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ABSTRACT
Cache Coherent NUMA (ccNUMA) architectures are a wide-
spread paradigm due to the benefits they provide for scaling 
core count and memory capacity. Also, the flat memory ad-
dress space they offer considerably improves programmabil-
ity. However, ccNUMA architectures require sophisticated 
and expensive cache coherence protocols to enforce correct-
ness during parallel executions, which trigger a significant 
amount of on- and off-chip traffic in the system.

This paper analyses how coherence traffic may be best 
constrained in a large, real ccNUMA platform through the 
use of a joint hardware/software approach. For several bench-
marks, we study coherence traffic in detail under the influ-
ence of an added hierarchical cache layer in the directory 
protocol combined with runtime managed NUMA-aware sch-
eduling and data allocation techniques to make most efficient 
use of the added hardware. The effectiveness of this joint 
approach is demonstrated by speedups of 1.23x to 2.54x and 
coherence traffic reductions between 44% and 77% in com-
parison to NUMA-oblivious scheduling and data allocation. 
Furthermore, we show that the NUMA-aware techniques we 
employ at the runtime level are crucial to ensure the added 
hierarchical layer in the directory coherence protocol does 
not introduce significant coherence traffic to the system.

Keywords
Cache Coherence; NUMA; Task-based programming models

c© 2016 ACM. 
DOI: http://dx.doi.org/10.1145/2967938.2967962

1. INTRODUCTION
ccNUMA architectures have become a ubiquitous appro-

ach in the design of SMP systems that need to scale to large
numbers of cores and amounts of memory capacity in pur-
suit of increased thread level parallelism. ccNUMA archi-
tectures provide clear advantages by increasing provision of
resources such as capacity, bandwidth and parallelism in the
memory hierarchy through physically distributing the cache
and memory subsystem while maintaining a logically shared
view of memory for the user. Since the cache and memory
are both shared and distributed, many memory accesses re-
sult in a coherence transaction. Depending on the state of
the accessed cache line in the system, such coherence trans-
actions may be costly in terms of number of coherence mes-
sages required and latency involved. This coherence traffic
travelling through on- and off-chip networks within SMP
architectures is responsible for a significant proportion of
the system energy consumption [24]. Minimising this data
movement by using runtime systems and parallel codes that
judiciously manage data locality is therefore crucial for both
energy efficiency and performance.

The most common way to program shared memory SMP
systems are thread-based programming models like OpenMP
[23] or Pthreads [6], which provide basic mechanisms to han-
dle NUMA architectures. The OpenMP 4.0 standard sup-
ports tasking and data dependencies. These two features
provide the opportunity for a runtime system to automati-
cally handle data locality in a performance optimal NUMA-
aware fashion based on knowledge of the NUMA topology of
the system, the concrete specification of the data each task
requires in the programming model and tracking where the
data is allocated within the NUMA regions of the system
[10, 28]. Such an approach makes data motion a first class
element of the programming model, allowing the runtime
system to optimise for energy and performance.

The real impact of NUMA-aware work scheduling mecha-
nisms on the cache coherence traffic that occurs within SMP
architectures is not well understood as it may be masked by
other factors. For example, to effectively deploy a NUMA-
aware work scheduling mechanism over an SMP NUMA sys-
tem two stipulations are required. (1) Data must be uni-



formly distributed amongst all the NUMA regions the sys-
tem is composed of, and, (2) work must be scheduled where
its requisite data resides. Then, it is not clear what propor-
tion of the observed benefits of a NUMA-aware work sch-
eduling mechanism are due to (1) or (2). In this work we
distinguish between the effects of (1) and (2) on both cache
coherence traffic and performance.

In this work we directly and in detail characterise cache
coherence traffic in a real system with workloads relevant
to high performance and data centric computing, relate this
traffic to performance and assess the effectiveness of combin-
ing runtime managed scheduling and data allocation tech-
niques with hardware approaches designed to minimise such
traffic. We use a large SMP architecture, a Bull bullion
S [1] server platform, to make our analysis. The bullion
S platform utilises a sophisticated ccNUMA architecture
composed of sets of 2 sockets grouped into entities called
modules. The Bull Coherence Switch (BCS), a proprietary
ASIC, manages the inter-module interface and enables scal-
ing up to a maximum configuration of 8 modules (16 sock-
ets of Intel Xeon CPUs) in a single SMP system. The BCS
achieves this by providing an extra module level layer in the
directory architecture managing coherence among the L3s in
the system. The in-memory directory information stored as
normal by the Intel architecture tracks directory information
for cache lines shared within a module on a per-socket gran-
ularity while the directory information tracked in the BCS
is at a less granular per-module basis for cache lines which
are exported inter-module. The BCS caches module level di-
rectory information about cache lines which are transferred
between the different modules in the system. This directory
information allows the BCS to filter coherence traffic from
the system interconnect in certain cases and thus enable
scaling to larger coherent systems.

Our work uses the measurement capabilities provided by
the BCS to perform a direct fine grain analysis of the coher-
ence traffic within the system. To the best of our knowledge,
this paper contains the first study on how a hierarchical di-
rectory approach [19] to scaling cache coherence interacts
with a runtime managed strategy to promote data locality.
Indeed, we show how the extra layer of the coherence hierar-
chy implemented by the BCS is most fully exploited in com-
bination with runtime managed NUMA-aware regimes for
reducing coherence traffic among multiple NUMA regions.

Specifically, these are the main contributions of this paper:

• A complete performance analysis of a large SMP ar-
chitecture considering three important scientific codes
and three regimes of work scheduling and memory al-
location: 1) Default (NUMA-oblivious) scheduling and
first touch allocation 2) Default (NUMA-oblivious) sch-
eduling and interleaved allocation which uniformly in-
terleaves memory among NUMA regions at page gran-
ularity. 3) NUMA-aware runtime managed scheduling
and allocation. We see performance improvements up
to 2.54x among the benchmarks when utilising the
NUMA-aware regime versus the baseline.

