
WearCore: A Core for Wearable Workloads

Sanyam Mehta
∗

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL USA
sanyam.mehta@gmail.com

Josep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL USA

torrella@illinois.edu

ABSTRACT
Lately, the industry has recognized immense potential in wearables
(particularly, smartwatches) being an attractive alternative/supplement
to the smartphone. To this end, there has been recent activity in
making the smartwatch ‘self-sufficient’ i.e. using it to make/receive
calls, etc. independently of the phone. This marked shift in the way
wearables will be used in future calls for changes in the core micro-
architecture of smartwatch processors.

In this work, we first identify ten key target applications for
the smartwatch users that the processor must be able to quickly
and efficiently execute. We show that seven of these workloads
are inherently parallel, and are compute- and data-intensive. We
therefore propose to use a multi-core processor with simple out-
of-order cores (for compute performance) and augment them with
a light-weight software-assisted hardware prefetcher (for memory
performance). This simple core with the light-weight prefetcher,
called WearCore, is 2.9x more energy-efficient and 2.8x more area-
efficient over an in-order core. The improvements are similar with
respect to an out-of-order core.

1. INTRODUCTION
Smartwatches, with the potential to perform many of the impor-

tant functions of smartphones while just being a band on the wrist,
are being deemed as the future of consumer electronics. A recent
prediction from ABI Research claims that there will be 485 million
annual wearable shipments by 2018 [14]; the prediction is backed
up by pronounced activity in the industry with Samsung releasing
its sixth smartwatch within a span of one year.

Although an attractive supplement/substitute to smartphones on
paper, smartwatches have not yet proved to the purpose. The pri-
mary reason for this disparity is that smartwatches currently in the
market are not ‘self-sufficient’, i.e. they require to be tethered to a
phone (from perhaps the same manufacturer) in close vicinity (via
Bluetooth) in order to make/receive calls and be connected to the
internet. This greatly limits the utility of a smartwatch since one has
to have the phone around always anyway. However, Google and
Samsung have overcome this drawback in existing smartwatches,

∗This author is now with Cray Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’16, September 11-15, 2016, Haifa, Israel
c© 2016 ACM. ISBN 978-1-4503-4121-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2967938.2967956

through their latest offerings. Google’s latest update to their ver-
sion of Android Operating System, Android Wear, enables Wi-fi
connectivity in the watch that allows it to connect to a distant phone
[25]. Samsung, on the other hand, has gone a step further in its lat-
est Gear S smartwatch (that runs Samsung’s own Tizen OS) which
can house its own SIM card and has built-in 3G connectivity [12],
i.e. it can independently make/receive calls, and send/receive mes-
sages or mails. Thus, the current trend in industry is towards ‘self-
sufficient’ smartwatches that obviates the need of carrying or being
in the vicinity of a smartphone.

While there have been advances in the OS (and ‘apps’) for the
smartwatch, there has been little contribution from computer archi-
tects towards the right hardware for the purpose. We identify the
following challenges in coming up with that right hardware.

• Firstly, it is important to identify the applications that are
critical for smartwatch users. With a significantly different
power (and energy) budget, display size and usage scenario
from existing smartphones, it is intuitive to expect that a dif-
ferent set of applications will become important to smart-
watch users than smartphone users. For example, automatic
speech-to-text (and also speech-to-command, as in an Intelli-
gent Personal Assistant like Siri or Google Now) conversion
is extremely important in a smartwatch given the extreme dif-
ficulty in typing on the watch. Also, this speech-to-text con-
version must happen on the device to keep the device func-
tional when not connected to internet. This ‘self-sufficiency’
is much more important for a smartwatch than a smartphone
since the former cannot continue to use the power-expensive
3G service for longer duration.

• With the target applications known, the host processor must
be able to efficiently execute them. While energy efficiency
has remained critical even in smartphones, it is much more so
for the watch for it is constrained to use a much smaller bat-
tery and consequently, has a much lower battery life (Sam-
sung’s latest watch, Gear S, and phone, Galaxy S6, have bat-
tery capacities of 300mAh1 [10] and 2550mAh [9], respec-
tively). It is therefore imperative to make the right decisions
on the type (In-Order(InO), Out-of-Order(OoO), etc.) and
number of cores, and also on the specific additional capabil-
ities in the cores so as to meet the Quality of Service (QoS)
requirements of critical applications while being as energy-
efficient as possible. Currently, the latest smartwatches from
the biggest companies display a lot of variety in the type of
cores - Samsung, LG and Apple employ a dual-core OoO,

1The battery life of smartwatches is about an eighth of smart-
phones. Now, given that a smartwatch will be used less but should
last more, we speculate that a power envelope that is a fourth or a
sixth of a smartphone seems reasonable for a smartwatch.

153

http://dx.doi.org/10.1145/2967938.2967956
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2967938.2967956&domain=pdf&date_stamp=2016-09-11

a quad-core InO and a single-core OoO processor, respec-
tively. Clearly, the best core for smartwatches is undecided.

In this paper, we make the following contributions,

• We identify ten important applications for smartwatches that
the host hardware must accommodate to satisfy the energy-
efficiency demands of the consumers. We refer to this set of
applications as WearBench throughout the paper. We iden-
tify an application as important when it satisfies one or more
of the following three criteria, (1) demands a strict QoS,
(2) is compute-intensive (and time consuming), and (3) is
frequently used. We classify these applications in five cat-
egories, (a) speech recognition (speech-to-text and speech-
to-command), (b) image processing (image denoising, com-
pression), (c) computer vision (face recognition, image clas-
sification), (d) audio playback (mp3), and (e) video rendering
(h264 decode). We do not include sensor processing applica-
tions in this set since the signals from sensors are efficiently
processed in the DSP on the SoC (see Section 3 for more
discussion).

• For applications in WearBench, we make the following im-
portant observations. (1) 7 out of 10 applications (including
applications with a QoS requirement) are parallel and benefit
immensely from multiple cores on the chip. (2) These ap-
plications are compute and data intensive and not so control
intensive. Moreover, 25% of all operations in these applica-
tions are SIMD operations on average (and the applications
in categories (a), (b) and (c) have fully vectorizable criti-
cal loops). As a result, computation in loops finishes very
quickly, putting more pressure on the memory. Thus, cache
misses become significant. This trend will only become more
significant as the industry considers larger vector lengths to
speed up applications as in WearBench.

• We make the following decisions based on above observa-
tions. (1) We use a quad core CPU as our baseline pro-
cessor to allow parallel execution. (2) Each of the cores
supports only partial out-of-order execution (using a simple
scoreboard) that only adds little overhead over in-order cores.
(3) In order to prevent stalls on long-latency cache misses,
we augment our simple OoO core with a software-assisted
hardware prefetcher (SAHP). We call this core as WearCore.
Our proposed SAHP is easy to use with the target applica-
tions, involves negligible instruction overhead and minimal
power/area overhead in the hardware.

• We compare the performance, power and area of WearCore
with an OoO and an InO core for applications in WearBench.
WearBench proves to be about 2.8x better in terms of area-
normalized performance and about 2.9x better in terms of
energy-efficiency with respect to both InO and OoO cores.

It is important to note that we do not claim novelty in either
WearBench (since we obtain the component applications from other
suites) or the choice of core (since scoreboarding for partial out-of-
order execution is already known) or the number of cores. Our
key contribution is in identifying the advantages and bottlenecks
of these choices for the new problem domain of wearables (which
we believe has not been explored before), and in our proposal of
SAHP to address the last standing limitation in the design of an
energy-efficient core for wearables.

The rest of the paper is organized as follows. Section 2 describes
each of the ten applications used in WearBench with particular em-
phasis on the critical speech recognition applications. In Section

3, we discuss why other possible design options were incompat-
ible with WearBench and present our key insights that motivate
our specific choices in the design of WearCore. This section also
provides an overview of SAHP. The following section details the
implementation of SAHP in WearCore. Section 5 describes the
microarchitectural details of the different cores used for the pur-
pose of comparison, and also how we use the applications with the
microarchitectural simulator used. We present and discuss the re-
sults in Section 6; this includes performance comparison, and area
and power estimates of the different configurations of cores sim-
ulated. We also show the parallel performance achieved by two
representative applications in WearBench, and how exploiting par-
allelism helps them to meet their QoS. Section 7 briefly describes
other work related to ours, and we present the conclusion from this
work in Section 8.

2. TARGET APPLICATIONS
As mentioned in Section 1, WearBench consists of applications

in seven different categories. In this section, we briefly describe
those applications and their relevance to a smartwatch.

