
A Tensor-Based Volterra Series Black-Box Nonlinear
System Identification And Simulation Framework

Kim Batselier
Department of Electrical and

Electronic Engineering
The University of Hong Kong

Hong Kong
kimb@eee.hku.hk

Zhongming Chen
Department of Electrical and

Electronic Engineering
The University of Hong Kong

Hong Kong
zmchen@eee.hku.hk

Haotian Liu
Cadence Design Systems, Inc.

USA
haotian@cadence.com

Ngai Wong
Department of Electrical and Electronic Engineering

The University of Hong Kong
Hong Kong

nwong@eee.hku.hk

ABSTRACT
Tensors are a multi-linear generalization of matrices to their d-
way counterparts, and are receiving intense interest recently due to
their natural representation of high-dimensional data and the avail-
ability of fast tensor decomposition algorithms. Given the input-
output data of a nonlinear system/circuit, this paper presents a non-
linear model identification and simulation framework built on top
of Volterra series and its seamless integration with tensor arith-
metic. By exploiting partially-symmetric polyadic decompositions
of sparse Toeplitz tensors, the proposed framework permits a pleas-
antly scalable way to incorporate high-order Volterra kernels. Such
an approach largely eludes the curse of dimensionality and allows
computationally fast modeling and simulation beyond weakly non-
linear systems. The black-box nature of the model also hides struc-
tural information of the system/circuit and encapsulates it in terms
of compact tensors. Numerical examples are given to verify the ef-
ficacy, efficiency and generality of this tensor-based modeling and
simulation framework.

Keywords
black box; Volterra series; nonlinear system identification; tensors;
simulation

1. INTRODUCTION
Automatic system identification and model selection of a non-

linear system or circuit from a given set of input-output data is an
important goal in electronic design automation (EDA). For linear
systems this goal has been largely achieved, which is evident from
the rich literature and many sophisticated algorithms that are avail-
able, e.g., [1, 2]. In contrast, it is a much more difficult task for
nonlinear systems [3].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD ’16 Doubletree Hotel, Austin, TX, USA
c© 2016 ACM. ISBN XXX-XXXX-XX-XXX/XX/XX. . . $15.00

DOI: XX.XXX/XXX_X

This article makes a step forward towards this goal by introduc-
ing a tensor-based framework for the automatic identification and
simulation of nonlinear systems and circuits with Volterra series.
Our proposed framework is illustrated as a block diagram in Fig. 1.
First, a set of Volterra kernels H1,H2, . . . ,Hn are identified from
a given set of measured discrete-time input/output data. These ker-
nels are then used together with a new input to generate a simulated
output of the nonlinear system. We present an algorithm for both
the identification and simulation block in this article. The main
tool used for modeling nonlinear systems in our framework is the
Volterra series, which has been successfully applied to modeling
and simulating weakly nonlinear systems, e.g., [4–7]. We show
that there is an inherent link between Volterra series and tensors
and exploit this link to develop a fast simulation algorithm. We
remark that the integration of Volterra theory and tensors has ap-
peared in previous works on nonlinear simulation [8–10] and in
system identification [11]. The key novelties in this work are:

• Representation of the Volterra kernels as tensors – This
is not an entirely new idea and has appeared in prior work.
However, we introduce, for the first time in the literature,
particular Toeplitz tensors that allow the development of a
remarkably fast simulation algorithm via polyadic tensor de-
compositions. The obtained reduction in required simulation
runtime and storage cost is demonstrated by means of nu-
merical experiments.

• Fast simulation by means of multi-mode convolution –
The curse of dimensionality appears in the standard imple-
mentation of Volterra kernels wherein multi-mode convolu-
tions are needed in computing higher order responses. This
has limited the application of Volterra series to mostly mildly
nonlinear systems. Via polyadic tensor decompositions we
manage to compute the multi-mode convolution by means of
only linear convolutions, regardless of the Volterra kernel or-
der. This means that strongly nonlinear systems can now be
efficiently captured with high-order kernels whereby the di-
mensionality curse is gratefully removed during simulation.

