status, processor) .

Here,
H =

	

n2, . . . , lr fl)

is the set of physical processors available to the pro -
gram. We currently assume that this set is fixe d
throughout the program's execution .

E is the set of program component instances - a n
activation record is the typical implementation of a n
instance . E will expand and shrink as the program
executes, creating and deleting instances . We find i t
convenient to denote E = T U P, where T fl P = O .
Elements of T are considered to be task instances ca-
pable of being scheduled for execution on a processo r
and of supporting a separate logical thread of control .
Elements of P are non-task instances coroutine in -
stances and procedure instances are the obvious ex-
amples . In order for an element of P to execute, i t
must be invoked (perhaps indirectly) by a task . The
mechanism for that invocation will be described con-
cretely below .

The status function ,

status : E -4 {ready, nonready} ,

denotes the execution status of an instance (it is mos t
appropriate for tasks) . A ready task is logically exe-
cuting; it will actually execute without any action of

the program . A nonready task cannot execute unti l
some action in another task of the program makes i t
eligible .

The processor function ,

processor : E --+ H ,

denotes the processor on which a given instance cur-
rently resides .

The dynamic enclosure function ,

D:(EUH)-i(EUII) ,

imparts structure to the control state . As a nota-
tional convenience, we define the relatio n

C (E U H) x (E U II) ,

where for x, y E (E U H), x

	

y iff D(x) .. y .

	

de-
notes the transitive and reflexive closure of Note
that 4 = ((EUII), -) is a graph which is an essentia l
component of the control state . This graph allows us
to determine the current sites of execution under th e
following convention :

Execution Condition : A locus of control is in in -
stance x E E (or, equivalently, instructions in th e
component corresponding to instance x are being ex-
ecuted) iff for some 7r E H, D(7t) = x . Further, x is
actually in execution on the processor processor(x) .

The execution condition, by itself, simply states tha t
a given instance may he in execution if it is the "dy-
namic parent" of a processor . How it becomes the dy-
namic parent of the processor is a function of how var -
ious primitive control operations are applied agains t
the control state . It should be noted that the actua l
site of execution need not be the processor of whic h
x is the dynamic parent - it is the processor at whic h
x is allocated .

The initial control state i s

o- ° =01, {main}, Do, status °i processor° ,)

where main denotes the instance corresponding to th e
main program (a task, by convention) . Further ,

- Do(main)=7rC-H ,

- Do(xr) = main ,

- statuso(main) = ready, and

- processor°(main) _ 7r .

In terms of what we know about the control mode l
at this point, an instance of the main componen t
is executing on processor 7r (this follows because
D(7r) = main) . The primitive control operations ,
alluded to above, may be viewed as functions whic h
map a given control state into another .

284
284

2 .2 . Primitive Control Operations

In order to define the primitive control operations, w e
first define three sets derived from the control stat e
and an operation which alters the structure of th e
control state . The three sets are :

exchange(x, y)
For some x, y E E ,

1. ROTATE(h.ead(invoker), x, y) ;

2. status(s) := ready ;

3. status(y) := nonready .

For x E E, task(x) _ {y 1y E T A x

H={x(xEII)
V (x E P A status(x) � ready)

y} ;
activate(x)

For some x E E,

V(xETA 7r f II :x 'ir)} ;

ForxEE,head(x)={ylyeHAx

	

O .

Clearly, task(x) identifies any task instances reach -
able from x by links . head(x) identifies the "pri-
mary" instances reachable from x . If x or one of it s
dynamic children is in execution, then an element o f
lI must be in head(x) ; otherwise, the head set of x
will consist of nonready non-task instances or task s
which cannot reach a processor via

	

links .
P, the graph of instances linked by dynami c

enclosure ; is altered primarily by the applicatio n
of a three way swap operation . The operatio n
ROTATE(x, y, z) circularly exchanges the values o f
D(x), D(y), and D(z) as shown below :

ROTATE(x,y,z)

	

D(y)

r
D(x)

	

0" D(z)

If any single argument of ROTATE is undefine d
(0) . then the exchange of values is short-circuite d
around the undefined argument. For example,
ROTATE(x, 0, z) simply swaps the values of D(x)
and D(z) . If two or three arguments of ROTAT E
are undefined, the ROTATE is effectively a no-op .