2.1 Automatic Speech Recognition (ASR)

Figure 1: Power profile (left) and mobile data state (right) of Google
Nexus3 phone using the Qualcomm Trepn profiler when executing a com-
mand through Google Now

This category represents a set of key applications for smartwatch
users. The reason for this is that a smartwatch is much more typing-
unfriendly than a smartphone due to a tiny screen, and the user has
to spend a lot of time to type messages and additionally, rely heav-
ily on automatic correction. This has proved to be very unsatisfac-
tory [13] and therefore future smartwatches will have to rely heav-
ily on automatic speech recognition to (1) convert speech to text to
facilitate sending of messages, etc., and (2) convert speech to ac-
tions or commands that need to be executed on the watch using an
Intelligent Personal Assistant (IPA) like Siri, Google Now, etc. Re-
cently, there has been a lot of interest in offline voice recognition
on a smartphone. Google recently developed an accurate, small-
footprint, large vocabulary speech recognizer for smartphones that
uses state-of-the-art deep neural networks (DNNs) as acoustic mod-
els [31]. This enables, typing text or issuing commands using
speech even when not connected to the Internet, and also fast re-
sponse in slower networks. While this is important in the context
of a smartwatch too for its self-sufficiency, offline speech recogni-

154

tion is more important from a power/energy perspective on a smart-
watch.

Figure 1 shows the power profile and the corresponding change
of mobile data state on a phone that is using 3G connection to exe-
cute a voice command through the Google’s IPA, Google Now. The
figure shows that even for a query that is executed and responded
to in a few seconds (usually less than 2 seconds), the mobile de-
vice has to be in a high power Snd/Rcv state for around 12 sec-
onds, during which it consumes 1200mW of average power and
2300mW peak power as shown in the figure. A DNN-based offline
speech recognizer can execute the same query in less than a sec-
ond at 1000mW peak power (with all 4 cores active) [3], thus being
14.4x more energy efficient.

We choose four applications in this category. All of these ap-
plications are also part of the Tonic Suite [27] where the authors
use them as representative future server workloads. We adapt those
applications for a smartwatch. The first application, speech-to-text,
uses a speech-to-text decoder adapted from Kaldi [40]. In Wear-
Bench, we only consider the DNN scoring that houses the DNN
computation and is the most time-consuming portion [31]. This is
usually followed by some post-processing. The model used is a
standard feed forward neural network with k hidden layers of nh

nodes. Each layer computes a non-linear function of the weighted
sum of the outputs of the previous layer. We use the same parame-
ters in our model as in [31], i.e. there are 640 inputs and 2000 out-
puts. The input chosen is obtained from a few seconds of speech af-
ter some pre-processing to obtain its feature vectors. Further, there
are (k=6) hidden layers with (nh=512) nodes each. The DNN com-
putation entails executing the sgemm subroutine from the BLAS
library, i.e. matrix multiplication of single-precision floats. Us-
ing ARM Streamline performance analyzer [4] on Cortex-A15, we
find that multiple sgemm instances together account for 95% of
the execution time in DNN scoring. Table 1 shows the size of the
largest matrices that are multiplied in different layers of the neural
network.

The other three applications are Natural Language Processing
(NLP) tasks that gather semantic information from input text. The
three applications are, (1) part-of-speech (pos) tagging that assigns
a tag to each word of speech (i.e. noun or verb), (2) word chunking
(chk) that tags different segments of a sentence as a noun or verb
phrase, and (3) name entity recognition (ner) that assigns a label to
each word as to whether it is a person or a location; all these three
applications are based on Senna [20]. These applications combine
with speech-to-text to provide the speech-to-command functional-
ity as needed in an IPA. Using Streamline, we find that the sgemm
subroutine within the DNN computation accounts for 68%, 70%
and 74% of the execution time, respectively, in the pos, chk and
ner applications. Again, the size of the largest matrices that are
multiplied in different layers of the neural network is given in Ta-
ble 1. The input chosen is a vector of 10 words of speech (as can
be uttered in around 5 seconds to an IPA) as opposed to a 28-word
vector in the Tonic Suite.

Since sgemm forms the core of these four applications, we use
a very fast implementation of sgemm. We make it fast by (1) par-
allelizing the outermost loop to utilize the multiple cores on the
chip, (2) tiling or blocking the matrices as suggested in recent pa-
pers [34, 36] that reuses data in both L1 and L2 cache and is also
more amenable to prefetching, (3) unrolling the loops and finding
the best unroll factors on real hardware, and (4) using ARM neon-
vfpv4 SIMD extensions. We use different tile sizes and unroll fac-
tors for different sizes of the matrices. For the sgemm kernel used
in ASR, our implementation performs 35% better than that in the
OpenBLAS library [8] for ARM Cortex-A15 when tested on real
hardware, both for a single-thread and multiple threads.

Category Application Layers Size of matrices

ASR

speech-to-text 6 548x512x512, 548x2000x512
pos 3 10x300x300
chk 3 10x300x300
ner 3 10x300x375

Computer Vision imc 22 3x4096x4096, 3x4096x9216
face 7 32x20164x363, 16x3969x2592

Table 1: Configuration of the neural networks used in WearBench applica-
tions

2.2 Image Processing
WearBench includes two applications in this category. One of

them is the standard JPEG compression (jpegc), and the other is
image denoising (denoising). The latter is particularly relevant to
a smartwatch where the camera lens being thinner than that in a
smartphone, cannot take sharp images. Thus, image processing ap-
plications such as image denoising that attenuate the noise added
during image acquisition, can greatly improve the final image qual-
ity. jpegc involves first reading blocks of 8x8 pixels from the im-
age, and the data in each block undergoes a sequence of operations
including discrete cosine transform (DCT) and others. For image
denoising, we use a simple and effective algorithm [46] that also
involves reading the data in the image into overlapping (or slid-
ing) 16x16 patches of pixels, and then applying DCT followed by
inverse-DCT to obtain the denoised image. As in sgemm, we unroll
the loops in DCT by the best unroll factors found on Cortex-A15,
and also vectorize the inner loop.

2.3 Computer Vision
We include two applications in this category that are representa-

tive of some forward-looking uses of a smartwatch. The first is the
face recognition (face). This application is particularly relevant for
users as it replaces the task of entering password on the watch (as
needed for some of the very important websites as mail, etc.) with a
mere glance at the watch asking it to recognize the user’s face (see
[11] for an example application). This is useful since the user can-
not also speak his/her password to sign in, when amidst people. The
second application in this category is the image classification (imc).
This application helps users to organise images taken as reminders,
letting them add notes, tags and location data by predicting what
the image contains. Both the face recognition and image classifica-
tion applications are used from the Tonic Suite which contains im-
plementations of these based on Facebook’s DeepFace [43] facial
recognition network and AlexNet [30], a large scale image classi-
fier. The number of layers and the size of the matrices in the DNN
computation within the hidden layers in these two applications is
given in Table 1.

2.4 Audio Playback
This is an important category of applications for any smart de-

vice. This is particularly relevant for a smartwatch as users are ex-
pected to rely heavily on this for music, and it proves to be handy
for hearing music when out for a workout, etc. We include a simple
mp3 player, mpeg3play [7], in this category. We chose this player
particularly because it includes optimizations to improve speed and
we find that 14% of all operations executed in the player are vector
operations. This application spends most of the execution time in
decoding audio frames of an input mp3 file. The decoder source
code contains a mix of memory access and arithmetic operations,
but the memory footprint of the application is low.

2.5 Video Rendering
This category contains CISCO’s open-source implementation of

the H264 decoder application. The H264 decoder is used to decode
frames from an input video stream and render it on the host. This

155

is useful to allow video streaming on a smartwatch, which would
require this capability once equipped with 3G service. Like the
mp3 player, most of the execution time is spent on decoding input
frames from the stream. Unlike the mp3 player, the memory foot-
print of the application is larger, and thus efficiently fetching data
from memory is critical.

3. MOTIVATION AND KEY INSIGHT
This section presents key insights that lead to our specific design

choices and motivates those choices over other possible solutions.

3.1 Why not a DSP for WearBench?
Digital Signal Processors (DSPs) effectively complement CPUs

in a mobile SOC by serving as low-power accelerators (with VLIW
cores) for audio and video processing. Recently, DSPs have been
shown to efficiently handle conditional code and also tolerate (some)
memory latency through the use of simultaneous multithreading
such as in Qualcomm’s Hexagon DSPs [18] that employ three threads
in the DSP. It is for these reasons that DSPs are proving effective
for processing data from sensors such as in various fitness tracking
applications in a smartwatch. However, DSPs do not support mul-
tiprocessing in hardware (or software), i.e. a DSP uses only one
core since there is not much inherent parallelism in traditional DSP
workloads. The DSPs do not support fine-grain parallelism either
for similar reasons. As a result, it is not suitable for handling ap-
plications in WearBench, most of which have inherent parallelism
(coarse- as well as fine-grain). This parallelism must be exploited
to minimize the response latency of critical user applications such
as speech recognition in order to enhance QoS; the improvement of
communication interface in smartwatches such as via speech, etc.
has been recently recognized as a key factor governing adoption of
this new technology [44].