• For the three regimes, a detailed measurement of the
coherence traffic within the SMP system, broken down
into data traffic versus control traffic. We further de-
compose these traffic types into message classes e.g.
data delivered to cache, write backs from cache and
the different request and response classes in the con-

trol traffic. We see reductions in coherence traffic up to
77% among the benchmarks when utilising the NUMA-
aware regime versus the baseline.

• We show that extra layer of the coherence hierarchy
implemented by the BCS works optimally when com-
bined with runtime managed NUMA-aware scheduling
and data allocation. Such a regime of scheduling and
data allocation reduces capacity pressure on the di-
rectory cache in the BCS enabling it to make a net
reduction in the amount of systemwide snoop related
traffic of up to 35%. In contrast, we demonstrate that
NUMA-oblivious policies or uneven memory alloca-
tions may overwhelm the capacity of the BCS, forc-
ing it to inject extra snoop traffic into the system to
maintain its directory state.

This paper is organised as follows: Section 2 details the
types and classes of coherence traffic in our analysis. Sec-
tion 3 describes the architecture of the large SMP system
used to make our analysis. Section 4 introduces the pro-
gramming model and runtime system which supports the
three different regimes of work scheduling and data alloca-
tion. Section 5 details the three benchmarks used. Section
6 presents the results of our analysis of the performance and
coherence traffic. Section 7 discusses related work. Lastly,
we conclude the paper in Section 8.

2. CACHE COHERENCE TRAFFIC
While the logically flat view of memory an SMP offers the

user is convenient and considerably eases the programming
burden, it does require a sophisticated mechanism to enforce
coherence between the multiple physically distributed caches
and memories in the system.

In order to analyse this mechanism we categorise the co-
herence traffic it triggers within the SMP into two types,
each consisting of different classes of messages. The first
type, Data messages, contain user data (cache lines) while
the second type, Control messages, are messages that sig-
nal activities in the coherence protocol and do not contain
user data. For example, a message transferring a cache line
from a memory to a cache (or vice versa) belongs to the
Data traffic type while asking a certain cache for the status
of a cache line or requesting data in a certain state from a
memory would be of the Control traffic type.

To understand in greater detail in what nature the soft-
ware (work scheduling & data allocation regime) techniques
and the BCS affect the traffic we further break down the two
types of traffic into message classes. An outline of message
classes and their role in the coherence protocol follows:

Data Messages: Messages that carry a single cache line
payload. If the receiver is a cache the message is of the DTC
(Data To Cache) class, the sender of such messages may be
a memory or another cache. If a memory is the receiver of a
Data message, the message falls into the DWB (Data Write
Back) class, the sender of a DWB message is always a cache.

Control Messages: Messages that carry protocol sig-
nalling messages without a data payload. Request messages
from a cache to a memory belong to the HREQ (Home Re-
quest) class. For example such a request could be the cache
asking the memory for access to a cache line in a certain
state. Depending on the existing state of the cache line in
the requesting cache and the state the cache line is requested
in, a HREQ may be reciprocated by a DTC message. SNP



Table 1: Coherence protocol message classes

Type Class Description

Data DWB
Data Write Back, message from cache to
memory with cache line payload

Data DTC
Data To Cache, message towards cache
with cache line payload

Control HREQ
Home Request, cache requesting a
cache line in a certain state from memory

Control SNP
Snoop, memory requesting state of
cache line or invalidating cache line from
cache

Control HRSP
Home Response, cache providing state of
cache line to memory

Control NDR
Non-Data Response, memory signals
transaction completion to cache, data
not required

(Snoop) messages are requests from a memory to a cache
asking the cache to perform some action, for example to
invalidate a cache line or forward it to another cache. De-
pending on the exact nature of a SNP message it may be
reciprocated by a HRSP (Home Response) message which
is a confirmation sent from a cache to a memory that the
action requested by the SNP is completed. An NDR (Non-
Data Response) message is sent from a memory to a cache to
signal the completion of a coherence transaction, where the
memory did not need to deliver data to the cache. This could
be because, for example, the data was delivered indirectly
from another cache to the requesting cache or the request-
ing cache already had the data but requested to change the
state of the cache line.

All these classes, conveniently classified as Data or Control
traffic and summarised in Table 1, comprise a total decom-
position of the cache coherence traffic at the LLC (Last Level
Cache) to memory interface within the SMP and provide an
insightful basis upon which to analyse the effectiveness of
the three work scheduling and data allocation regimes and
the BCS on the coherence traffic.

3. BULLION S ARCHITECTURE
Figure 1 shows a dual module bullion S system. The bul-

lion S platform has the capability to scale to eight modules
in its maximum configuration. Each module comprises two
Intel Xeon sockets and their local memory connected to a
single Bull proprietary ASIC, the BCS.

3.1 Cache Coherence in the bullion S System
The BCS is the glue for connecting multiple modules into

a single SMP system. Cache coherence traffic statistics are
collected from the BCS during benchmark execution. As all
coherence traffic is measured within the BCS, the results we
present include only coherence traffic travelling via the BCS
(see Figure 1) in each module. Traffic travelling directly be-
tween the two CPUs within a single module does not travel
via a BCS and is therefore not included. Measurements are
recorded at each BCS in the system for both traffic incom-
ing to the BCS (from its two local CPU sockets) and traffic
outgoing from the BCS (towards its two local CPU sockets).
We term this incoming or outgoing nature of the traffic its
directionality. Henceforth, all references to cache refer to the
LLC (labelled L3 in Figure 1) of a processor unless otherwise
indicated and the coherence traffic observed represents only
coherence transactions at the interface of the LLC cache and
the system memory (via a BCS). In Figure 1, for the pur-

poses of cache coherence transactions, the system memory is
represented by the units labelled MC (Memory Controller).