There are four primitive control operations whic h
may be executed by an instance to alter the con-
trol state . All of these primitives rn ust be viewed as

atomic . In each case, let invoker denote the execut-
ing instance which actually executes the correspond -
ing primitive control operation .

create(X, ;r)
For some program component X and ;r E II ,

1. x, a new instance of X. is created ;

2. if X is a task, T := T u {x} ;
3. If Xis not a task, P := P U {x} ;

4. status(x) := nonready ;

5. D(x) .= x ;

6. processor(x) :_ ;r

status(x) := ready ;

terminate(x)
For some x C E .

1. ROTATE(head(x), x, 0) ;

2. VyEE :y

	

x: E :=E—{y} ;

It should be noted that the use of these operation s
may, in general, lead to bizarre and potentially mean -
ingless control states . We therefore define applicatio n
conditions for each operation . These conditions ar e
specified in Table 1 .

Operation Condition
create(X)
exchange(x, y)
activate(x)
terminate(x)

true
x V T n x E H A invoker

	

y
x

	

TE
invoker

	

x

Table 1 : Application Conditions for Control Primi-
tives

2 .3. The Scheduler

The one remaining entity in the model is the sched-
uler . The scheduler is the sole agent by which a
task may he linked onto a processor ; a user progra m
may exchange or terminate a task off a processor .
Thus, the scheduler determines which instances are
physically in execution . The scheduler implements
the following primitive control operation :

schedule(;r, t)
For some sr E II and t T ,

1. status(t) := ready ;

2. ROTATE(task(ir), ;r, t) .

The sole application condition for schedule is tha t
staius(t) = ready . The precise mechanism by whic h
the scheduler is invoked is irrelevant here. The
CCAL scheduler is a simple round-robin timeslic e
scheduler — ready instances on a given processor fairl y
share access to that processor via the timeslicing .

285

2 .4 . Control State Invariant s

Given the scheduler and the user-invoked primitiv e
control operations, and given the initial control state ,
one may readily construct inductive arguments to
produce the following control state invariants .

C1. is a cyclic permutation of E U II .

C2. fors,tET:stDs=t .

C3. for 7 1 , ~2 E H : 71

	

71'2 D ir 1

C4. Vx E E : I head(x) I= 1 .

C5. Vx E E : 7r E II : x

	

it D x ETA status(x)
ready .

In other words, f consists of a number of disjoint cir-
cular chains of instances . A chain may contain an y
number of non-task instances, but at most a singl e
task instance, and at most a single processor . If th e
chain is headed by a processor it is termed an oper-
ating chain, and the processor must be the dynami c
parent of a ready task instance. The dynamic par-
ent of the processor is the active instance on tha t
operating chain . If the chain is headed by a task in-
stance (ready or nonready), then the chain represent s
a suspended task (nonready) or a logically active task
(ready) which is waiting to be scheduled for execu-
tion . If a chain is headed by a non-task instance, tha t
instance must be nonready ; the chain would most in-
tuitively correspond to a detached coroutine .

In this structured context, one may see that a cre-
ate merely produces an idle chain consisting of th e
newly created instance . exchange(x, y) serves to cle-
tach the tail of the operating chain at instance y ,
thereby forming an idle chain headed by y . The ex -
change also grafts some idle chain headed by x onto
the end of the operating chain . activate marks som e
task instance as ready . terminate(x) detaches that
portion of the operating chain rooted on x and the n
deletes those detached instances from E . schedule
links chains headed by ready tasks onto processors ,
and (by the execution condition) brings instances int o
execution .