3.2 Why not an Accelerator?
Since most of the important applications essentially employ a

neural network and hence involve a multiplication of matrices (al-
beit of different sizes for different applications), it appears lucra-
tive to employ an accelerator dedicated to matrix multiplication in
a smartwatch. However, there are two drawbacks of this strategy.

1. The design of an accelerator takes long design cycles and re-
quires extensive expertise in hardware design. In the mean-
time, the algorithms for some of the interesting applications
for the smartwatch platform are changing. An example is
Google’s move from Deep to Recurrent Neural Networks
[24] which provide better accuracy in speech recognition.
Another example is Samsung’s latest introduction of user’s
hand-gesture recognition for interfacing with the smartwatch.
Thus, employing specialization in this emerging domain is
risky; we therefore argue that an efficient general-purpose
core for this platform will be a win in the long run. Also, the
strict area and power constraints of a smartwatch SoC dis-
favor extensive specialization. That is, it is not feasible to
have an H264 unit, an audio decoder, a DNN accelerator and
a DSP all on a smartwatch SoC; ARM’s NEON SIMD unit
is meant to prevent over-specialization.

2. A very recent work [33] presents a way to automatically and
efficiently generate accelerators (realized using FPGAs) for
various machine learning algorithms. However, the solution
is not very effective for neural networks and only achieves a
performance improvement of 3x with respect to Cortex-A15
(while it achieves an average improvement of 15x over ten
machine learning tasks). This is because the different stages
of a neural network cannot be executed in parallel, leading to

minimal gains with the accelerator. Furthermore, the oppor-
tunity for parallelism within each stage is rather limited as
can be observed from the small size of the matrices in one of
the dimensions (this dimension corresponds to the outermost
loop and is split across parallel units) in many applications
in Table 1. The paper also points that the neural network
task with 512 inputs and outputs and 256 nodes consumes the
maximum resources on the FPGA as compared to any other
task; we would need even more resources for WearBench.

3.3 Key Insights
Table 2 compares the number of SIMD instructions and the L1

data cache miss rate (Misses per Kilo Instructions) for WearBench
and BBench [26]. The numbers for WearBench are obtained from
the gem5 simulator [15]. We rely on [26] for numbers on data cache
miss rate since they obtain them on real hardware. From Section 2
and Table 2, we can make the following important observations.

SIMD ops (%) L1 Data Cache Miss Rate (MpKI)
BBench ~0 7

WearBench 25 30

Table 2: Comparison between WearBench and BBench

1. Seven of ten applications in WearBench are inherently paral-
lel and can utilize all the cores on the chip. In some appli-
cations such as the automatic speech recognition, it is rather
imperative to effectively use all the cores on chip in order to
meet the QoS requirement.

2. The average miss rate incurred by WearBench is more than
4x higher than that incurred by BBench. WearBench is clearly
more data-intensive than BBench. This pronounced data in-
tensity in WearBench stems from the fact that the applica-
tions usually continuously load data (rows of matrices in case
of speech recognition and computer vision, frames of au-
dio/video in case of audio/video decoding, etc.) from a lower
level of memory and then process that data (for example,
multiply-and-accumulate in speech recognition, some signal
processing algorithms in image/audio/video processing).

3. On average, 25% of the operations utilize the NEON SIMD
unit on the core. In contrast, BBench does not utilize the
SIMD unit at all; this is usually attributed to complex control
flow within loop bodies in browser source code that makes it
hard for the compiler to auto-vectorize loops. The applica-
tions in WearBench on the other hand contain loops without
complex conditionals and therefore benefit from vectoriza-
tion. As a result of this vectorization, however, the compu-
tation in loops executes very fast. This makes cache miss
latency critical to overall application performance.

From the above observations, we make the following conclu-
sions.

1. While future smartwatches must employ multiple cores, the
cores must be simple to satisfy the low area and power budget
of smartwatches. Clearly, employing multiple out-of-order
cores will make it very difficult to meet these requirements.
Instead, simpler cores that map well to the target applications
and yield comparable performance to the out-of-order cores,
will provide the maximum energy efficiency.

2. Given the high data cache miss rate in WearBench, an in-
order core that stalls on every miss will not meet the QoS
requirements of WearBench. Thus, we propose to use as our

156

% Samples
DisassemblyIn-order Out-of-order

.L40

...

3.33% 10.34% 5: vldr d18, [r2, #-16] 'Vector load'

7.58% 3.45% 6: vldr d19, [r2, #-8]

0.91% - 7: add r1, r1, #16 'Integer add'

- ...

1.82% 8.62% 10: vldr d20, [r1, #-16]

5.15% 3.45% 11: vldr d21, [r1, #-8]

0.91% - 12: add r0, r0, #16

0.91% 1.72% 13: vldr d24, [r5, #-16]

4.24% 13.79% 14: vldr d25, [r5, #-8]

...

1.21% - 17: vfma.f32 q7, q10, q9 'Vector fp multiply-add'

5.76% - 18: vfma.f32 q14, q10, q8

...

6.36% 27: bne .L40 'End of loop'

Figure 2: Disassembly of the innermost loop in the sgemm kernel and the
time spent in individual instructions within in-order and out-of-order cores,
as obtained from the ARM Streamline Performance Analyzer on Odroid-
XU3 board with in-order ARM Cortex-A7 and out-of-order ARM Cortex-
A15 cores

baseline core, a partial out-of-order core that uses a score-
board to prevent RAW hazards and allows for few outstand-
ing cache misses. However, since there is no renaming and
speculation, the core is much simpler than a full out-of-order
core. We further address the area and power concerns by
using a smaller L2 cache, and by allowing merely two out-
standing data cache misses.

3. The use of scoreboarding alone, however, is not sufficient
to achieve performance close to the fully out-of-order core.
This can be understood from the assembly shown in Fig-
ure 2. Consider the loads in lines 10 and 11 each of which
loads a double-word. This data is used (as a quad-word)
in the vector floating-point multiply-and-accumulate instruc-
tion in line 17. A two-wide instruction issue would imply a
three cycle latency between load and use. Thus, unless the
data is in the L1 cache (2 cycles in case of Cortex-A7 and
Cortex-A15), the core using scoreboard will stall to respect
this RAW dependence. The impact of an L1 miss can be
seen in Figure 2 where both the cores witness considerable
latency for all the loads that are serviced from the L2 cache
in the chosen sgemm kernel. As a result, we find that using
the hardware prefetcher to prefetch the data to L1 still gives a
12% performance gain for an out-of-order core. Clearly, this
is much more so for our partial out-of-order baseline core.
We thus propose to use a light-weight hardware prefetcher in
WearCore to prefetch the data to the L1 cache.

3.4 The Case for a Software-Assisted Hard-
ware Prefetcher

The existing ARM cores provide different prefetching options.
The ARMv7-A ISA supports software prefetching through the preload
instruction, ‘PLD [rn, #offset]’ where rn is the register carrying the
base address and offset is the optional offset. Also, the out-of-order
core variants employ a powerful hardware streamer prefetcher at
the L2 cache that supports large prefetch distances (8 cache lines)
and can detect multiple data streams. The in-order variants either
do not implement hardware prefetching (as in Cortex-A8) or use
a simplistic prefetcher at L1 cache that can track just two data
streams (as in Cortex-A7 and A9). However, each of these options
proves inadequate for applications in WearBench for the following
reasons.

1. Using the preload instruction (PLD) in the innermost loop to

prefetch contiguous data accesses worsens the performance
by 20% due to the overhead of the PLD instruction itself on
the in-order Cortex-A7 core. Thus, software prefetching is
unsuitable due to the performance overhead.

2. The simplistic hardware prefetcher (that can track two data
streams) at the L1 cache proves insufficient also. This is be-
cause the compiler unrolls the loops in many of these appli-
cations, and thus exposes multiple data streams (8 in jpegc,
and 6 in sgemm and denoising) in the loop body. Also, these
cores do not employ a sophisticated hardware prefetcher at
L1 since the overhead of the hardware structures needed to
track multiple streams in terms of storage, area and power,
is large. For example, a 256-entry Global History Buffer
(GHB) requires 6KB of storage space, and also consequently
area and power overheads since GHB entries need to be up-
dated on every data access.