The BCS is an actor in the cache coherence protocol of the
system rather than simply a routing point for inter-module
messages. The BCS caches module level directory infor-
mation about cache lines which have been exported from a
memory in its local NUMA regions to caches in other mod-
ules. This enables the BCS to act as a proxy for an L3 cache
or memory controller in certain inter-module cache transac-
tions, reducing the coherence traffic required in the system.

For example, for SNP and HRSP messages the BCS may
filter messages from the system, where it can participate in
the coherence transaction in place of a CPU. Therefore, SNP
messages may appear as incoming to a BCS in one module
without appearing as outgoing in any other module and vice
versa for the HRSP messages. In the process of maintaining
its own directory information the BCS may also initiate SNP
messages to other modules, so CPUs may see SNP messages
which originate at a BCS and not at any other processor in
the system. Therefore, SNP messages may appear as out-
going from a BCS without having appeared as incoming to
any other BCS in the system. When NDR messages are
sent by a CPU they may be piggybacked on unused bits in
other messages classes as a bandwidth optimisation imple-
mented by the CPUs. To optimise for latency, the BCS does
not piggyback NDR messages on other message classes. For
these reasons there may be an asymmetry between the in-
coming and outgoing traffic levels for the SNP, HRSP and
NDR message types.

For the HREQ, DTC and DWB message classes, messages
recorded as incoming to the BCS in one module will always
pass through the inter-module link and appear as outgoing
from the BCS in another module and vice versa. This means
the amount of traffic for these message classes in the entire
system is symmetric in directionality.

By analysing the coherence traffic in the message types
and classes defined in Table 1 under the different memory
allocation and scheduling regimes it is possible to provide a
detailed characterisation of the effect of the different regimes
and the BCS on the coherence traffic.

3.2 System Environment & Characteristics
In this work we use an experimental dual module instal-

lation of the bullion S platform, running RHEL 6.5 with a
Linux kernel version of 2.6.32. Each module is composed
of two 15 core Intel Ivy Bridge EX E7 8890 v2 processors.
Each Intel Xeon socket has a local NUMA region containing
8 GB of system memory made up of two 4 GB DIMMs. This
means that of the eight memory channels connected to each
socket, two are occupied by DIMMs.

The main memory subsystem may be operated in one of
two modes, selectable as a systemwide parameter in the
firmware. Lockstep Mode provides higher RAS (Reliabil-
ity, Availability, Service) features than Performance Mode.
Typically Lockstep Mode can provide around 60% of the
memory bandwidth available in performance mode if both
modes are configured optimally.

The memory subsystem in the system we use is configured
in Lockstep Mode. Therefore the complete system has four
sockets and NUMA regions, 32GB of system memory, and a
total physical core count of 60. The memory configuration
results in each socket having a theoretical maximum memory
bandwidth within its local NUMA region of 10.6 GB/s



Figure 1: Logical view of a dual module bullion S system

Table 2

(a) NUMA distances

Region 0 1 2 3

0 10 15 40 40
1 15 10 40 40
2 40 40 10 15
3 40 40 15 10

(b) Latencies (ns)

0 1 2 3

115.4 178.5 407.5 404.5
183.2 109.9 400 398
419.6 401.9 109.9 173.4
415.5 401.8 173.7 110.6

Information regarding the NUMA topology of a system is
typically available from the firmware via the OS. The nu-

mactl -hardware command may be used to display the in-
formation the OS provides to the runtime regarding NUMA
distances. As denoted in Tables 2 and 3 by the three differ-
ent colours, the system has three levels of NUMA distance.
A coherence message may travel within the local NUMA re-
gion (green), to the single ’near’ remote NUMA region, i.e.
the other NUMA region in the local module (yellow), or to
one of two ’far’ remote NUMA regions, i.e. the NUMA re-
gions in the remote module (red). Table 2a shows the three
classes of NUMA distance in the system. Besides the NUMA
distances provided by the firmware we measure the real la-
tencies and memory bandwidths available across the differ-
ent NUMA distances in the system. We use Intel’s Memory
Latency Checker (MLC) [29] to measure the latencies and
the STREAM benchmark [20] to measure the memory band-
widths. The latencies in the system (Table 2b) follow the
same pattern and similar ratios to the NUMA distances in
Table 2a. On average there is a 58% latency penalty in ac-
cessing memory in the neighbouring NUMA region in the
same module in comparison to accessing memory in the lo-
cal NUMA region. There is a further latency penalty of
129% to access data in either of the NUMA regions in the
other module (or a 264% penalty for inter-module access
compared to local NUMA region access).

Table 3 shows the memory bandwidths measured in the
system for the STREAM Triad benchmark. These results
use all the threads available on a single socket (15) to satu-
rate the bandwidth to the memory of a given NUMA region.
The memory bandwidth values measured follow the same
pattern seen in Tables 2a and 2b, with a small aberration,

Table 3: Bandwidth for the different NUMA distances in
the system with the STREAM Triad benchmark (GB/s)

Region 0 1 2 3

0 5.39 4.15 4.12 4.92
1 4.14 5.40 4.12 4.92
2 4.11 4.12 5.40 4.96
3 4.09 4.12 4.15 6.86

the values in bold (column 3 of Table 3) are higher than the
figures for the other NUMA distances in the same class (i.e.
of the same colour in the table). This is due to dual rank
DIMMs being installed in NUMA region 3 and single rank
DIMMs elsewhere in the system.