Figure 1 shows a program in execution under thi s
model . Task instance T1 , having invoked non-tas k
instance P 1 , executes on processor 71 . Task T2 has
called non-task instance P2 (most likely through a n
exchange(P2 , 0)), and P2 is actually in executio n
on 5r2 . Processor %T3 is idle . Task T3 has been sus-
pended after having invoked non-task P 3 . The idle
chain headed by P4 most likely is a detached corou-
tine chain .

T 2 .4-
P 2

4-

D Instance with non-ready status .

Instance with ready status .

Figure 1 : An Example of c

2 .5 . Aggregate Control Operations

Useful high level control forms may be readily con-
structed from combinations of the primitive contro l
operations . A traditional procedure call would he
implemented as :

Call(X) - [
x := create(X) ;
exchange(x, 0) ;]

Here we have taken the liberty of using create as a
function which returns the value of the newly create d
instance of X . x is a variable typed as an instanc e
(cf., environment-valued variables in SL5[HG78]) .
The brackets, [. . .], denote an aggregate operation .
The code between the brackets may be best viewe d
as an atomic transaction applied against the con-
trol state . A sequence of candidate control states i s
produced as individual operations within the brack-
ets are executed; only when the closing bracket i s
successfully reached will the final candidate contro l
state be embedded as the new control state. Failing
aggregate operations do not impact upon the contro l
state .

Procedure return is then :

P 1

9Rn

286

Return - [
terminate(self) ;]

Here self is an instance constant ; its value is tha t
of the instance corresponding to the component i n
which it is used. We have not dealt with paramete r
and functional value transmission in the above . We
consider it not properly a control activity ; if it were
necessary in a particular modeling context, however ,
a mechanism similar to that in SL5 could be embed-
ded in the basic model . Parameter transmission i s
explicitly handled in CCAL .

The basic operations for a coroutine control regime
may be constructed using the same primitive control
operations . They are a straightforward generaliza-
tion of the procedural regime . A traditional corou-
tine detach would employ an exchange(0,?) opera-
tion in some fashion in order to produce an idle chai n
of non-task instances headed by the instance speci-
fied by the second argument ; a conventional resume
would employ an exchange(?, Q1) in order to graft
the idle chain headed by the instance specified as the
first argument onto the operating chain behind the
invoking instance .

A more substantial control paradigm, one whic h
is intrinsically concurrent, is the Ada rendezvous . I f
an Ada task elaborates an entry e, the task mus t
(effectively) allocate a queue of instances to serve a s
the waiting line for callers of that entry since Ad a
requires PCPS entry call service .

Elaborate_entry(e) _ [
q e := queue ;]

If a task now attempts to invoke entry e, assumin g
e to be elaborated in an Ada task t, the invocatio n
would be implemented as :

Entry_call(t, e)

	

[
enqueue(self,t .g e) ;
activate(t) ;
exchange(b, task(self) ;]

The corresponding "accept e" in the code of t woul d
be :

Accept(e) - [
while empty(self.g e)

do exchange(0, self) ;]

The end of the accept is :

End_accept(e) - [
x := behead(q e) ;

activate(s) ;]

The en queue, empty, and behead functions (applie d
to a queue of instances) have the obvious semantics .

The task(s) function returns the identity of the tas k
at the head of the chain which includes x E E . Note
the liberal use of auxiliary data structures in order
to construct this particular control regime .

3 . CCAL Constructs

CCAL is a faithful implementation of the above con-
trol model . The current implementation of CCA L
provides limited data types and relatively simple
intra-component control (Pascal-like loops and con-
ditionals) . A CCAL program is a (non-nested) se-
quence of program components, template declara-
tions, and control operation definitions .

A program component is the only subprogra m
unit . There is no static distinction made betwee n
tasks and non-tasks . One component must be name d
"main" – this component is created as a task on on e
processor of the network, and execution begins at it s
first instruction . Components may have associate d
parameters, passed by value or by copy-restore (va r
parameters) .