3. Prefetching the data to the L2 cache using a sophisticated
hardware prefetcher is not sufficient either to hide latency
when using a partial out-of-order core as above discussed.

Thus, we propose to use a software-assisted hardware prefetcher
(SAHP) that combines the advantages of both the software and
hardware prefetching and avoids their respective drawbacks. SAHP
is triggered by our proposed software prefetch instruction, PLDX,
as PLDX [rn, #nl], where rn carries the base address as in PLD,
and nl is the number of cache lines that should be prefetched start-
ing at that address. This has the following advantages.

1. Since it is outside the loop, its contribution to the instruction
overhead is negligible.

2. Since the information about what data to prefetch is entirely
encapsulated in this instruction, there is no sophisticated hard-
ware needed to track data streams.

3. Once the prefetching is triggered, the hardware assumes com-
plete responsibility to maintain the appropriate prefetch dis-
tance such that it hides the latency effectively and also does
not cause cache pollution. The latter is important since SAHP
prefetches the data all the way to the (smaller) L1 cache for
effective latency hiding. Thus, SAHP relieves the user from
setting the right prefetch distance, which is known to be dif-
ficult to determine.

4. Finally, since the hardware knows well in advance about the
number of cache lines that need to be prefetched (possibly
across virtual page boundaries), it leverages this information
to prefetch across physical pages and thus does not have to
stop at physical page boundaries.

It is important to note that the user or the library developer is re-
sponsible for the insertion of these prefetch instructions into the
code to trigger SAHP. However, the insertion of these instructions
is extremely simple for the programmer. In many of the WearBench
applications, just a prefetch instruction before a subroutine call or
loop body is sufficient since this new prefetch instruction can cap-
ture all data needed in the loop body (in the form of the number
of the lines to be prefetched that is passed as the second argument
in the ‘PLDX’ instruction) at once. For example, in denoising, the
three suborutine calls each needed just a single prefetch instruction
for the entire subroutine because it contained the one array that
was responsible for memory accesses; the number of lines to be
prefetched is specified as a function of the image size and is there-
fore not necessary to be determined at compile time.
We detail the implementation of SAHP in the following section.

157

Structure Size Location Functionality
prefetch bit 1 bit Each block in L1 cache Indicates if this block was prefetched when brought to cache

read bit 1 bit ” Indicates if this block has been read at least once after being prefetched
mID 4 bits ” Holds the ID of the MSHR that is servicing the prefetch request responsible for fetching this block to the cache

counter 4 bits Each MSHR in MSHR file Contains the count of prefetched blocks that have not yet been read
stop bit 1 bit ” This bit is set to true when the counter reaches its maximum value of 15, to indicate that this MSHR should stop prefetching further for now

num 16 bits ” Contains the count of the number of blocks prefetched through this MSHR that have also been read
nblocks 16 bits ” Contains the number of blocks that remain to be prefetched from the original number of requested blocks in the prefetch request

ID 4 bits ” Unique ID for this MSHR
Vaddr 20 bits ” Contains the most significant 20 bits of the virtual address of the block being prefetched

Table 3: Hardware structures added to implement SAHP; SAHP adds an overhead of 6 bits per cache line and 61 bits per MSHR at L1 cache

Software Prefetch Request

L1 cache

blk->p

Ignore the
prefetch request

Allocate mshr
nblocks[mshr]=nl-1

Paddr[mshr]+=LineSize
Vaddr[mshr]+=LineSize

counter[mshr]=0
num[mshr]=0

stop[mshr]=false

MSHR file

Allocate mshr
nblocks[mshr]=nl
counter[mshr]=0

num[mshr]=0
stop[mshr]=false

H

T

F

M

MH

Read Request

L1 cache

!blk->r
&&

blk->p

blk->r=true
num[blk->mID]++

counter[blk->mID]–

counter[blk->mID]<8
&&

stop[blk->mID]

stop[blk->mID]=false
Restart prefetching

H

T

T

Software Prefetch Response

blk->p=true
blk->mID=mshr->ID

blk->r=false
Vaddr[mshr]+=LineSize
Paddr[mshr]+=LineSize

nblocks[mshr]–
counter[mshr]++

counter[mshr]>=16
&&

!stop[mshr]

stop[mshr]=true

nblocks[mshr]=0

Deallocate
the MSHRVaddr%PageSize=0

Obtain physical
address from

DTLB for Vaddr[mshr]

T

T
F

T

Figure 3: Actions taken at prefetch/read request and response

4. IMPLEMENTATION
Our proposed software-assisted hardware prefetcher (SAHP) is

designed to complement our baseline partial out-of-order core for
future smartwatches. The core uses scoreboarding for out-of-order
execution where we allow a maximum of two outstanding cache
misses at any time. That is, if all data is found in the L1 data
cache that has a hit latency of 2 cycles, data reads can proceed with-
out stalls. This strategy is similar to Intel’s Xeon Phi coprocessor
where each thread in the core can issue a load instruction once in
two cycles because another load cannot issue unless the data for the
first load is returned from the L1 cache (with 2 cycle hit latency).
Therefore, like Xeon Phi, our baseline core relies heavily on data
having been prefetched to the L1 cache to successfully hide latency.

As mentioned earlier, SAHP is triggered by a software prefetch
instruction that specifies the number of cache lines to be prefetched.
Once triggered, SAHP prefetches the specified number of lines to
the L1 cache through the use of some extra hardware as listed in
Table 3. Since SAHP bears the onus to maintain the right prefetch

distance, the hardware must provide a mechanism to stop/restart
prefetching while the program is executing. This is crucial because
in many programs (such as jpegc and denoising in WearBench),
there is intermittent fetch and compute, and the prefetcher could
easily run far ahead during the compute phase causing cache pollu-
tion if it is not timely stopped.

In SAHP, a single software prefetch instruction instructs the hard-
ware to prefetch all the data needed by a particular data stream.
Thus, our ‘PLDX’ software prefetch instruction remains bound to
a single MSHR until all needed cache lines have been prefetched.
Each MSHR is therefore equipped with its own counter (and stop
bit) to determine when to stop/restart prefetching for its particular
stream. This counter is incremented when a prefetch request is re-
sponded by the arrival of a requested line in the cache and is decre-
mented upon its first read, i.e. this counter gives the prefetch dis-
tance; in SAHP the maximum prefetch distance is 16 cache lines.
This counter and other structures needed to implement SAHP come
into play at three events during execution: (1) arrival of a prefetch

158

request at L1 cache, (2) arrival of a read request at L1 cache, and
(3) when data requested through software prefetch returns to the L1
cache.

The flowcharts in Figure 3 depict how the new hardware struc-
tures are updated in SAHP at each of the three events noted above.
Upon the arrival of a Software Prefetch Request, if the line at the
start address is not in the L1 cache or MSHR file, then an MSHR
is allocated that would remain bound to the prefetch request un-
til all requested lines (denoted by nl) are prefetched. However, if
the line is already present in the cache and was prefetched earlier
(indicated by the prefetch bit in the line), then the current prefetch
request is ignored since this denotes a possible overlap of prefetch
requests (and perhaps a redundant request). If the line has not been
prefetched, then the prefetch is initiated, starting at the following
cache line.

When the requested line returns (i.e. Software Prefetch Re-
sponse), the prefetch bit in the line is set, and all the structures in
the MSHR are updated to initiate prefetch of the following lines. As
cache lines are being prefetched continuously for a given stream,
three events can happen, (a) all lines are prefetched (i.e. nblocks=0)
and the MSHR is deallocated, (b) the prefetch distance denoted by
counter reaches 15 cache lines, and prefetching for this stream
stops, and (c) the stream reaches the page boundary, and the phys-
ical address of the next page is retrieved from the DTLB by index-
ing it via the virtual address of the next page that is being tracked in
the MSHR (note that this may also trigger a page walk on a DTLB
miss, and SAHP thus also helps to hide this latency of a page walk).

When a prefetched block is read for the first time via a Read Re-
quest, the counter is decremented and the block is marked as read.
If the prefetch distance denoted by counter drops below 8 lines,
then the stop bit is reset and prefetching is resumed. Thus, the
counter and other structures help to always maintain the prefetch
distance for all streams between 8 and 16 cache lines, thus pre-
venting L1 cache pollution and also running sufficiently ahead to
hide memory latency. When a read request hits in an MSHR that is
servicing a prefetch request to the same cache line and is awaiting
response from the lower levels of the memory, the same actions are
taken to update the structures.