This article is organized as follows. Section 2 reviews basic ten-
sor notation and operations, followed by a succinct account on the
Volterra series. The development of the nonlinear system identifi-
cation and accelerated tensor-based simulation is elaborated in Sec-

tions 3 and 4. Section 5 presents three numerical examples demon-
strating the efficacy of the proposed black-box modeling and sim-
ulation approach. Some further remarks are given in Section 6 and
Section 7 draws the conclusions.

2. BACKGROUND

2.1 Tensors
First, we give a short introduction into the topic of tensors and

the notation that we use. Tensors are denoted by boldface capital
calligraphic letters (e.g. A), matrices by boldface capital letters
(e.g. A), vectors by boldface letters (e.g. a), and scalars by ei-
ther Roman (e.g. a) or Greek (e.g. α) letters. The nth element in
a sequence is denoted by a superscript in parentheses. For exam-
ple, u(1),u(2),u(3) denote the first three elements in a sequence
of u vectors. Tensors are in our context generalizations of matri-
ces and vectors. A d-way tensor A ∈ Rn1×···×nd is simply a
d-way array. Each element of the tensor A is hence specified by
d indices i1, . . . , id and denoted by ai1···id . The positive integers
d, n1, n2, . . . , nd are called the order and the dimensions of the
tensor, respectively. Fig. 2 illustrates a 3-way or 3rd-order tensor
with dimensions 4, 3, 2.

The matrix vector multiplication is generalized to the tensor case
in the following way. The k-mode product of a d-way tensor A
with a vector u ∈ Rnk is defined by

(A×k uT)i1···ik−1ik+1···id =

nk∑
ik=1

uikai1···ik···id .

This operation effectively removes the kth mode, resulting in a (d−
1)-way tensor. Note that for a matrix A ∈ Rn×n and vector u ∈
Rn, we can write the familiar matrix vector products as A×1u

T ,
uT A and as A×2 u

T , Au.
A d-way rank-1 tensor is the outer product of d vectors

A = a(1) ◦ a(2) ◦ · · · ◦ a(d),

where a(1) ∈ Rn1 , . . . ,a(d) ∈ Rnd . The entries of A are com-
pletely determined by ai1i2···id = a

(1)
i1
a
(2)
i2
· · · a(d)id .

A cubical tensor is a tensor for which n1 = n2 = · · · = nd.
A cubical tensor A is symmetric if ai1···id = aπ(i1,...,id) where
π(i1, . . . , id) is any permutation of the indices and a Toeplitz tensor
if ai1···id = ai1+1···id+1 holds for all entries.

The Kronecker product [12, 13] and Hadamard product are de-
noted by ⊗ and by � respectively. We introduce the shorthand
notation xd , x⊗ x⊗ · · · ⊗ x for the d-times repeated Kronecker
product.

An important operation on tensors is reshaping. The most com-
mon reshapings are the matricization and vectorization [14], which
reorder the entries of A into a matrix A and vector vec(A). The
mode-n matricization of a tensor A rearranges the entries of A
such that the rows of the resulting matrix are indexed by the nth
tensor index in. The remaining indices are grouped in ascending
order. The only reshapings used in this paper are the mode-1 ma-
tricization and vectorization.

EXAMPLE 1. The mode-1 matricization of the tensor A from
Fig. 2 is

A =


1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23
4 8 12 16 20 24

 .

and its vectorization is

vec(A) =
(
1 2 · · · 24

)T
.

The importance of the matricization and vectorization lies in the
following two equations

A×1 u
T ×2 · · · ×n uT = vec(A)Tud (1)

and

A×2 u
T ×3 · · · ×n uT = Aud−1, (2)

which tell us how the k-mode products of a tensor A with a vector
u can be computed.

A polyadic decomposition [15, 16] of a d-way tensor A is its
decomposition into a sum of R rank-1 tensors

A =

R∑
i=1

a
(1)
i ◦ a

(2)
i ◦ · · · ◦ a

(d)
i .