4. MEMORY ALLOCATION AND
SCHEDULING

In this work we use a task-based data-flow programming
model, an approach supported by OpenMP 4.0. In this
model the execution of a parallel program is structured as a
set of tasks with dependences among them. The program-
mer identifies tasks by annotating serial code with directives.
Data-flow is represented by clauses in the directives which
specify what data is used by a task (called input dependen-
cies) and produced by each task (called output dependen-
cies). The runtime manages parallel execution of the tasks,
relieving the programmer from explicitly synchronising and
scheduling tasks and thus promoting programmability.

We use the OmpSs [11] task-based data-flow program-
ming model to experiment with a diverse set of memory
allocation and scheduling regimes. The OmpSs program-
ming model supports task constructs in a very similar way
to OpenMP 4.0. The task-based data-flow programming
model supported by both OpenMP 4.0 and OmpSs pro-
vide the potential to implement NUMA-aware scheduling
in the runtime system. The OmpSs runtime system, called
Nanos++ [3], already supports NUMA-aware scheduling in
the release we use, version 0.9a.

The default (NUMA-oblivious) OmpSs runtime scheduler
maintains one global queue of ready tasks for the entire SMP



system. Tasks are scheduled among cores without consider-
ing where their data dependencies reside. In contrast, the
NUMA-aware OmpSs scheduler maintains one ready queue
per NUMA region within the SMP system. Tasks are en-
queued in the NUMA region in which the largest proportion
of their data dependencies reside. The runtime system ac-
complishes this through bookkeeping of data location [5].
When data is first tied to a physical memory location (at
the time of the data’s initialisation) within an OmpSs task
the runtime system records which NUMA region the data
is physically located in. When scheduling subsequent tasks
the runtime system examines the data dependencies of each
task to calculate which NUMA region contains the largest
proportion of each task’s data dependencies. Each task is
then added to the ready queue of the NUMA region which
has the largest amount of data required by the task.

We use three regimes of task scheduling and memory al-
location to analyse the impact of NUMA-aware scheduling
on the coherence traffic classes defined in Section 2.

4.1 Scheduling & Memory Allocation Regimes
The OmpSs features described above allow us to define

several execution regimes of task scheduling and memory
allocation. In all cases where we use less than the maximum
number of cores in the system the cores in use are uniformly
distributed among the four NUMA regions of the system.

Default scheduling & First Touch allocation (DFT):
Tasks are scheduled in a NUMA oblivious fashion among
all available cores in the system, ensuring load is balanced.
Data is allocated in the NUMA region of the core where
the allocation happens to execute, via the Linux first touch
memory allocation policy. In a worst case scenario, all data
may happen to be allocated in a single NUMA region, leav-
ing others entirely unused. Tasks using the allocated data
are scheduled among the available cores without any consid-
eration for where their requisite data resides.

Default scheduling & Interleaved allocation (DI):
Tasks are scheduled in a NUMA-oblivious fashion, as in
DFT, ensuring load is balanced. Nevertheless, all data allo-
cations are uniformly distributed among all the NUMA re-
gions in the system. This is achieved with the Linux NUMA
interleaved memory allocation policy which distributes allo-
cated memory among all NUMA regions at a page granu-
larity, regardless of what core the allocation runs on. Data
is guaranteed to be uniformly distributed among all NUMA
regions in the system (at page granularity). However, tasks
using allocated data run without any consideration for where
their data dependencies reside.

NUMA-Aware scheduling & First Touch allocation
(NAFT): Tasks are scheduled in a NUMA-aware fashion.
The application’s memory allocating code is encapsulated
in tasks by the programmer. The runtime system auto-
matically recognises tasks which allocate data and sched-
ules them in a uniformly distributed arrangement among the
NUMA regions. Each task which allocates data allocates all
its data locally in the NUMA region it runs in via the Linux
first touch memory allocation policy. Memory is therefore
guaranteed to be uniformly distributed among all NUMA
regions in the system (at a per-task allocation granularity,
determined by the programmer). Tasks using the allocated
data are scheduled on cores in the NUMA region where the
majority of their data dependencies reside. Uniquely under
NAFT, it is possible load imbalance may occur due to the

NUMA-aware scheduling. In this case the runtime system
handles it via work-stealing. Load imbalance was negligible
in all our experiments.

A regime utilising NUMA-aware scheduling & interleaved
allocation is not a valid combination. This is because, in
order to create data locality, the NUMA-aware scheduler
depends on each task allocating data to do so in its local
NUMA region only, via first touch.

5. BENCHMARKS
We chose three benchmarks for use in our evaluations, rep-

resentative of important problems in both high performance
and data centric computing, with significantly different data
access patterns. One is from the PARSEC benchmark suite
[4] and two are based on linear algebra problems [2].

PARSEC Streamcluster This benchmark from the PA-
RSEC suite is based on the online clustering problem. This
problem organises large volumes of continuously produced
streaming data in real-time with applications in areas such
as network intrusion detection, data mining and pattern
recognition. The benchmark is dominated by a streaming
read data access pattern and is adapted to a task-based
implementation in the OmpSs programming model. This
benchmark runs using the native input data set as specified
by the PARSEC documentation and is executed on a vary-
ing number of cores (16 to 32) distributed evenly across the
four sockets in the system.

Cholesky This benchmark uses a modern tile-based al-
gorithm for the Cholesky factorisation problem in linear al-
gebra which exposes fine grained parallelism and is imple-
mented in the task-based OmpSs programming model.

Symmetric Matrix Inversion (SMI) This benchmark
is a larger linear algebra problem which inverts a symmetric
matrix in three stages. It also follows a tile-based algorithm
thus exposing fine grained parallelism. It is implemented in
the task-based OmpSs programming model.