The num field of an MSHR that is incremented when a prefetched
block is read, is indicative of the utility (i.e. how many lines prefetched
by this request have been used by the program) of the prefetch re-
quest bound to the MSHR. The value of num proves handy when
the MSHR Queue is full, and a new request wants an MSHR. In
such a case, an MSHR servicing a prefetch request that is currently
dormant (i.e. its stop bit is set) and has the lowest value of the num
field is deallocated to make way for the new request. This thus
helps to prevent a deadlock that may result if all prefetch requests
are useless and thus come to a stop, but continue to hold the MSHR.
Similarly, if a read request hits an MSHR servicing a prefetch re-
quest that is dormant (i.e. prefetch distance or counter is greater
than 8; this only happens when the data stream being prefetched is
irregular or discontiguous), the counter is reset and prefetching is
resumed to prevent a deadlock. Finally, if a prefetch request fetches
data that is already present in the L1 cache, the prefetch request is
squashed given the likelihood that the request is redundant. This
also helps to resolve overlapping prefetch requests.

5. EXPERIMENTAL SETUP
For our evaluation, we use the gem5 simulator [15] to model an

in-order core, a full out-of-order core, and our partial out-of-order
core (that implements SAHP); all cores run the ARMv7 ISA. In
gem5, we simulate an in-order core by using a trimmed down ver-
sion of the out-of-order core model that allows only one outstand-
ing miss, i.e. the load/store queue has a single entry. We model
a partial out-of-order core using the MinorCPU model in gem5.

In the following section, we compare the performance and power
of these cores armed with different prefetchers. Table 4 details the
microarchitectural details of these three cores used in the simulator.

Component Type of core
in-order out-of-order WearCore

Core 2GHz, 2-way superscalar
Reorder logic - Full OoO (renaming + speculation) Partial OoO (scoreboard)

Prefetcher - GHB-based stream prefetcher SAHP
L1-Icache 32KB, 2-way LRU, 2 MSHRs, 1 cycle
L1-Dcache 32KB, 4-way LRU, 10 MSHRs, 2 cycles
L2 Unified 512KB 1024KB 512KB

Cache 8-way LRU, 16 MSHRs, 12 cycles
DRAM LPDDR3, 110ns latency [5]

Execute units 1 int, 1 int/branch, 1 fp/simd, 1 read, 1 write

Op latency

int: alu=1, mul=3, div=12
float: add/cmp=1, mul=3, div=12

SIMD: floatMultAcc=8, floatDiv=18, others=4
read/write=1

Table 4: Microarchitectural details of the simulated cores

We test these cores against the ten applications in WearBench
discussed in Section 2. For simulation, we identify the most rep-
resentative portion of the program, i.e. that which is executed
again and again during program execution and thus contributes al-
most entirely to the execution time. For applications that involve
DNN/CNN computation (i.e. applications in the category of au-
tomatic speech recognition and computer vision), we simulate 2-4
iterations (depending on the problem size) of the outermost loop of
the tiled sgemm kernel with respective problem sizes. We verify
on real hardware that this does not alter the data reuse pattern in
either the L1 or L2 cache and is thus representative of the entire
kernel execution; the execution time scales linearly with the itera-
tions of outermost loop. For the MP3 playback and H264 decoder
applications, we simulate the decoding of each frame of the input
audio and video, respectively, since the entire application consists
of iterative decoding of all frames in the input. For the image pro-
cessing applications, we simulate the entire program execution of
denoising and jpegc with input images of sizes 80x80 and 800x600,
respectively.

We use the GNU C/C++ Compiler to compile these applica-
tions statically for use with the simulator. We use ’-funroll-loops -
march=armv7 -mtune=cortex-a15 -funsafe-math-optimizations -mfpu=
neon-vfpv4’ options in the compiler to enable loop unrolling and
vectorization wherever possible. In some cases, we manually unroll
the loops to get better performance such as in the sgemm kernel and
also in the subroutine performing forward discrete-cosine trans-
form (DCT) in the denoising application. Finally, we use CACTI
6.5 [32] to obtain our area and power estimates for the 28nm tech-
nology node. We obtain dynamic power by calculating the total
energy dissipated by the component from the per-access energy val-
ues obtained from CACTI, and then dividing it by the time taken to
execute the simulated application.

Configuration Details

InO
The baseline in-order core without any prefetchers.

This core is representative of low-power ARM cores
used in low-end smartphones and in some smartwatches.

SB Partial out-of-order execution support through scoreboarding.
This core allows two outstanding misses; does not use prefetchers.

O3
This core supports full out-of-order execution using

register renaming and speculation. It uses an aggressive hardware
prefetcher at L2 cache with a prefetch degree of 8.

SB+SAHP This is WearCore.
It uses scoreboarding and implements our proposed SAHP.

SB+SAHP-L2 Same as above. This core chooses to not have an L2 cache
to represent low-power cores or cores in low-power mode.

O3+SAHP This is an out-of-order core with SAHP, but no hardware prefetchers.

Table 5: Summary of hardware configurations tested

159

6. RESULTS AND DISCUSSION
Figure 4 compares the performance achieved by different hard-

ware configurations with respect to an in-order core (without hard-
ware prefetching) as baseline. Table 5 summarizes the different
configurations; note that although we do not specifically include
BIG.little, the BIG OoO core and the little InO core is included sep-
arately for comparison. The first ten groups of columns show the
performance for each application in WearBench, and the last col-
umn shows the geometric mean of performance achieved by each
configuration on all applications. In summary, we find that the per-
formance of our proposed core, WearCore (denoted by SB+SAHP
in the figure), gets reasonably close to the O3 core - it is 24% slower
for WearBench on average. While WearCore incurs the worst per-
formance (42% slower than O3) in denoising, it is only 12% slower
for the critical speech-to-text application, which has strict QoS re-
quirements. It is important to observe that SAHP adds a crucial
37% performance on top of a core with scoreboarding (denoted by
SB). When using a partial out-of-order core with SAHP but with-
out an L2 cache (i.e. SB+SAHP-L2), the performance degradation
is 36% with respect to O3. Since the performance degradation is
not too drastic (the performance is sometimes even slightly better
in cases where there is not much reuse in L2 since we save an L2
lookup every time we go to DRAM), this is also a reasonable alter-
native that can be useful when the core wants to go to a low-power
mode by turning off the L2 cache to conserve battery. Again, the
use of SAHP makes this configuration feasible since it can prefetch
the data all the way to the L1 cache. Finally, the last bar represents
an O3 core with SAHP but no hardware prefetching. This core
performs 5% better than O3 because of prefetching the data to the
L1 cache as opposed to the L2 cache. The performance improve-
ment achieved by O3+SAHP is as large as 18% for imc application,
thereby advocating prefetching to the L1 cache. SAHP makes this
possible at a low area and power overhead as opposed to a hardware
prefetcher, making its incorporation feasible in low-power devices
such as a smartwatch.

We next discuss the results for application categories.
Automatic speech recognition and computer vision. The core

computation in the six applications that belong to these two cate-
gories is the DNN (speech recognition) or CNN (computer vision).
Among these six, the s-to-t, imc and face spend most of their time
in NN computation (i.e. the sgemm kernel), and benefit more from
SAHP than t-to-c. The reason is that SAHP benefits sgemm par-
ticularly because of bringing the data to the L1 cache, which is
critical given that the computation is entirely SIMDized and com-
pletes quickly (thereby stressing memory). This benefit also shows
when SAHP is used with O3. SAHP, on the other hand, is unable
to benefit the computation outside NN in t-to-c such as the viterbi
dynamic programming algorithm to find the most sequence of hid-
den states, since there are not many accesses to memory. In such
cases, SB has to stall for every unresolved RAW dependence at the
scoreboard. This makes it slower than O3. Also, we observe that in
imc, SAHP adds more performance than in other applications. This
is because data gets repeatedly replaced from the L1 cache due to
pronounced conflicts arising from the problem size being a multi-
ple of a power of two, and thus prefetching data to L1 boosts the
performance more.

Image processing. In denoising, the performance gap between
WearCore (i.e. SB+SAHP) and O3 is maximum. This is because
among all applications, the program spends the maximum fraction
of time in compute. The program does read the patches obtained
from the input image from the memory (during which SAHP as-
sists), but this is followed by 16x16 DCT and inverse-DCT, where
all the data used resides in the L1 cache. In jpegc also, the time
spent in computation is significant, although SAHP improves per-
formance when the image is read from memory.