A template declaration declares data structures
which will be included in every instance . The effect i s
to customize the activation record of instances in suc h
a way as to support the newly created control regime .
Multiple template declarations are effectively merge d
into one . There are three default user-accessible dat a
items in every activation record :

type takes a value from the set {task,proc} . If the
instance is schedulable, this field must have valu e
task .

dlink denotes the dynamic parent of the instance .

slink denotes the "static parent" of the instance .
This is used to define scoping relationships fo r
resolving non-local data references .

Control operations are basically macro defini-
tions, similar in form to the examples of the previou s
section. The text of the control operation is expande d
in-line at the point of invocation in any component .
Data declarations which may be created as part of
that expansion are percolated upwards to the declar-
ative part of the enclosing component . The code
necessary to make the operation atomic, the CCA L
equivalent of the brackets in the previous section, i s
inserted before and after the text of the operation .
We accepted the syntactic ugliness of the macro ap-
proach, as opposed to an approach in which the op-
eration is invoked as a subroutine (done in [Lew79]
and [THLZ77], suggested in [Hi183]), for reasons o f
efficiency .

287

There are only three data types currently sup -
ported by CCAL : integers, strings, and instances .
Strings may be used only in output statements . In-
stances refer to dynamic component instances (ele-
ments of E in the above model) . slink and slink field s
in an activation record are instance variables . The
instance-valued constants nil and self refer to no in -
stance and the instance in which self is used, respec-
tively. Reference to data in an instance is made usin g
genitive (clot) notation -- if i is an instance variabl e
which denotes an instance containing integer val, the
expression i .val is evaluated as that integer value .
Arrays of integers and instances are supported .

Scoping rules are non-standard . Data may be de-
clared in program components or at a global level (th e
same static level as the program components them -
selves) . Static scoping relationships between compo-
nents may be specified by means of slink paths. If
instance x is specified to be the static parent of in -
stance y, then y .sl-ink = x, and the scoping effect i s
as if component Y had been nested inside of compo-
nent X in a statically scoped block structured lan-
guage . The ability to dynamically alter an instance' s
slink permits the construction of arbitrary (and po-
tentially dangerous) scoping regimes . A reference to
variable x, made during the execution of instance i ,

is resolved according to the following convention :

1. If x is declared in I, resolve the reference locally .

2. If x is not local, follow the slink chain starting at
i . If some instance along that chain declares x ,
resolve the reference at the first such instance .

3. If x cannot be resolved along the slink chain ,
resolve it globally .

4. If all three steps above fail, a data reference erro r
is raised .

The control primitives of the previous section ar e
supported directly . Their use is restricted to b e
within a control operation definition . CCAL's in-
stance creation operation deserves further explana-
tion . Instance creation is achieved through a con-
struct of the form :

treat e(<component> , <type> , <site>)
{with <expression_list> }

< component > must be the name of the program
component of which a new instance is to be created .
< type > must be either task or proc ; task result s
in a schedulable instance . < site > must be the nam e
of an Internet host on which the CCAL interprete r
is running . The instance will be allocated at tha t
site . create returns a value which denotes the newl y
created instance . The with clause assigns values to

parameters . The With may also be stand-alone, per-
mitting parameter assignment to take place at time s
other than instance creation .

The following example, Figure 2 ., illustrates th e
use of CCAL to construct a novel control form for
use in a distributed program . The new form is that
of a triply redundant (remote) procedure call similar
to that suggested in [Coo84] . Upon a triplecall, the
main component will issue three concurrent calls t o
the same function on three different processors ; onl y
the value returned by the first call to complete will b e
used . This control regime would conceivably be use-
ful in an application which requires resilience to pro-
cessor failure (the function call will survive the loss o f
two out of three processors) or soft real-time respons e
(presumably, one of the three processors would b e
lightly loaded) . We do not address efficiency, espe-
cially the issue of the extermination of live functio n
replicates upon the first completion . The reader mus t
recall the atomicity property of constructed control
operations in order to understand the operation o f
this regime .