In order to store a d-way tensor A in memory, we need to store
all of its n1 × · · · × nd elements. In contrast, storing its polay-
dic decomposition needs only R(n1 + · · · + nd) elements, which
can be quite a reduction when R is small. When R is minimal,
the polyadic decomposition is called canonical. Probably the most
well-known canonical polyadic decomposition of a matrix is its sin-
gular value decomposition [17]. A symmetric tensor A can always
be decomposed into a symmetric polyadic decomposition. This
means that every rank-1 term is also a symmetric tensor and there-
fore

A =

R∑
i=1

ai ◦ ai ◦ · · · ◦ ai.

Storage of a symmetric polyadic decomposition therefore needs
only Rn elements when ai ∈ Rn.

2.2 Volterra Series
Volterra theory has been developed over a century ago and has

found applications in analyzing communication systems and non-
linear control [4, 5]. The object of interest in this theory are the
Volterra series, which can be regarded as a Taylor series with mem-
ory effects since its evaluation at a particular time instance requires
information from the past. Specifically, a nonlinear discrete-time
time-invariant system with an input u(t) ∈ R and an output y(t) ∈
R is described by a Volterra series as

y(t) = y1(t) + y2(t) + y3(t) + · · · ,

where

yn(t) =

M−1∑
k1=0

· · ·
M−1∑
kn=0

hn(k1, · · · , kn)·

u(t− k1) · · ·u(t− kn), (3)

with hn(k1, · · · , kn) the nth-order Volterra kernel andM the mem-
ory of the kernel. We only consider causal systems, which implies
that hn(k1, · · · , kn) = 0 when any of the indices k1, . . . , kn is
negative. Note that y1 is the usual first-order convolution of the in-
put u(t) with the impulse response h1, which is well-known from
linear system theory. For orders n ≥ 2 the kernels are not unique,
since the products u(t − k1) · · ·u(t − kn) are commutative. This
becomes problematic when system properties are to be described
in terms of properties of the kernels. It therefore becomes impor-
tant to consider restricted forms of the kernels that impose unique-
ness. The form we assume throughout this work is the symmetric

Input Stream

Discrete-Time

Simulated/Measured

I/O Data

(Nonlinear)

System

Identification

Volterra

Kernels

H1, H2, ... , Hn

Tensor-Based

Simulation
Simulated

Output

Reference vs.

Simulated

Waveforms

and/or

Error Plots

Output Stream

Figure 1: General overview of the tensor-based black-box Volterra series identification and simulation framework.

i1

i2

i3

1 5 9

2 6 10

3 7 11

4 8 12

13 17 21

14 18 22

15 19 23

16 20 24

Figure 2: An example tensor A ∈ R4×3×2.

one. This implies that h(k1, . . . , kn) = h(π(k1, . . . , kn)), where
π(k1, . . . , kn) is any permutation of the indices k1, . . . , kn, and re-
duces the number of distinct kernel values fromMn to

(
M−1+n
M−1

)
≈

(M − 1)n/n!. It is straightforward to see that each Volterra kernel
hn corresponds with a symmetric n-way tensor Hn, which allows
us to rewrite (3) as

yn(t) = Hn ×1 u
T ×2 · · · ×n uT , (4)

with uT =
(
u(t) u(t− 1) · · · u(t−M + 1)

)
. By using (1),

(4) can be rewritten as

yn(t) = vec(Hn)T un = (un)T vec(Hn), (5)

which needs O(Mn) multiplications. Defining

yn ,
(
yn(0) yn(1) · · · yn(N)

)T
,

uN ,
(
u(0) u(1) · · · u(N)

)T
,

we can write (5) for t = 0, . . . , N for a linear system (n = 1) to
obtain

y1 =


u(0) 0 · · · 0
u(1) u(0) · · · 0

...
u(N) u(N − 1) · · · u(N −M + 1)

 vec(H1),

which is the well-known expression for the discrete convolution of
uN with the impulse response H1. The convolution is here per-
formed as a matrix vector product of a N × M Toeplitz matrix
containing the values of uN with the vectorization of H1. Like-
wise, it is possible to rewrite the convolution as a matrix vector

2(2,2)h
2(1,2)h 2(0,2)h

2(2,1)h 2(1,1)h
2(0,1)h

2(1,1)h 0

2(1,0)h 2(0,0)h 0

0 0 0

2(0,0)h

i1

i3

i2

2(2,0)h 2(1,0)h 2(0,0)h

2(0,1)h

0 0 0

0 0 0

0 0

(0)u (1)u (2)u

(0)u

(1)u

(2)u

2(0)y

2(1)y

2(2)y

Figure 3: Toeplitz tensor T2 corresponding with the Volterra
kernel h2.

product of a N × N Toeplitz matrix T1 containing the values of
H1 with the vector uN as

y1 =



h(0) 0 · · · · · · 0
h(1) h(0) · · · · · · 0

...
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . .
...