Both linear algebra benchmarks exhibit a complex data
access pattern comprising a mix of reads and writes and are
run across different core counts (16 to 32) with threads dis-
tributed evenly across the four sockets in the system. In all
cases, the size (N) of the NxN matrix we use in both lin-
ear algebra benchmarks is 20480. At this value of N, in all
cases, the benchmark’s performance has reached the maxi-
mum attainable (in GFLOP/s) and is no longer increasing
with larger values of N. We experimented with different tile
sizes for both linear algebra benchmarks and found a tile size
of 512 to give the best performance in all cases and this is
the tile size used for all the linear algebra results we present.
All performance and coherence traffic measurements are re-
peated three times and the mean value reported.

6. RESULTS AND ANALYSIS

6.1 Introduction
In this section we present a detailed analysis of the coher-

ence traffic generated by running the benchmarks presented
in Section 5 on different numbers of cores on the bullion S
system. We present results for the benchmarks under the
three regimes detailed in Section 4.1 : DFT, DI and NAFT.
First, in Section 6.2 we present a decomposition of the co-
herence traffic into the two Data message classes (DWB
and DTC) plus aggregate Control traffic (which comprises



(a) Streamcluster (b) Cholesky (c) SMI

Figure 2: Speedup DFT, DI, NAFT regimes under increasing thread count

(a) Streamcluster (b) Cholesky (c) SMI

Figure 3: Coherence Bandwidth: DWB, DTC and Control traffic

(a) Streamcluster (b) Cholesky (c) SMI

Figure 4: Coherence Movement: DWB, DTC and Control traffic

SNP, HRSP, HREQ and NDR). Secondly, in Section 6.3
we present a detailed breakdown of the Control traffic type
into its individual message classes. Thirdly, in Section 6.4
we focus on the interplay between the three software based
regimes for task scheduling and memory allocation and the
two level directory hierarchy managing coherence among the
L3s in the system.

For each benchmark, thread count and execution regime,
we present the coherence traffic profile in two views, both
measured at the BCS (see Section 3.1 for the site of measure-
ment and precisely which coherence traffic we measure): (1)
the bandwidth utilised by coherence traffic during bench-
mark execution, called Coherence Bandwidth, and (2)
the total coherence traffic data moved over the entire course
of the benchmark execution, called Coherence Movement.
The coherence bandwidth and coherence movement views
are related via the execution time as coherence bandwidth
is the coherence movement per second of execution time.
All Figures show the systemwide (i.e. both modules ag-
gregated) coherence traffic. The traffic’s directionality (see
Section 3.1) is labelled as I and O in all figures for incoming
and outgoing traffic respectively. In order to clearly distin-

guish between the two, we always refer to the bandwidth to
memory in the system as memory bandwidth and the band-
width of coherence traffic travelling between modules and
measured at the BCS as coherence bandwidth.

To place the coherence traffic analysis that follows in a
performance context Figure 2 shows the speedup for each
benchmark and regime combination at varying thread counts
on the bullion S system. These speedup figures use the DFT
regime at a thread count of 16 as the baseline (equal to 1 in
Figure 2) and are discussed in Section 6.2.

It is important to note that in a ccNUMA architecture the
bandwidth to memory is also distributed among the NUMA
regions of the system. If the number of NUMA regions in a
system is R and a workload allocates memory in only K < R
NUMA regions the maximum availability of memory band-
width will be K/R times the systemwide maximum possible.
Similarly the system contains two BCS, one in each mod-
ule. Each BCS implements a module level directory which
caches directory information for cache lines exported from
that module to L3s in a remote module. If a workload allo-
cates memory in only 1 module, only half of the systemwide
BCS resources are utilised.



Table 4: Speedup and reduction in coherence movement at
best performing thread count: Streamcluster (32 threads),
Cholesky (24 threads) and SMI (24 threads).

(a) NAFT regime in comparison to DFT regime

Benchmark Speedup DWB DTC Control Total

Streamcluster 2.54x 12% 42% 50% 44%
Cholesky 1.28x 91% 78% 60% 77%

SMI 1.23x 71% 58% 52% 60%

(b) NAFT regime in comparison to DI regime

Benchmark Speedup DWB DTC Control Total

Streamcluster 1.52x 12% 49% 48% 48%
Cholesky 0.95x 92% 80% 63% 79%

SMI 0.92x 75% 62% 57% 64%

6.2 DWB, DTC and Control Coherence
Traffic

Figures 3 and 4 show the measured traffic in coherence
bandwidth and coherence movement views respectively, bro-
ken down into the two Data message classes, DWB and
DTC, and the Control message type which comprises HREQ,
SNP, HRSP and NDR. In all cases the Data message classes
are symmetric in directionality. This symmetry reflects the
fact that messages belonging to these classes originate at ei-
ther a CPU cache or local memory within one module and
travel through the inter-module interconnect (via first the
local and then the remote BCS) to their respective memory
or cache destination in the other module. Therefore these
messages always appear as both incoming to the BCS in one
module and outgoing from the BCS in the other module.

6.2.1 Streamcluster
The Streamcluster results show markedly different perfor-

mance (Figure 2a) among the three scheduling and mem-
ory allocation regimes as the number of threads employed
increases. The NAFT regime performs best at all thread
counts. Using the DFT regime at 16 threads as a baseline,
the best performance measured is with the NAFT regime at
32 threads, where it performs at 2.78x the performance base-
line compared to 1.09x and 1.83x the performance baseline
for the DFT and DI regimes respectively at 32 threads.

Figure 3a shows that for Streamcluster both the DI and
NAFT regimes utilise more coherence bandwidth than the
DFT regime at all thread counts. This happens because,
as trace analysis shows, under the DFT regime all the data
allocated by the benchmark is located in NUMA region 0
and the other NUMA regions remain unused. In contrast,
under the DI and NAFT regimes data is allocated uniformly
(see Section 4.1) among all four NUMA regions. Thus under
the DFT regime the memory bandwidth is limited to that of
the single NUMA region the benchmark’s data is allocated
in (i.e. 1/4 of the systemwide memory bandwidth).