4 . Implementation Issues

The CCAL interpreter runs as a daemon process on
each site of the network . In a sense, the daemon s
should be thought of as the constituents of II . On e
site, the "master", configures the rest of the syste m
and establishes the appropriate communication links .
The main component always begins execution at th e
master . The other sites ("slaves") are, with only a
few exceptions, identical copies of the master . Each
interpreter copy is involved in three activities :

• traversing the code tree which is the inter-
pretable representation of the currently active
instance at that site ;

• scheduling executable instances which reside lo-
cally ; and

• communicating with other daemons in order t o
maintain the control state .

Traversal of the code tree is straightforward . The
flexibility of CCAL does, however, impose certain
implementation difficulties . Storage management i s
non-trivial . Ultimately, a general retentive strateg y
in which absence of an access path results in deallo-
cation of instances will be implemented . The curren t
prototype implementation simply never deallocate s
storage – this was felt to be acceptable for the exper-
imental nature of the system. The general scopin g
constructs require the maintenance of an association

288

#template
caller : instance ;

	

- Denotes the instance which
issues triple call .

clone : integer ;

	

- Set if triple caller has
received reply .

retval : integer ;

	

-- Return value to caller fro m
first to complete .

#end

#operation triplereturn(value) ;
- If first clone, embed result in caller .
{

	

if caller .done = 0 then { caller .done := 1 ;
caller . retval := value :
activate(caller) ;)

terrninate(self) ; }

component triplefunction ;
--This is the routine which is triply called .
{

	

slink := chink ;
. . . Compute the value (complex code here) . . .
triplereturn(value) ; }

component main ;
-Main program ; will triply call triplefunctio n
-at nodes sl, s2, and s3 .
{

	

. . . Set up the call, etc
triplecall(triplefunction, " sl " , " s2 " , " s3 ") ;
. . . Use the integer retval }

Figure 2 : Example - Triply Redundant Remote Pro-
cedure Call s

list binding symbolic identifiers to storage location s
for each instance . The resolution of a non-local ref-
erence results in the explicit traversal of slinks and
a search for an associated identifier at each level .
We see no convenient mechanism for overcoming thi s

brute-force approach without sacrificing generality in

sc oping .
Local scheduling is deceptively subtle in the dis-

tributed context . The difficulty lies in the fact that,
a non-task instance ti at site S may or may not be
schedulable depending upon conditions at sites othe r
than S . For example, Figure 3 shows the case i n
which the execution status of Pt depends upon the
state of site R . P1 's execution will consume cycles
on processor 7 2 at site S since we do not wish to ab-
sorb the cost of remote execution . In fact, %rt is idle ,
and 712 is executing instructions of Pi . Although Pt
will execute at S, its eligibility for that execution de-
pends upon Pt 's attachment to Ti 's to 7 1 , and

Tt ' s to Pt . In order to deal with this difficulty, ou r

Site R

	

Site s

Figure 3 : Scheduling Proble m

implementation, perverts the basic control model i n
two respects . Figure 4 illustrates that solution .

The solution makes use of pseudo-tasks and re -
mote links in order to achieve the desired schedul-
ing and execution . In Figure 4, r t is a pseudo-tas k
which serves two purposes : it it a local representa-
tive of remote items above Pt on it's operating chain ,
and it is a locally schedulable entity on processor? 2 .
A pseudo-task is constructed whenever an operatin g
chain creates a subchain of itself on a remote pro-
cessor . In the example. Ti presumably performed a
create/exchange pair iii order to call Pt at site S . I f
P t %were to be terminated, rt would also be destroyed .