0 · · · h(M) · · · h(1) h(0)


uN . (6)

By following the same procedure of writing (5) for an arbitrary n
for all values t = 0, . . . , N we obtain

yn = Tn ×2 u
T
N ×3 · · · ×n+1 u

T
N , (7)

where Tn is a n+1-way cubical Toeplitz tensor of dimensionN+1
containing the coefficients of the Volterra kernel Hn. Observe how
(7) reduces to (6) when n = 1. Fig. 3 illustrates the Toeplitz tensor
Tn for the case n = 2. We call (7) a multi-mode convolution of
uN with Hn. The computational complexity of computing such a
multi-mode convolution can be deduced from using the matriciza-
tion of Tn as described in (2). Indeed, we can rewrite (7) as

yn = Tn udN , (8)
= Un vec(Hn), (9)

with Un aN×Mn matrix. Computing the multi-mode convolution
as described in (8) needs O((N + 1)n+1) multiplications, while
using (9) has a computational complexity of O(NMn). Since in

practiceN �M , the second way is better but still suffers from the
curse of dimensionality due to theMn factor. We resolve this curse
in Section 4 using a polyadic tensor decomposition. Also note that
for the linear case (n = 1) the convolution can be computed using
the Fast Fourier Transform (FFT) with a computational complexity
of O(N logN).

3. IDENTIFICATION
It is well-known that the estimation of the Volterra kernel val-

ues for an unknown system from measured input/output is a linear
problem. Once the values for the maximal order n and memory M
are chosen, one then uses the measured input uN and output y sig-
nal to estimate the values of H1,H2, . . . ,Hn. By repeated use of
(9), y = y1 +y2 + · · ·+yn can be rewritten as the linear problem

y =
(
U1 U2 · · · Un

)


vec(H1)
vec(H2)

...
vec(Hn)

 . (10)

TheN×(M+M2+· · ·+Md) matrix U ,
(
U1 U2 · · · Un

)
introduces a constraint on how many samples need to be collected
in order for the Volterra kernel values to be uniquely defined. In-
deed, the matrix U is square when N = M +M2 + · · ·+Md. If
more samples are measured then the linear problem can be solved
using a pseudoinverse approach. Again, the curse of dimension-
ality appears in the growing size of the linear system as M and
n are increased. One way to alleviate this problem somewhat is
by exploiting the symmetry of each of the Volterra kernels. The
vectorization Hn contains many repeated entries, which could be
removed on the condition that the corresponding values of U are
adjusted. This reduces the dimensionality of the U matrix to N ×
M +

(
M−1+2
M−1

)
+ · · ·+

(
M−1+n
M−1

)
, but does not resolves the curse.

An alternative identification procedure that uses higher order ten-
sors explicitly is described in [11]. Instead of identifying the sym-
metric Volterra kernels, approximations to their symmetric polyadic
decompositions are identified instead by means of three iterative al-
gorithms. The estimated kernels are always approximations since
the number of termsR in each of the symmetric polyadic decompo-
sitions is not known a priori. Quantifying the approximation error
is difficult in this case since then one needs to compute the output
to Algorithm 1 as well.

An interesting development is the use of kernel methods from
machine learning in the identification of the Volterra kernels [18].
By representing the Volterra series as elements of a reproducing
kernel Hilbert space, the complexity of the estimation process be-
comes independent of the order of nonlinearity. Even infinite Volterra
series expansions can be estimated. Whether this identification
method can be used in our proposed framework requires further
research. For this article, Algorithm 1 was implemented and used
in the numerical experiments for prototyping and verification of the
proposed ideas.