Audio playback and video decoding. In mp3, SAHP adds a
mild 4% improvement over SB only. This is because we find that
the working set is only around 20KB, and so data is reused from the
L1 cache. Also, the program is thus dominated by computation. In
h264dec, on the other hand, the input frames are larger and pro-
cessing the frames requires copying them, which yields sufficient
opportunities to benefit from prefetching data to L1 cache through
SAHP.

6.1 Area and Power Overheads

Component Organization Ports Area (µm2) Power (mW)
MSHR file 10 entries x 4 bytes (CAM) 1 r/w 2s 1471 0.144

SAHP overhead in 10 entries x 61 bits 1 r/w 1865 0.005MSHR file (61 bits)
SAHP overhead in 512 blocks x 6 bits 1 r/w 2114 0.034Cache (6 bits)

Input Buffer 16 entries x 4 bytes (CAM) 1 r/w 2s 1471 0.144
Scoreboard 64 entries x 1 byte 1r 1w 2956 0.134

InFlightInstQueue 16 entries x 4 bytes (CAM) 1 r/w 2s 1471 0.144
Store Buffer 8 entries x 4 bytes (CAM) 1 r/w 1s 931 0.01
WearCore 462,279 100.5

Cortex-A15 2,025,000 450

Table 6: Area and power overhead of WearCore over an in-order ARM
Cortex-A7 core (Area=450,000µm2, Power=100mW) when modeled with
CACTI6.5 in 28nm. The area and power consumed by ARM Cortex-A15
core is also listed. The numbers do not include the L2 cache.

For the purpose of determining area and power requirements of
WearCore, we follow the strategy as adopted in [17] - we use the
area and power numbers of a baseline in-order core (ARM Cortex-
A7 in our case) as available publicly, and calculate the overhead of
the components added over it to implement WearCore. Accord-
ing to ARM [2], the core area and average power consumption
of Cortex-A7 are 0.45 mm2 and 100mW, respectively, in 28nm.
WearCore and Cortex-A7 are also compared against the out-of-
order ARM Cortex-A15 core, whose area and power consumption
are 4-5 times larger than Cortex-A7 [21, 1].

Table 6 lists for each major component in WearCore, the area
and average power consumption as calculated using CACTI v6.5
[32] at 28nm. Note that whenever we require to round the size of
the structure to the nearest power of 2 in CACTI, we round it to
the larger number. The overheads stem from the following causes.
(1) In order to support SAHP, WearCore uses a larger MSHR file at
the L1 cache as opposed to A7 that only supports two outstanding
prefetch requests through the PLD instruction (and one outstanding
load). We modeled this component as a CAM. (2) The 61 bits in
each MSHR in order to keep track of the prefetch distance in hard-
ware. We model this component as a direct-mapped cache since
the corresponding entry is accessed directly either through the mID
field in a cache block during a cache hit or when the prefetch re-
turns. (3) The 6 bits in the cache. This is modeled as in (2). (4)
The input buffer buffers the instructions before the scoreboard de-
termines that it is safe to issue them. We model this as a CAM since
loads in this buffer may bypass other instructions thereby requiring
an associative lookup. (5) The scoreboard simply tracks the num-
ber of in-flight instructions writing to any particular register. It al-
lows a new instruction to issue once there is no in-flight instruction
waiting to write to any of the source registers of the new instruction
(indicated by a zero count of the source registers in the scoreboard).
We model this as a direct-mapped cache since it is indexed by an
instruction’s source register. (6) The InFlightInstQueue is responsi-
ble for in-order commit of all instructions. It stores all instructions
that have been issued but have not been completed. (7) The store
buffer is used to forward the data to cacheable loads and has 8 en-
tries in our case. In total, the area and power overhead of WearCore
is merely 2.7% and 0.5%, respectively, compared to the baseline.

We combine these area and power estimates with the perfor-

160

s-
to

-t

t-
to

-c
(p

os
)

t-
to

-c
(c

hk
)

t-
to

-c
(n

er
)

im
c

fa
ce

de
no

is
in

g

jp
eg

c

m
p3

h2
64

de
c

G
M

speech-to-text text-to-command computer vision image processing audio video Mean

0

1

2

3

4

5

6

7

8
InO SB

O3 SB+SAHP

SB+SAHP-L2 O3+SAHP
P

e
rf

o
rm

a
n

ce
 n

o
rm

a
liz

e
d

 w
rt

 In
O

Figure 4: Performance comparison of different cores with their respective prefetchers

	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

Area-‐normalized	 perf.	 (MIPS/mm2)	 	 Energy	 ef@iciency	 (MIPS/W)	 	

InO	

OoO	

WearCore	

Figure 5: Area-normalized performance and energy-efficiency of
WearCore versus an in-order and an out-of-order core

mance numbers obtained from gem5. As shown in Figure 5, WearCore
achieves an improvement of 2.8x and 2.9x respectively, in terms
of area-normalized performance and energy efficiency over an in-
order core. On the other hand, the in-order core achieves very sim-
ilar area-normalized performance and energy efficiency as an out-
of-order core. This result is similar to published data [21] about
ARM’s Cortex-A7 and A15 CPUs. Note that these numbers in-
clude the area and power of the L2 cache in each core for better
estimates, and that the out-of-order core uses an L2 cache that is
double the size of L2 in the in-order core as well as WearCore.

6.2 Parallel Performance
Figure 6 shows the parallel performance achieved by two appli-

cations from WearBench, speech-to-text and denoising. We chose
the former as a representative of all six applications that spend
the majority of their time in neural network computation and also
because this application has strict QoS requirements. The figure
shows that these applications scale well with the number of cores,
and thus prove the utility of employing multiple cores on the chip.
Speech-to-text benefits particularly since it can now achieve its tar-
get QoS - using four cores, we find that the DNN computation
involved in recognizing 5 seconds of speech completes in under
250ms (as opposed to nearly a second on a single core) on WearCore
when simulated on gem5 in full-system mode. Also, an 80x80 im-
age can be denoised in 3.5 seconds as opposed to 11.5 seconds.

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

s-to-t

denoising

Number of cores

S
p

e
e

d
u

p
 w

rt
 s

in
g

le
 th

re
a

d

Figure 6: Parallel performance of two WearBench applications; the dip in
s-to-t at 3-cores is due to load imbalance

6.3 Discussion
We thus see that applications in WearBench benefit consider-

ably from WearCore, our proposed core that extends a baseline par-
tial out-of-order core with a software-assisted hardware prefetcher.
This proves to be useful in WearBench because of reducing stalls
on memory accesses while the computation completes quickly as a
result of vectorization. This benefit, however, requires the insertion
of our proposed software prefetch instruction in the code by library
developers and users. Library developers currently tune their li-
braries to benefit from the SIMD extensions on the host hardware,
such as NEON for ARM. This approach has been tenable for smart-
phones till now, particularly because of the select applications that
run on them. For example, the libraries used in audio and video
encode/decode (such as libavcodec) currently provide specific im-
plementations that benefit from the SIMD extensions. This strategy
is also adopted by smartphone companies such as Intel, which re-
cently released its chip for smartphones that can perform offline
speech recognition in an efficient way by software-hardware co-
development [6].

We thus believe that these libraries could similarly include ex-
tensions for prefetching in the source code to benefit from SAHP.
Although such software prefetch instructions exist in current ARM
ISA, but is not beneficial to insert them because of the associated
overhead and due to the difficulty in determining where to insert
them and what prefetch distance to use. The prefetch instruction

161

in SAHP overcomes both of these limitations, making the task of
library developers and users much simpler.

7. RELATED WORK
In the present day, a key goal of computer architects is to ex-

tract the maximum energy efficiency from the core. This goal is
only getting renewed importance as consumers move from desktop
PCs to laptops to smartphones, and now to smartwatches. As archi-
tects contend with this goal, they face the well-known tradeoff be-
tween performance and power. In order to gain performance, some
power-consuming component must be added on the chip. Thus, the
ultimate gain in terms of energy-efficiency depends on whether the
target applications benefit from the newly added component or not.
As we expect the market share of smartwatches to improve, it is
important to identify the key target applications and then propose
minimal hardware to improve its energy-efficiency.

Workload Characterization. In the recent past, there has been
considerable research on identifying key target applications for the
smartphone. BBench [26] and MobileBench [39] are representative
examples. However, these works have not considered on-device
speech recognition or face recognition using DNNs, which are of
particular importance to a smartwatch. More recently, Gao et al.
[23] show that mobile applications utilize less than 2 cores on av-
erage, and thus most mobile processors are overprovisioned with
cores with some of them now having as many as eight cores on the
chip. We find that having multiple cores of the chip in a smartwatch
can be particularly useful for a critical application like speech-to-
text that has strict quality of service requirement; other applications
also make use of multiple cores. We therefore include these work-
loads in WearBench and propose to have multiple simple cores on
chip in a smartwatch. We also show that these applications benefit
a lot from the SIMD unit on the core, making for a case to improve
memory performance.