The coherence bandwidth utilised by Streamcluster in-
creases with thread count at varying rates under the DI and
NAFT regimes (Figure 3a). The increase is not very signif-
icant in the case of the DFT regime due to the previously
mentioned bottleneck caused by all memory being allocated
in a single NUMA region. Despite the NAFT scheduler util-
ising more coherence bandwidth than the DFT scheduler,
Figure 4a shows that it causes significantly less coherence

movement, and therefore consumes less energy, than the
DFT regime over the course of the benchmark.

The traffic results of the three regimes allow us to decou-
ple the performance limiting factors of the Streamcluster
benchmark when run under the DFT regime.

First, since the DI regime uniformly spreads the memory
allocation among all four NUMA regions, the single NUMA
region utilisation bottleneck of the DFT regime is elimi-
nated, allowing the Streamcluster benchmark to use the full
systemwide memory bandwidth. At 32 threads the DFT
and DI regimes have a similar level of aggregate (Incoming
+ Outgoing) coherence movement in the system at 1751 GB
and 1884 GB respectively. However, the DI regime moves
its coherence data at a substantially higher aggregate (In-
coming + Outgoing) coherence bandwidth through the two
BCS in the system, reaching 23.8 GB/s of aggregate coher-
ence bandwidth. In comparison, the DFT regime utilises
only 10.7 GB/s of aggregate coherence bandwidth.

Under the NAFT regime, as well as utilising the full sys-
temwide memory bandwidth due to a uniform allocation of
memory among the NUMA regions, the coherence movement
(and thus energy use) is significantly reduced in comparison
to both DI and DFT regimes due to the higher data locality
achieved by the NUMA-aware task scheduling.

We can also see from Figure 4a that the Streamcluster
Data coherence movement is almost entirely made up of the
DTC message class with a negligible amount of DWB traffic
present. DWB traffic makes up less than 3% of the Data
coherence movement across all regimes and thread counts.
This reflects the characteristics of the Streamcluster bench-
mark which has a streaming read pattern of memory access
with little data being written. The large proportion of the
traffic made up of DTC messages represent cache lines be-
ing delivered from the memory of one NUMA region to the
LLC cache of a socket in the other module for reading, via
the inter-module link. The Control message type makes up
between 26% and 35% of total coherence movement and is
analysed in more detail in Sections 6.3 and 6.4.

6.2.2 Linear Algebra benchmarks
The mix of both DWB and DTC message classes in the

Data coherence movement of both linear algebra benchmarks
demonstrates the more complex memory access patterns in-
volved in these benchmarks compared to the Streamclus-
ter benchmark. The DWB message class represents mod-
ified cache lines being written back from the LLC of one
socket to memory in the cache line’s home NUMA region in
a remote module. Under the DFT and DI regimes, DWB
traffic makes up between 26% and 30% of Data coherence
movement for both Cholesky and the more complex SMI
benchmark. Under the NAFT regime, DWB traffic as a
percentage of total Data coherence traffic falls to 11% and
19% respectively for Cholesky and SMI. This demonstrates
that the NAFT regime is particularly effective in reducing
the amount of inter-module DWB traffic. The Control mes-
sage type makes up between 25% and 27% of total coherence
movement under the DFT and DI regimes for both linear al-
gebra benchmarks. This figure rise to between 30% and 46%
of the reduced total coherence movement under the NAFT
regime. The Control message type is analysed in greater
detail in Sections 6.3 and 6.4.

For both Cholesky (Figures 3b and 4b) and SMI (Figures
3c and 4c) we can see that the NAFT regime is utilising less
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Figure 5: Coherence Bandwidth: Control traffic by message class

(a) Streamcluster (b) Cholesky (c) SMI

Figure 6: Coherence Movement: Control traffic by message class

coherence bandwidth and causes significantly less coherence
movement than either the DFT or DI regimes. This shows
that the NUMA-aware scheduling employed by the NAFT
regime achieves a strong co-location of tasks and their req-
uisite data within each of the individual NUMA regions of
the system.

In terms of performance, in both Cholesky (Figure 2b)
and SMI (Figure 2c) the DFT regime shows almost no scal-
ing moving from 16 to 24 threads. This is due to a large
majority of the required memory being allocated in only the
first and second NUMA regions (both in the same module),
with very little of the required memory allocated in the third
and fourth NUMA regions of the system. So, in the case of
the DFT regime only close to 2/4 of the systemwide mem-
ory bandwidth is used. Both the DI and NAFT regimes
utilise the full systemwide memory resources available and
scale better than the DFT regime. However, performance
deteriorates moving from 24 to 32 threads for both the DI
and NAFT regimes, due to contention among the increasing
number of threads for the same limited (detailed in Sec-
tion 3.2) memory bandwidth in the system.

Figures 3b and 3c show that under the DI regime Cholesky
reaches 22.7 GB/s at 24 threads and 25.7 GB/s at 32 threads
of aggregate coherence bandwidth while the corresponding
figures for SMI are 24.6 GB/s at 24 threads and 27.2 GB/s
at 32 threads. Under the NAFT regime, coherence band-
width does not reach above 8.6 GB/s at any thread count
for Cholesky or SMI. In this case hardware counter analy-
sis shows that IPC per thread is decreasing as thread count
is increasing. As can be seen from the low levels of inter-
module coherence traffic under the NAFT regime in Figures
3b and 3c most coherence traffic is localised within each of
the individual NUMA regions. The performance bottleneck
for all regimes exists within the memory subsystem (mem-
ory controller, bandwidth to DRAM) within each separate

NUMA region and not in the inter-module link routed via
the BCS. Were the inter-module link via the BCS to become
the performance bottleneck (if, for example, greater memory
bandwidth were available or there were more modules in the
system) then the NAFT regime would, in addition to reduc-
ing coherence traffic and energy cost, enable better scaling
of performance than DFT or DI due to its much lower co-
herence bandwidth and coherence movement requirements.