4. SIMULATION
Once the symmetric Volterra kernels are estimated, one can use

them to efficiently simulate the nonlinear system. Remember from
(9) that a naive implementation of the multi-mode convolution has
a computational complexity of O(NMn). We will illustrate how
the simulation can be made significantly faster by a polyadic tensor
decomposition of Hn and by exploiting the Toeplitz structure of
Tn. The main idea is that a polyadic decomposition of the Volterra
tensor Hn suffices to reconstruct the Toeplitz structure of Tn. Sup-

Algorithm 1 Volterra kernel identification
Input: uN ,y,M, n
Output: H1,H2, . . . ,Hn

1: for j = 1 . . . n do
2: construct Uj from uN , considering the symmetry of Hj

3: end for
4: h̄← solution of linear system (10)
5: for j = 1 . . . n do
6: extract symmetric Hj tensor from h̄ vector
7: end for

Algorithm 2 Fast time-domain Volterra simulation
Input: uN ,H1, polyadic decompositions of H2, . . . ,Hn

Output: y
1: y ← conv(uN ,H1)
2: for j = 1 . . . n do
3: for k = 1 . . . j do
4: for i = 1 . . . R do
5: u

(k)
i ← conv(uN , h

(k)
i)

6: end for
7: end for
8: y ← y +

∑R
i=1 u

(1)
i � · · · � u

(j)
i

9: end for

pose we have a polyadic decomposition of Hn, then for a single
output sample y(t) we can rewrite equation (4) as

yn(t) = Hn ×1 u
T ×2 · · · ×n uT ,

= (

R∑
i=1

h
(n)
i ◦ · · · ◦ h(1)

i)×1 u
T ×2 · · · ×n uT ,

=

R∑
i=1

(uT h
(n)
i) · · · (uT h(1)

i). (11)

If we now consider the kth mode and write out the inner products
uT h

(k)
i for all t = 0, . . . , N we obtain
u(0) 0 · · · 0
u(1) u(0) · · · 0

...
u(N) u(N − 1) · · · u(N −M + 1)

 h
(k)
i , (12)

which is the convolution of uN with h(k)
i that can be computed

with a computational complexity of O(N logN). The total com-
putational complexity is hence O(nRN logN) since there are n
modes and R vectors per mode. Let u(kk)

i denote the convolution
of uN with h(k)

i , then (11) is computed for all t = 0, . . . , N as
yn =

∑R
i=1 u

(1)
i � · · · � u

(n)
i . Using a symmetric polyadic de-

composition of Hn can result in an additional speedup since then
yn =

∑R
i=1 ui � · · · � ui with a computational complexity of

O(RN logN). The algorithm for fast time-domain simulation us-
ing polyadic decompositions of the Volterra kernels is presented
in Algorithm 2. Note that the second for-loop in Algorihm 2 dis-
appears when symmetric polaydic decompositions of the Volterra
kernels are used.

An additional way of reducing computational complexity of Al-
gorithm 2 is truncating the polyadic decomposition of each Hj .
This reduces the number of iterations of the third for-loop at the
cost of introducing an approximation error.

5. NUMERICAL EXPERIMENTS
Algorithms 1 and 2 were implemented in Matlab and tested in

the following examples. We compare its runtime with the tra-
ditional method of computing the multi-mode convolution. All
computations were done on an Intel i5 quad-core processor run-
ning at 3.3 GHz with 16 GB RAM. The polyadic and symmetric
polyadic decompositions were computed with the freely available
TTr1SVD [19] and STEROID [20] algorithms. The quality of the
identification for unknown Volterra kernels was quantified by the
mean squared error ||y − ŷ||22/N , where ŷ denotes the simulated
output of the identified Volterra series.