In order to improve memory performance, there have been var-
ious solutions proposed, mostly hovering around prefetching data
to the higher levels of memory hierarchy in order to prevent miss
latency.

Software-only solutions to improve energy-efficiency. Soft-
ware prefetching [16, 37] is a well known technique to hide mem-
ory latency. It is for this reason that all existing cores includ-
ing some of the in-order ARM cores provide support for software
prefetching. However, as discussed in Section 3, using software
prefetch instructions does not necessarily benefit performance due
to the overhead associated with introducing them in the innermost
loop. In this work, we use a software prefetch instruction to trigger
prefetching, but that instruction appears outside the innermost loop
to prevent this overhead.

Software-hardware solutions. Recently, Mehta et al. [35, 22]
have proposed coordinated prefetching that relies on coordination
between hardware prefetcher and software prefetching. They show
that the overhead due to software prefetching can be overcome
on Intel’s in-order Xeon Phi cores, but they rely on the fact that
the vector width is the same as the cache line size. Thus, in that
case, there are no redundant prefetch instructions, i.e. there is one
prefetch instruction per cache line provided the innermost loop is
vectorized. However, the vector width on ARM cores is a fourth of
the cache line size and thus redundant prefetches cannot be avoided
even when the innermost loop is vectorized. Similarly, the idea of
block prefetching where a single prefetch instruction triggers re-
quests to n (usually 4) consecutive lines, suffers from the problem
of redundant prefetches; elimination of redundant prefetches via
conditional-code/unrolling/short-loops (from strip-mining) prove detri-
mental to vectorization performance and is thus not used in current
production compilers. Other research [29, 41, 28] employs helper
threads to predict future load addresses. The authors in [29, 28]

use an idle thread (SMT) as the helper thread to prefetch data for
another compute thread, whereas Son et al. [41] extend the helper-
thread prefetching to work with multiple (many) cores by assigning
a customized helper thread to a group of compute threads. How-
ever, these solutions are less relevant for smartwatches that do not
employ SMT (to keep them simpler) and have many fewer cores
than those in current multi- (many-) cores.

Hardware-only solutions. An example in this category is runa-
head execution [38] where execution does not stop at a cache miss
resulting in future data being prefetched to the cache in time. Other
examples include designs where the data is precomputed before it
is needed [19] and those where the processor resources are freed
up for miss-independent instructions [42]. However, these solu-
tions are all proposed for out-of-order cores and require sufficient
hardware themselves. These are thus not well suited to low-power
devices. Recently, Carlson et al. [17] have proposed the Load Slice
Core Microarchitecture that extracts memory hierarchy parallelism
(MHP) by enabling memory accesses along with their address-
generating instructions to execute while the pipeline is stalled on
a long-latency miss. They propose a separate pipeline for inde-
pendent memory accesses (and their address-generating instruc-
tions), and additional hardware that identifies address-generating
instructions that lead up to the independent memory accesses. They
achieve good energy efficiency by extracting MHP over both in-
order and out-of-order cores. While their technique is more gen-
eral and targeted towards many-core processors, we achieve sim-
ilar gains for applications in WearBench with simpler hardware,
and WearCore is therefore better suited to smartwatches. Another
solution in this category that comes close to our work is Guided
Region Prefetching (GRP) [45]. In GRP, the compiler provides
a hint to the hardware prefetcher about the loop trip count, and
the hardware then determines all blocks to be prefetched in a page
(region) and dynamically tracks all remaining blocks and the next
block to be prefetched in each page. However, since this is done
for each stream, and GRP may prefetch arbitrarily ahead on the
page (4 KB in its case) for each stream, it starts displacing even
the prefetched data before being used in the event of multiple data
streams. The key in SAHP, on the other hand, is that the hardware
maintains a counter that tracks the current prefetch distance, and
the hardware never allows itself to prefetch too far ahead to start
displacing useful/prefetched data. GRP also requires re-triggering
of the prefetcher (and therefore additional memory accesses) at ev-
ery new page, while SAHP goes across pages without stopping.
Overall, since SAHP requires much less additional hardware, it is
more suitable for a smartwatch.

8. CONCLUSION AND FUTURE WORK
In this work, we propose WearCore, a core for efficiently exe-

cuting smartwatch workloads, that we term WearBench. WearCore
is built on the insight that the important workloads for a smart-
watch are parallel, and make extensive use of SIMD operations,
making it important that the memory requests be serviced quickly
for overall good application performance. Thus, building upon
a quad-core processor as baseline, WearCore augments it with a
light-weight software-assisted hardware prefetcher for reducing the
cache misses altogether. This software-assisted hardware prefetcher
adds minimal overhead in terms of area and power to the core, but
adds a crucial 36% performance on top of the baseline. It is also
very easy to use, and does not add instruction overhead either. Ex-
perimental results show that WearBench achieves significant im-
provement in terms of both area and energy efficiency over both an
in-order and an out-of-order core.
Acknowledgement This work was supported in part by NSF under
grants CCF-1012759 and CCF-1536795.

162

9. REFERENCES
[1] “Arm cortex-a15,” Available at http://www.arm.com/

products/processors/cortex-a/cortex-a15.php.
[2] “Arm cortex-a7,” Available at http:

//www.arm.com/products/processors/cortex-a/cortex-a7.php.
[3] “Arm cortex-a9,” Available at https:

//www.arm.com/products/processors/cortex-a/cortex-a9.php.
[4] “Arm streamline performance analyzer,” Available at

http://ds.arm.com/ds-5/optimize/.
[5] “Cortex a15 dram latency,” Available at

http://www.7-cpu.com/cpu/Cortex-A15.html.
[6] “Intel voice recognition will blow siri out of the water

because it does not use the cloud,” Available at
http://qz.com/170668/intels-voice-recognition-will-blow-
siri-out-of-the-water-because-it-doesnt-use-the-cloud/.

[7] “mpeg3play mp3 music player,” Available at
http://www.mp3-tech.org/programmer/sources/
mpeg3play-0_9_6-src.tgz.

[8] “Openblas - an optimized blas library,” Available at
http://www.openblas.net/.

[9] “Samsung galaxy
s6: Battery life,” Available at http://www.trustedreviews.com/
samsung-galaxy-s6-review-battery-life-and-charging-page-4.

[10] “Samsung gear s 3g smartwatch: Battery life,” Available at
http://www.extremetech.com/computing/188828-samsung
-unveils-standalone-gear-s-3g-smartwatch-awesome-until-
the-battery-runs-out-after-an-hour.

[11] “Logging into twitter and facebook using your face,”
2010, Available at http://thenextweb.com/mobile/2010/11/10/
brilliant-logging-into-twitter-and-facebook-using-your-face-
and-voice-video/.

[12] “Can a smartwatch like the gear s replace your phone?”
2015, Available at http://www.techradar.com/us/news/
wearables/can-a-smartwatch-replace-your-phone--1285484.

[13] “The problem of typing on a watch,” 2015, Available at
http://www.cnet.com/products/samsung-gear-s/.

[14] ABI-Research, “Wearable computing devices, like apple
iwatch, will exceed 485 million annual shipments by 2018,”
2013, Available at https://www.abiresearch.com/press/
wearable-computing-devices-like-apples-iwatch-will/.

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH
Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[16] D. Callahan, K. Kennedy, and A. Porterfield, “Software
prefetching,” in Proceedings of the Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS IV. New
York, NY, USA: ACM, 1991, pp. 40–52.

[17] T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and
L. Eeckhout, “The load slice core microarchitecture,” in
Proceedings of the 42Nd Annual International Symposium
on Computer Architecture, ser. ISCA ’15. New York, NY,
USA: ACM, 2015, pp. 272–284.

[18] L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng,
E. Plondke, C. Koob, A. Ingle, C. Tabony, and R. Maule,
“Hexagon dsp: An architecture optimized for mobile
multimedia and communications,” IEEE Micro, vol. 34,
no. 2, pp. 34–43, Mar 2014.

[19] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen,
“Dynamic speculative precomputation,” in Proceedings of
the 34th Annual ACM/IEEE International Symposium on
Microarchitecture, ser. MICRO 34. Washington, DC, USA:

IEEE Computer Society, 2001, pp. 306–317.
[20] R. Collobert, J. Weston, L. Bottou, M. Karlen,

K. Kavukcuoglu, and P. Kuksa, “Natural language
processing (almost) from scratch,” J. Mach. Learn. Res.,
vol. 12, pp. 2493–2537, Nov. 2011.