6.2.3 Summary
In the coherence movement view (Figure 4) for all bench-

marks, at all thread counts, the DI regime requires the
largest coherence movement closely followed by the DFT
regime. The NAFT regime enables a significant reduction in
coherence movement in comparison to the other two regimes,
the magnitude of which depends on the benchmark and
thread count. The reductions in coherence movement by
the NAFT regime in comparison to the DFT regime at the
best performing thread count for each benchmark are listed
in Table 4a. The NAFT regime reduces the total coher-
ence movement by 44%, 77% and 60% respectively for the
Streamcluster, Cholesky and SMI benchmarks in compari-
son to the the DFT regime. Table 4b summarises the differ-
ences between the DI and NAFT regimes.

It is important to note for both linear algebra benchmarks
in Table 4b that even though the NAFT regime does not out-
perform the DI regime in the system we use, it does signif-
icantly reduce coherence movement (by 48%, 79% and 64%
for Streamcluster, Cholesky and SMI respectively) which has
substantial implications for energy efficiency. In both linear
algebra benchmarks under the DI and NAFT regimes the
computation is limited by the memory resources in the ex-
perimental bullion S system installation we used rather than
by the inter-module coherence traffic. In an installation of
this system with a larger memory configuration or in a lager
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Figure 7: SNP/HRSP coherence movement only, net change due to BCS

( > 2 modules) bullion S system the coherence bandwidth
generated would become a more important factor in perfor-
mance where the substantial reduction in coherence move-
ment realised by the NAFT regime would enable greater
scaling than both the DFT and DI regimes.

6.3 Control Coherence Traffic Decomposition
Figures 5 and 6 show the coherence bandwidth and co-

herence movement for all three benchmarks for the Control
coherence traffic only, now decomposed into the individual
Control message classes HREQ, SNP, HRSP and NDR.

In the Control message classes we see a symmetry be-
tween the incoming and outgoing traffic for the HREQ mes-
sage class, as was also evident for the Data message classes
(DWB and DTC). Each HREQ message originates at a cache
within one module and travels through the inter-module in-
terconnect (via first the local and then the remote BCS)
to its respective memory destination in the other module.
Therefore, in the two module system we use, HREQ mes-
sages always appear as incoming traffic to the BCS in their
source module and as outgoing traffic from the BCS in their
destination module.

For the remaining Control type messages (SNP, HRSP
and NDR) this symmetry between incoming and outgoing
traffic does not necessarily hold, as explained in Section 3.
Figures 6b and 6c show the asymmetry in directionality of
the SNP and HRSP traffic is most pronounced under the
NAFT regime for both linear algebra benchmarks. These
asymmetries represent cases where the action of the BCS
in the coherence protocol is having a significant impact on
the SNP and reciprocal HRSP coherence movement and we
investigate this behaviour further in Section 6.4. The best
performing thread count for both linear algebra benchmarks
is 24 threads. With Cholesky at 24 threads the total out-
going SNP traffic in the system is only 26% of the total
incoming SNP traffic. For the more complex SMI linear al-
gebra problem, the total outgoing SNP traffic in the system
is 56% of the total incoming SNP traffic. The asymmetry
visible across the benchmarks for the NDR traffic is due to
the CPU (but not the BCS) in some cases piggybacking the
NDR message on top of unused bits in other message classes
as a bandwidth optimisation.

We also note a significant difference in the ratio of the
count (not coherence bandwidth or coherence movement) of
correlated HREQ and DTC messages between the Stream-
cluster benchmark and both linear algebra benchmarks. In
the Streamcluster benchmark across all thread counts and
regimes, there is never more than a 4% deviation from a
1:1 ratio for the message counts of HREQ:DTC. This is ev-
idence of the streaming read nature of Streamcluster where

HREQ messages ask for a cache line in a read state and do
not ask to further change the state of the cache line before
evicting it. This results in a 1:1 call and response between
HREQ and DTC. For the Cholesky and SMI benchmarks,
which have a more complex memory access pattern includ-
ing write accesses and shared data among threads, the same
HREQ:DTC ratio varies from 1:0.63 up to 1:0.91 depending
on the regime and thread count. This is explained by the
observation that in some cases cache lines will be first re-
quested read-only (1:1 HREQ:DTC ratio) and subsequently
upgraded to modified for writing. In the upgrade case, a
HREQ is required to ask to upgrade the state of the cache
line. However, as the cache already has a valid copy of the
data, no DTC is required.

6.4 Impact of NUMA-Aware Scheduling on
Effectiveness of BCS

The BCS may affect the amount of SNP/HRSP traffic in
two ways: (1) Filter SNP/HRSP transactions out of the
system where it can participate in a transaction in place of
a CPU, reducing SNP/HRSP traffic. (2) Add SNP/HRSP
transactions in the process of maintaining its own directory
state. The directory cache maintained by the BCS is inclu-
sive of all cache lines exported from its local module to L3
caches in any remote module, and L3 caches may silently
evict cache lines. In order to maintain inclusivity, if the
directory cache in the BCS is under capacity pressure due
to a high volume of cache lines being exported from the
module (poor data locality) and needs to evict an existing
directory entry in order to allocate a new one, this eviction
from the directory cache in the BCS requires the cache line
be evicted from the remote L3 caching it, requiring a BCS
initiated evicting SNP/HRSP transaction.