5.1 Decaying multi-dimensional exponentials
First, we demonstrate the validity of Algorithms 1 and 2 by means

of an artificial example. Symmetric Volterra kernels were gener-
ated up to order d = 5 and with memory M = 10 and containing
exponentially decaying coefficients in the following way. We first
define the first-order Volterra kernels as h1(k1) = exp (−k21) with
k1 = 0, .1, .2, . . . , .9. These coefficients are stored in the M × 1
H1 tensor. The other remaining symmetric higher-order Volterra
kernels are then generated as the following outer products of H1

H2 = H1 ◦H1,

H3 = H1 ◦H1 ◦H1,

H4 = H1 ◦H1 ◦H1 ◦H1,

H5 = H1 ◦H1 ◦H1 ◦H1 ◦H1.

This implies that all generated symmetric Volterra kernels corre-
spond, per definition, with rank-1 tensors H2, . . . ,H5 . We also
have that each entry of the nth-order Volterra kernel is given by

hn(k1, . . . , kn) = exp (−k21 − k22 − · · · − k2n).

A random input signal of 4000 samples was generated from a stan-
dard normal distribution. Computing the corresponding output us-
ing (9) took 18 seconds. Exploiting the symmetric rank-1 property
of the Volterra kernels in Algorithm 2 to generate the output re-
duces the computation time to 0.01 seconds, which corresponds to
a speedup with a factor of 1169. The input/output signals were used
in Algorithm 1 to estimate the Volterra kernels. Since the correct
Volterra kernels are known in this case, we use the relative identifi-
cation error to quantify the accuracy of our identification algorithm.
The relative identification error is defined as

||Hk − Ĥk||F
||Hk||F

,

where Ĥk denotes the estimated Volterra kernel and ||X ||F de-
notes the Frobenius norm of a tensor X (the square root of the
sum of squares of all entries in X). Table 1 lists the relative iden-
tification errors for each order of the estimated Volterra kernels,
confirming the validity of Algorithm 1.

Table 1: Relative identification errors - decaying exponentials.
order 1 2 3 4 5

error 8.6e−8 1.0e−8 5.9e−10 1.0e−11 4.2e−13

5.2 Nonlinear inductance
Next, we consider a nonlinear inductance which is described by

v = 0.02 (1− (tanh2(i/5))
di

dt
,

Figure 4: Output voltage of the nonlinear inductance for
Volterra series of maximal order 1, 4, 7.

where v is the output voltage and i is the input current. A 60Hz
sinusoidal current and its corresponding voltage were sampled at
100kHz for 0.1 seconds. Volterra kernels were estimated by Algo-
rithm 1 with memories M ranging from 1 to 5 and orders d from
1 up to 7. Fig. 4 shows one period of the simulated output voltage
for different orders of the Volterra kernel. Table 2 lists the mean
squared error of the output voltage for all identified Volterra series.
Notice how the mean squared error is independent from M when
d < 7 and decreases as soon as an extra odd order is included in the
Volterra series. For d = 7 a steady decrease of the mean squared
error is observed as a function of M . A 7th-order Volterra series
with memory M = 5 manages to model the output voltage with a
mean squared error of 0.0063.

Table 2: Mean squared error - nonlinear inductance.
HHH

HHd
M 1 2 3 4 5

1 .339 .162 .162 .162 .162
2 .339 .162 .162 .162 .162
3 .339 .061 .061 .061 .061
4 .339 .061 .061 .061 .061
5 .339 .021 .021 .020 .020
6 .339 .021 .021 .020 .020
7 .339 .009 .008 .007 .006

Several input series were then used to compare the different sim-
ulation methods. Table 3 lists the typical runtime and storage cost
for one set using three different simulation methods on the 7th-
order Volterra series with memory M = 5. The ‘naive’ method
computes the multi-mode convolution using (9). TTr1SVD and
STEROID use Algorithm 2 with the respective polyadic and sym-
metric polyadic decompositions of the Volterra tensors. The larger
storage requirement for the TTr1SVD method is due to that each
ith Volterra kernel requires the storage of i mode vectors, while
STEROID only needs to store only one vector for every term. The
STEROID method is superior compared to the two other simulation
methods with a speedup of 93 in runtime compared to the naive
method and a reduction of required storage by a factor of 29.