The implementation keeps Blinks strictly local . In

order to define chains which extend across severa l

processors . one employs remote links . clinks . In defin-
ing the chains induced by the control model, an ?lin k

takes precedence over a chink . Thus, at, Tl . and P I
still constitute the operating chain . Ilowever, if a n
element of has an ?link, its dunk must point to a
pseudo-task . The clink of an element of If merely
serves to define chains in the model ; the Blink of an

#operation triplecall(comp,locl,loc2,loc3) ;
id : instance ;

self.done := 0 ; — Clear reportin g
- flag .
- Create replicate .
—Note its master .
—Start it .

{

id := create(comp,task,locl) ;
id .caller := self;
activate(id) ;
id := create(comp,task,loc2) ;
id .caller := self;
activate(id) ;
id := create(courp,task,loc3) ;
id .caller := self;
activate(id) ;
exchange(0,task(self)) ;

	

- Await th e
- first reply .}

0 on

289

dlin k

	 rlink

Figure 4 : Scheduling Solution

element of II identifies the instance consuming cycle s
on that processor . Under this convention, x1 must be
idle while 7r 2 is executing Pl . These policies are, o f
course, reflected in the actual implementation of th e
primitive control operations — exchange and sched-
ule are considerably more complex in the implemen-
tation than in the model .

The interpreter daemons are interconnected wit h
a TCP/IP virtual circuit between each pair of sites .
Each daemon uses a specified well-known network ad -
dress (port number) . These decisions were made i n
order to get the prototype into execution quickly . We
intend to implement a connectionless communication
topology in the near future . An interpreter daemo n
attempts to receive a message under two circum-
stances — whenever there is no executable instanc e
locally, and every fifth iteration through the main in-
terpretation fetch-execute loop (the "fifth" policy wa s
strictly ad hoc, dealing with messages on every iter-
at ion degraded performance markedly . Protocols in-
volving fixed-length messages have been implemente d
for a number of purposes :

a. file transfer — Before execution begins, every sit e
involved in the computation is sent a complete
copy of the interpretable code trees . Switches
which control the operation of the interpreter ,
such as the maximum length of a time slice, fol-
low the code transfer .

b. remote instance creation — A message must b e
routed to the site at which an instance, be it

task or non-task, is to be created . Allocation
must be made at that site, and an instance valu e
(actually the address of the activation recor d
for that instance) must be returned . This im-
plies a two-part representation of instance val-
ues, < site, offset > . The site component is node
at which the instance is allocated ; offset is th e
displacement from the beginning of the activa-
tion record storage structure on site at whic h
the instance's activation record resides . In deal-
ing with these pointers, special care is taken t o
short-circuit a good deal of interpreter code i f
the site is the local node . Note that this rep-
resentation of instance values must be altered i f
and when instance migration is implemented .

c. control state alteration — Given that instances
may be remote and that pointers may cross pro-
cessor boundaries, control primitives obviousl y
may require message traffic . Certain represen-
tation policies (the pseudo-task and a proces-
sor ' s " tail awareness" through its clink men-
tioned above are prime examples) are imple-
mented in order to alleviate message traffic .

d. non-local data reference – This is the obviou s
generalization of the policy of traversing slink s
to resolve non-locals as described above .

e. mutual exclusion — In order to ensure atomic-
ity of control operations, a technique similar t o
the Ricart and Agrawala distributed mutual ex-
clusion algorithm[RAS1] was implemented . The
expansion of a control operation requests net -
work mutex before the body of the operation :
it releases mutex at the end of the operation .
Suspension within a control operation release s
mutex; activation will result in the reacquisitio n
of mutex .

f. termination detection — The question of whe n
the interpreter may actually terminate is rela-
tively easy to deal with . We employ a straight -
forward token passing scheme on a Ilamiltonia u
circuit of the sites similar to that described b y
Dijkstra et al .[DFvS3] . This procedure is initi-
ated by the master when it detects that it has n o
instances capable of execution . A'e make no dis-
tinction between a fully terminated program an d
one which is deadlocked (only idle chains exist) .