[21] EE-Times, “How arm’s cortex-a7 beats the a15,” 2013,
Available at http://www.eetimes.com/author.asp?section_id=
36&doc_id=1318968.

[22] Z. Fang, S. Mehta, P.-C. Yew, A. Zhai, J. Greensky,
G. Beeraka, and B. Zang, “Measuring microarchitectural
details of multi- and many-core memory systems through
microbenchmarking,” ACM Trans. Archit. Code Optim.,
vol. 11, no. 4, pp. 55:1–55:26, Jan. 2015.

[23] C. Gao, A. Gutierrez, M. Rajan, R. G. Dreslinski, T. Mudge,
and C.-J. Wu, “A study of mobile device utilization,” 2015
IEEE International Symposium on Performance Analysis of
Systems and Software, 2015.

[24] Google-Research, “Voice search made faster,” 2015,
Available at http://googleresearch.blogspot.in/2015/09/
google-voice-search-faster-and-more.html.

[25] Google-Wear, “Android wear on wi-fi: Using a smartwatch
without a phone nearby,” 2015, Available at
http://www.computerworld.com/article/2919013/android/
android-wear-on-wi-fi-using-a-smartwatch-without-a-
phone-nearby.html.

[26] A. Gutierrez, R. Dreslinski, T. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver, “Full-System Analysis and
Characterization of Interactive Smartphone Applications,” in
the proceedings of the 2011 IEEE International Symposium
on Workload Characterization (IISWC), Austin, TX, USA,
2011, pp. 81–90.

[27] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li,
R. Dreslinski, T. Mudge, J. Mars, and L. Tang, “Djinn and
tonic: Dnn as a service and its implications for future
warehouse scale computers,” in Proceedings of the 42nd
Annual International Symposium on Computer Architecture
(ISCA), ser. ISCA ’15. New York, NY, USA: ACM, 2015.

[28] M. Kamruzzaman, S. Swanson, and D. M. Tullsen,
“Inter-core prefetching for multicore processors using
migrating helper threads,” in Proceedings of the Sixteenth
International Conference on Architectural Support for
Programming Languages and Operating Systems, ser.
ASPLOS XVI. New York, NY, USA: ACM, 2011, pp.
393–404.

[29] D. Kim and D. Yeung, “Design and evaluation of compiler
algorithms for pre-execution,” in Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems, ser.
ASPLOS X. New York, NY, USA: ACM, 2002, pp.
159–170.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems 25,
F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds.
Curran Associates, Inc., 2012, pp. 1097–1105.

[31] X. Lei, A. Senior, A. Gruenstein, and J. Sorensen, “Accurate
and compact large vocabulary speech recognition on mobile
devices,” in Proceedings of the 14th Annual Conference of
the International Speech Communication Association, ser.
ISCA ’13, 2013.

[32] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,
“Cacti-p: Architecture-level modeling for sram-based
structures with advanced leakage reduction techniques,” in
Proceedings of the International Conference on

163

http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/products/processors/cortex-a/cortex-a7.php
http://www.arm.com/products/processors/cortex-a/cortex-a7.php
https://www.arm.com/products/processors/cortex-a/cortex-a9.php
https://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://ds.arm.com/ds-5/optimize/
http://www.7-cpu.com/cpu/Cortex-A15.html
http://www.mp3-tech.org/programmer/sources/mpeg3play-0_9_6-src.tgz
http://www.mp3-tech.org/programmer/sources/mpeg3play-0_9_6-src.tgz
http://www.openblas.net/
http://www.trustedreviews.com/samsung-galaxy-s6-review-battery-life-and-charging-page-4
http://www.trustedreviews.com/samsung-galaxy-s6-review-battery-life-and-charging-page-4
http://www.techradar.com/us/news/wearables/can-a-smartwatch-replace-your-phone--1285484
http://www.techradar.com/us/news/wearables/can-a-smartwatch-replace-your-phone--1285484
http://www.cnet.com/products/samsung-gear-s/
https://www.abiresearch.com/press/wearable-computing-devices-like-apples-iwatch-will/
https://www.abiresearch.com/press/wearable-computing-devices-like-apples-iwatch-will/
http://www.eetimes.com/author.asp?section_id=36&doc_id=1318968
http://www.eetimes.com/author.asp?section_id=36&doc_id=1318968
http://googleresearch.blogspot.in/2015/09/google-voice-search-faster-and-more.html
http://googleresearch.blogspot.in/2015/09/google-voice-search-faster-and-more.html

Computer-Aided Design, ser. ICCAD ’11. Piscataway, NJ,
USA: IEEE Press, 2011, pp. 694–701.

[33] D. Mahajan, J. Park, E. Amaro, H. Sharma,
A. Yazdanbakhsh, J. Kim, and H. Esmaeilzadeh, “Tabla: A
unified template-based framework for accelerating statistical
machine learning,” 2016.

[34] S. Mehta, G. Beeraka, and P.-C. Yew, “Tile size selection
revisited,” ACM Trans. Archit. Code Optim., vol. 10, no. 4,
pp. 35:1–35:27, Dec. 2013.

[35] S. Mehta, Z. Fang, A. Zhai, and P.-C. Yew, “Multi-stage
coordinated prefetching for present-day processors,” in
Proceedings of the 28th ACM International Conference on
Supercomputing, ser. ICS ’14. New York, NY, USA: ACM,
2014, pp. 73–82.

[36] S. Mehta, R. Garg, N. Trivedi, and P.-C. Yew, “Turbotiling:
Leveraging prefetching to boost performance of tiled codes,”
in Proceedings of the 2016 International Conference on
Supercomputing, ser. ICS ’16. New York, NY, USA: ACM,
2016, pp. 38:1–38:12.

[37] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and
evaluation of a compiler algorithm for prefetching,” in
Proceedings of the Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS V. New York, NY, USA:
ACM, 1992, pp. 62–73.

[38] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead
execution: An alternative to very large instruction windows
for out-of-order processors,” in Proceedings of the 9th
International Symposium on High-Performance Computer
Architecture, ser. HPCA ’03, Washington, DC, USA, 2003.

[39] D. Pandiyan, S.-Y. Lee, and C.-J. Wu, “Performance, energy
characterizations and architectural implications of an
emerging mobile platform benchmark suite - mobilebench,”
in Workload Characterization (IISWC), 2013 IEEE
International Symposium on, Sept 2013, pp. 133–142.

[40] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,

N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The kaldi speech
recognition toolkit,” in IEEE 2011 Workshop on Automatic
Speech Recognition and Understanding. IEEE Signal
Processing Society, 2011.

[41] S. W. Son, M. Kandemir, M. Karakoy, and D. Chakrabarti,
“A compiler-directed data prefetching scheme for chip
multiprocessors,” in Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’09. New York, NY, USA: ACM,
2009, pp. 209–218. [Online]. Available:
http://doi.acm.org/10.1145/1504176.1504208

[42] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and
M. Upton, “Continual flow pipelines,” in Proceedings of the
11th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser.
ASPLOS XI. New York, NY, USA: ACM, 2004, pp.
107–119.

[43] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface:
Closing the gap to human-level performance in face
verification,” in Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on. IEEE, 2014, pp.
1701–1708.

[44] The-Guardian, “Why i have finally taken off the apple watch
for the last time,” 2016, Available at
https://www.theguardian.com/technology/2016/jun/09/
apple-watch-smartwatch.

[45] Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt, and
C. C. Weems, “Guided region prefetching: A cooperative
hardware/software approach,” in Proceedings of the 30th
Annual International Symposium on Computer Architecture,
ser. ISCA ’03. New York, NY, USA: ACM, 2003, pp.
388–398.

[46] G. Yu and G. Sapiro, “Dct image denoising: a simple and
effective image denoising algorithm,” Image Processing On
Line, vol. 108, 2011.

164

http://doi.acm.org/10.1145/1504176.1504208
https://www.theguardian.com/technology/2016/jun/09/apple-watch-smartwatch
https://www.theguardian.com/technology/2016/jun/09/apple-watch-smartwatch

	Introduction
	Target Applications
	Automatic Speech Recognition (ASR)
	Image Processing
	Computer Vision
	Audio Playback
	Video Rendering

	Motivation and Key Insight
	Why not a DSP for WearBench?
	Why not an Accelerator?
	Key Insights
	The Case for a Software-Assisted Hardware Prefetcher

	Implementation
	Experimental Setup
	Results and Discussion
	Area and Power Overheads
	Parallel Performance
	Discussion

	Related Work
	Conclusion and Future Work
	References