5.3 Double balanced mixer
In this example we consider a double balanced mixer used for

upconversion. The output RF signal is determined by the input LO

Table 3: Runtimes and storage costs - nonlinear inductance.
Simulation method Runtime [s] Storage [kB]

Naive 48.27 763
TTr1SVD [19] 4.01 845
STEROID [20] 0.52 26

Figure 5: Output RF signal of the mixer for Volterra series of
maximal order 1, 5, 7.

and IF signals. All signals were sampled at 10 kHz for 1 second.
The LO and IF signals have frequencies of 600 and 100 Hz respec-
tively, with a phase difference of π/8. Again, Volterra kernels were
estimated by Algorithm 1 with memories ranging from 1 to 5 and
orders from 1 up to 7. Table 4 lists the mean squared error of the RF
output signal as a function of M and d. One needs a minimal order
and memory of 6 and 2 respectively in order to see a decrease in the
mean squared error. The mean squared error seems to be small even
for the linear system, however, these models are not able to capture
the high frequency variations that are relatively small in amplitude
while the Volterra series can.

Table 4: Mean squared error - double balanced mixer.
HHH

HHd
M 1 2 3 4 5

1 .006 .006 .006 .006 .006
2 .006 .006 .006 .006 .006
3 .006 .006 .006 .006 .006
4 .006 .006 .006 .006 .006
5 .006 .006 .006 .006 .006
6 .006 .003 .003 .003 .003
7 .006 .003 .003 .003 .003

Fig. 5 shows one period of the simulated output RF signal for
different orders of the Volterra kernel. Notice the small difference
between the simulated output of the linear and 5th-degree Volterra
series, indicating the high nonlinearity of the mixer. A 6th-degree
Volterra series with memory M = 2 is able to follow the high
frequency RF output. Increasing the memory M or order d did not
lead to any further improvement of the simulated output. Again,
the same input/output series were used for comparing the different
simulation methods for the d = 6, M = 2 model. Table 5 lists the
runtime and storage cost for the three different simulation methods.
The same patterns as in the previous example can be observed. The
TTr1SVD method needs more storage due to the increasing number

of mode vectors that it needs to store. The STEROID method is far
superior with a speedup of 266 in runtime compared to the naive
method and needing only about one third of the storage.

Table 5: Runtimes and storage costs - double balanced mixer.
Simulation method Runtime [s] Storage [kB]

Naive 5.749 0.98
TTr1SVD [19] 0.081 2.11
STEROID [20] 0.021 0.39

6. REMARKS
Some key contributions are summarized again:

1. The (symmetric) polyadic tensor decomposition effectively
breaks down the multi-mode convolution of an input vector
with any higher order Volterra kernel into purely linear con-
volutions. Tensor decompositions are therefore key in over-
coming the curse of dimensionality.

2. Continuing from the previous remark, the relatively expen-
sive tensor decomposition computation is done only once
and is the overhead to pay. The simulation algorithm then
benefits from the recurring and cheap linear convolution op-
eration.

3. The least-squares framework for kernel identification as de-
scribed by (10), though being effective, is generic to this
work and is employed due to its ease of implementation for
validating ideas. Other, more sophisticated, Volterra ker-
nel identification methods can be readily substituted for ro-
bust Volterra kernel identification subject to, say, noisy input-
output samples.

4. The identified Volterra kernels completely hide the circuit or
topological details, while allowing efficient user black-box
simulation via compact tensor mode factor representation. In
other words, the proposed framework also suggests an effec-
tive means of intellectual property (IP) protection.

5. The proposed framework now handles only the identifica-
tion and simulation of single-input single-output (SISO) sys-
tems. The extension to the direct handling of multiple-input
multiple-output (MIMO) data streams is underway. More-
over, research is being conducted on the characterization of
stability and passivity of the identified models.

7. CONCLUSIONS
This paper has proposed a highly efficient black-box identifica-

tion and simulation framework for nonlinear systems/circuits based
solely on the provision of discrete-time input-output samples. A
natural link has been established between Volterra kernels, multi-
mode convolution and tensor decompositions. A new tensor-based
Volterra simulation algorithm has been developed. Numerical ex-
amples have been given to demonstrate the significant reduction in
runtime and required storage cost for the simulation of some highly
nonlinear systems. Compared to conventional Volterra-based sim-
ulation, a runtime speedup up to 1000× and a decrease in storage
up to 29× have been observed.