The actual SNP and HRSP coherence movement mea-
sured in the system (which includes the impact of the BCS
in the protocol) is made up of the sum of the incoming SNP,
outgoing SNP, incoming HRSP and outgoing HRSP traffic
featured in Figure 6.

We measure how effectively the BCS affects the number
of SNP/HRSP transactions in the system by comparing the
SNP/HRSP transactions initiated by the CPUs with the to-
tal system SNP/HRSP transactions in the system. CPU ini-
tiated SNP/HRSP transactions include only incoming SNPs
(which originate at CPUs) and outgoing HRSPs (response
to the incoming SNPs). If the BCS did not exist in the sys-
tem all the incoming SNPs measured would have appeared
as outgoing SNPs in the opposite module and all the outgo-
ing HRSPs would have appeared as incoming HRSPs in the
opposite module. Therefore we double the (incoming SNP +
outgoing HRSP) traffic to extrapolate what the total traffic



in both modules would have been without the intervention
of the BCS in the coherence protocol.

Figure 7 presents the net change in coherence movement
for the SNP/HRSP message classes in isolation, due to the
actions of the BCS. It shows the BCS can produce a net
reduction in SNP/HRSP traffic under the NAFT regime for
both linear algebra benchmarks resulting in reductions of
between 13% and 35%. Due to the high data locality pro-
duced by the NAFT regime, the directory cache in the BCS
can filter more SNP/HRSP traffic from the system than any
amount it introduces in maintaining its directory. Under the
other regimes with poorer data locality (DFT, DI) where we
see an increase in SNP/HRSP traffic (up to 29%) the BCS
is aiding scalability by creating an extra (less granular) hi-
erarchical level of coherence tracking to the system, at the
cost of the added SNP traffic to maintain its directory state.

These figures show the high data locality of the software
based NAFT regime exploits the function of the BCS to
best effect. Under the NAFT regime the BCS achieves a net
reduction of the SNP/HRSP coherence movement in two
of the three benchmarks, and in all cases the NAFT regime
uses the BCS more effectively than the DFT or DI regimes.

7. RELATED WORK
Intel’s recent Xeon CPUs use the Intel Quick Path In-

terconnect (QPI) [16] specification to connect Caches and
Memories. The Coherence Protocol utilised by QPI is the
MESIF protocol which is an extension of the well known
MESI protocol [25, p. 362]. The microarchitectural details of
Intel’s MESIF protocol remain unpublished, however Molka
and Hackenberg et al. gave insight [21] [13] into such de-
tails via sophisticated synthetic benchmarking. Molka et
al’s work differs from ours in that it presents aggregated to-
tal memory bandwidth and latency figures utilising synthetic
benchmarks whereas we characterise the traffic and memory
bandwidth utilised by real world benchmarks at the level of
individual coherence protocol message types.

There has been much recent work on simplifying cache
coherency systems to make them perform or scale better or
be more energy efficient. Choi et al. [9] proposed restraining
the shared memory programming model to enable improve-
ments in power, performance, simplicity and verifiability in
the coherency system. Manivannan et al. [18] [17] showed
how the runtime and coherency system could co-operate to
provide performance benefits for particular data access and
sharing patterns in task-based programming models. Ham-
mond et al. [14] proposed changing the memory consistency
model to a transactional model which allows for a less com-
plex coherency system. All these papers utilised a simulation
based approach to evaluate the impact of their designs on
coherence whereas in our work we characterise directly the
impact of a runtime managed approach to reducing coher-
ence traffic in a real system.

Regarding NUMA-aware data distribution and scheduling
Al-Omairy et al. [2] measured the performance benefits of
NUMA-aware scheduling for both the Cholesky and Sym-
metric Matrix Inversion algorithms versus the best state
of the art implementations that are widely used in modern
production environments. Muddukrishna et al. also inves-
tigated [22] the performance impacts of NUMA-aware sch-
eduling and data distribution for multiple real world bench-
marks. Our work differs from both these as it directly and
in detail quantifies the effect of the NUMA-aware scheduling

on coherence traffic and data motion within the system,
rather than performance. Other recent work such as the
Runnemede [7], SARC [26] and Runtime Aware Architec-
ture [27] [8] proposals follow a hardware/software co-design
approach to relaxing hardware provided cache coherency
and moving responsibility for dynamically managing disjoint
memory spaces to software.

To the best of our knowledge our work is the first to study
the effects of NUMA-aware scheduling and data allocation in
combination with hierarchical directory coherence on cache
coherence traffic.

8. CONCLUSIONS
ccNUMA architectures continue to dominate the SMP de-

sign space and are likely to grow in prevalence and complex-
ity alongside the trend towards higher core counts and mem-
ory capacity requirements in SMP designs. These develop-
ments bring challenges for both computer architecture and
software alike. In the architecture design space the nature
of the coherence traffic required to implement the ccNUMA
design is an important factor in balancing the demands of
energy efficiency and performance in the design.

In this work we characterise the coherence traffic within
a modern large SMP design at the granularity of individual
classes of coherence traffic using three important scientific
benchmarks. We show the balance between the different
types of coherence traffic, Data and Control traffic, and fur-
ther break down these types into individual message classes.
We present evidence for the ability of the BCS to mitigate
the cost of coherence traffic with increasing system scale.

We show that NUMA-aware policies improve the efficacy
of the BCS. This combined hardware-software solution ach-
ieves significant reductions in coherence movement which in
turn has implications for energy savings. We show evidence
that the NAFT regime combined with the BCS is able to
reduce the coherence movement in all cases, with reductions
ranging from 44% to 77%. Other NUMA-oblivious regimes
combined with the BCS do not show such synergistic poten-
tial, which is indeed an important conclusion to take into
account in the way future computing infrastructures and
system software stacks are designed [15, 7, 12, 27].
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