We emphasize that the implementation is simpl y
a prototype — the interpreter is currently evolving
towards more general and efficient operation . Th e
current system was implemented with the primar y

290
290

goal of quickly obtaining a running system with rea-
sonable performance so that the control abstractio n
facility could be investigated . Extensions to accom-
modate explicit message passing (as opposed to th e
system initiated message passing required to suppor t
the control model) and time-outs seem necessary t o
handle control regimes which are fault tolerant in an y
substantial way. Process migration is also a desired
extension (the extraction of the "state" of an instance
from the interpreter seems to be sufficiently chea p
to permit easy migration (compare this with state
extraction for a process on any reasonably comple x
operating system) .

5 . Concluding Remark s

We have found that CCAL provides a useful too l
for investigating the characteristics and implementa-
tion of novel control forms. It also provides a rapid
prototyping facility under which control forms most
appropriate in a particular application domain ma y
be developed . The facts that concurrency is a nat-
ural part of the language and that the implementa-
tion is distributed makes CCAL relevant, for studyin g
means of effectively constructing novel systems wit h
desirable performance and reliability properties .

Acknowledgements

We would like to acknowledge the input of our friend s
and colleagues, Mary Lou Soffa, Sarah Crall, and C .
If . Lin, who have contributed to the work presented
Iicrc .

References

[Coo84] E . C. Cooper . Replicated procedure
call . In Proc. Third Annual ACM Symp .
on Principles of .Distributed Computing ,
pages 220-232, 1981 .

[DFv83] E . \V. Dijkstra, W . II . J . Feijen, an d
A . J . M . vanGasteren . Derivation of a
termination detection algorithm for dis-
tributed computations . Information Pro-
cessing Letters, 16(5) :217-219, 1983 .

[Fis70] D . Fisher . Control structures for pro-
gramming languages . PhD thesis, De-
partment of Computer Science, Carnegie-
Mellon University, 1970 .

[HG78] D . R. Hanson and R . E . Griswold . The
SL5 procedure mechanism . Comm.urrica-
lions of the ACM, 21(5) :392-400, 1978 .

[IIil83]

	

P . IIilfinger . Abstraction mechanisms an d
language design . The MIT Press . 1983 .

[KQ84] J . P . Kearns and D . Quammen . An effi-
cient evaluation stack for ada tasking pro-
grams . In IEEE Computer Society 198/
Conference on Ada Applications and En-
vironments, pages 33-40, 1984 .

[KS83] J . P. Kearns and M . L. Sofia . The imple-
mentation of retention in a coroutine en-
vironment . Acta In fornaatica, 19 :221-233 .
1983 .

[Lew79] 13 . Lewis . Sequential control structure
abstractions for programming languages .
Technical Report 79-10-02, Department o f
Computer Science, University of Washing -
ton, 1979 .

[Qua86] D . Quammen . Stack-based implementa-
tions of concurrent high level languages .
PhD thesis, Department of Computer Sci-
ence, University of Pittsburgh, 1986 .

[RA81] G . Ricart and A . K . Agrawala . An op-
timal algorithm for mutual exclusion i n
computer networks . Communications of
the ACM, 24(1) :9-17, 1981 .

[TIILZ77] L. Travis, M Ronda, R . LeBlanc, and S .
Zeigler . Design rationale for TELOS, a
Pascal-based AI language . In Proc. of th e
.Symp. on Artificial Intelligence and Pro-
gramming Languages, pages 67-76, 1977 .
(Also published as ACM SIGPLAN No-
tices, Vol . 12(8) .) .

[Tur83]

	

F . Turini . Abstractions of control envi-
ronments . BIT, 23 :21-35, 1983 .

[T'ur84] F . Turini . Magma2 : a language oriente d
towards experiments in control . .4CM
Transactions on Program wing Language s
and Systems, 6(4) :468-486, 1984 .

[WD71] A. Wang and Ole-J . Dahl . Coroutine se-
quencing in a block-structured environ-
ment . BIT, 11 :425-449, 1971 .

291