8. REFERENCES
[1] L. Ljung, Ed., System Identification (2Nd Ed.): Theory for

the User. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 1999.

[2] T. Katayama, Subspace Methods for System Identification,
ser. Communications and Control Engineering. Springer
London, 2005.

[3] O. Nelles, Nonlinear System Identification: From Classical
Approaches to Neural Networks and Fuzzy Models, ser.
Engineering online library. Springer, 2001.

[4] W. Rugh, Nonlinear System Theory – The Volterra-Wiener
Approach. Baltimore, MD: Johns Hopkins Univ. Press,
1981.

[5] E. Bedrosian and S. O. Rice, “The output properties of
Volterra systems (nonlinear systems with memory) driven by
harmonic and Gaussian inputs,” Proc. IEEE, vol. 59, no. 12,
pp. 1688–1707, Dec. 1971.

[6] J. R. Phillips, “Projection-based approaches for model
reduction of weakly nonlinear time-varying systems,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 22,
no. 2, pp. 171–187, Feb. 2003.

[7] P. Li and L. Pileggi, “Compact reduced-order modeling of
weakly nonlinear analog and RF circuits,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 2,
pp. 184–203, Feb. 2005.

[8] R. Boyer, R. Badeau, and G. Favier, “Fast orthogonal
decomposition of Volterra cubic kernels using oblique
unfolding,” in Proc. Very Large Scale Integration
(VLSI-SoC), Oct. 2011, pp. 160–163.

[9] G. Favier and T. Bouilloc, “Parametric complexity reduction
of Volterra models using tensor decompositions,” in 17th
European Signal Processing Conference (EUSIPCO), Aug
2009.

[10] H. Liu, X. Y. Z. Xiong, K. Batselier, L. Jiang, L. Daniel, and
N. Wong, “STAVES: Speedy tensor-aided volterra-based

electronic simulator,” in Computer-Aided Design (ICCAD),
2015 IEEE/ACM International Conference on, Nov 2015,
pp. 583–588.

[11] G. Favier, A. Y. Kibangou, and T. Bouilloc, “Nonlinear
system modeling and identification using
Volterra-PARAFAC models,” Int. J. Adapt. Control Signal
Process, vol. 26, no. 1, pp. 30–53, Jan. 2012.

[12] P. A. Regalia and M. K. Sanjit, “Kronecker products, unitary
matrices and signal processing applications,” SIAM Review,
vol. 31, no. 4, pp. 586–613, 1989.

[13] C. F. V. Loan, “The ubiquitous Kronecker product,” J. Comp.
Appl. Math., vol. 123, no. 1-2, pp. 85–100, Nov. 2000.

[14] T. Kolda and B. Bader, “Tensor decompositions and
applications,” SIAM Review, vol. 51, no. 3, pp. 455–500,
2009.

[15] J. D. Carroll and J. J. Chang, “Analysis of individual
differences in multidimensional scaling via an n-way
generalization of “Eckart-Young” decomposition,”
Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[16] R. A. Harshman, “Foundations of the PARAFAC procedure:
Models and conditions for an “explanatory” multi-modal
factor analysis,” UCLA Working Papers in Phonetics, vol. 16,
no. 1, p. 84, 1970.

[17] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed.
The Johns Hopkins University Press, Oct. 1996.

[18] M. O. Franz and B. Schölkopf, “A unifying view of Wiener
and Volterra theory and polynomial kernel regression,”
Neural Computation, vol. 18, no. 12, pp. 3097–3118, 2006.

[19] K. Batselier, H. Liu, and N. Wong, “A constructive algorithm
for decomposing a tensor into a finite sum of orthonormal
rank-1 terms,” SIAM Journal on Matrix Analysis and
Applications, vol. 26, no. 3, pp. 1315–1337, Sep. 2015.

[20] K. Batselier and N. Wong, “Symmetric tensor decomposition
by an iterative eigendecomposition algorithm,” ArXiv
e-prints, Sep. 2014.

