
PREPRINT

Vectorization of Multibyte Floating Point Data Formats

Andrew Anderson
Lero, Trinity College Dublin
aanderso@cs.tcd.ie

David Gregg
Lero, Trinity College Dublin

dgregg@cs.tcd.ie

ABSTRACT
We propose a scheme for reduced-precision representation of
floating point data on a continuum between IEEE-754 float-
ing point types. Our scheme enables the use of lower pre-
cision formats for a reduction in storage space requirements
and data transfer volume. We describe how our scheme
can be accelerated using existing hardware vector units on
a general-purpose processor (GPP). Exploiting native vec-
tor hardware allows us to support reduced precision floating
point with low overhead. We demonstrate that supporting
reduced precision in the compiler as opposed to using a li-
brary approach can yield a low overhead solution for GPPs.

CCS Concepts
•Computer systems organization → Single instruc-
tion, multiple data; •Software and its engineering →
Software performance; Data types and structures; •Theory
of computation → Vector / streaming algorithms;

Keywords
Approximate Computing; Floating Point; Multiple Preci-
sion; SIMD; Vector Architecture

1. MOTIVATION
It has long been recognized that different applications and

algorithms need different amounts of floating point precision
to achieve accurate results [3, 13, 16]. For example, 64-bit
double precision floating point is often needed for scientific
applications, whereas 32-bit single precision is sufficient for
most graphics and computer vision applications.

Modern GPUs and embedded processors increasingly sup-
port 16-bit floating point for applications that are highly
tolerant of approximation such as speech recognition [6].

In some contexts it is possible to customize the level of
precision precisely to the application. For example, field-
programmable gate arrays (FPGAs) can be used to imple-

ment customized floating point with bit-level control over
the size of the mantissa and exponent [5, 16].

More recently, Schkufza et al. [14] have shown how super-
optimization can be used to generate iterative floating point
algorithms that guarantee a given level of accuracy. For ex-
ample, an exponential function may return a 64-bit floating
point value in which at least the first, say, 40 bits of the
mantissa are guaranteed to be accurate.

A problem with customizing floating point precision on
general-purpose processors (GPPs) is that most support only
two standard types: IEEE-754 single precision (or binary32)
and double precision (binary64). If an operation needs more
precision than binary32 and less than binary64, the devel-
oper has no choice but to use binary64.

In this paper we propose a compiler-based mechanism
for supporting several non-standard multibyte floating point
memory formats, such as 24-, 40-, or 48-bit floating point.
By multibyte we mean that these formats differ in length
from standard IEEE-754 formats by multiples of 8 bits.

By using these types, a developer can reduce the preci-
sion of floating point data in memory, resulting in reduced
storage requirements for their data.

An increasingly important factor in the design of comput-
ing systems is energy consumption. In embedded comput-
ing systems the energy consumed by data movement can be
much greater than the energy used to perform arithmetic [4].

According to Gustafson [7], a typical 64-bit multiply-add
operation costs around 200pJ, while reading 64 bits from
cache costs 800pJ and a 64-bit main memory read costs
12000pJ. Reducing the amount of data movement is there-
fore essential to reducing energy consumed by an applica-
tion, and in particular, reducing the number of costly last-
level cache misses.

Customizing precision of floating point data to the needs
of the application is one way to reduce data movement. It
is straightforward to implement a C/C++ data type repre-
senting, for example, 24-bit floating point values (Figure 1).

However, we have found that the performance of such code
can be extraordinarily poor when operating on arrays of
data. We therefore propose a technique to generate vector-
ized code that performs a number of adjacent reads or writes
together, along with the required packing or unpacking.

Contributions
• We present a practical representation of multibyte float-

ing point values that can easily be converted to and
from the next largest natively-supported type.

ar
X

iv
:1

60
1.

07
78

9v
3

 [
cs

.M
S]

 2
2

Ju
l 2

01
6

PREPRINT

• We propose a compiler vectorization scheme for pack-
ing and unpacking our floating point types, enabling
their use in vectorized floating point computations.

• We demonstrate experimentally that our techniques
provide a low-overhead way to support customized float-
ing point types on general-purpose processors.

2. CUSTOMIZING FLOATING POINT
The IEEE-754 2008 standard [17] defines a number of fi-

nite binary representations of real numbers at different reso-
lutions (16, 32, and 64 bits, among others). Each format en-
codes floating-point values using three binary integers: sign,
exponent, and mantissa, which specify a point on the real
number line following a general formula:

v = (−1)s × (1 +

M∑
i=1

(mi2
−i))× 2e−bias

v is the real number obtained by the evaluation of the for-
mula for a floating-point value with sign s, mantissa m of
length M bits, and exponent e. The value bias is an inte-
ger constant which differs for each format. Different formats
(binary32, binary64, etc.) use different numbers of bits for
the exponent and mantissa components.

The exponent determines a power of two by which the
rest of the number is multiplied, while the mantissa repre-
sents a fractional quantity in the interval [1, 2) obtained by
summing successively smaller powers of two, starting from
2−1 and continuing up to the length of the mantissa. If the
ith mantissa bit is set, the corresponding power of two is
present in the sum. For normalized numbers (those with a
nonzero exponent), the leading 1 is not explicitly stored in
the mantissa, but is implied.

The structure of the IEEE-754 binary encoding means
that a change in an exponent bit strongly influences the
resulting value, while a change in a mantissa bit has less
influence. Furthermore, a change in any bit of the mantissa
has exponentially greater effect on the resulting value than
a change in the next-least-significant bit.

These observations lead naturally to a scheme for repre-
senting values at precisions between those specified by the
IEEE-754 standard: varying the number of low-order man-
tissa bits. Previous proposals based around this concept
have typically made use of either customized floating point
hardware support via FPGA [5] or high-level data reorgani-
zation in massively parallel systems [9].

In this paper, we demonstrate how reduced precision float-
ing point representations can be used on general-purpose
processors without requiring any special hardware support.

The rest of our paper is organized as follows: first, in Sec-
tion 3, we discuss our scheme for representing floating point
numbers with reduced precision in memory, and a straight-
forward implementation of the scheme in scalar code using a
library of datatypes implementing different memory repre-
sentations of floating point numbers with different precision.

Next, in Section 4, we discuss aspects of contemporary
GPP architecture which confound the straightforward li-
brary approach, and propose a vectorized, compiler-accelerated
approach. Section 5 discusses rounding, an important aspect
of implementing floating point. Section 6 presents an exper-
imental evaluation of both library and compiler-accelerated

schemes on a recent general-purpose processor. Section 7
discusses related work, and Section 8 concludes.

3. REDUCED PRECISION ON GPPS
It is possible to emulate floating point operations in soft-

ware using integer instructions. However, each floating point
operation requires many integer instructions so emulation is
slow.

In particular, the IEEE-754 standard has several special
values and ranges such as not-a-number (NaN), positive and
negative zero, infinities, and sub-normal numbers, each of
which adds to the complexity of software emulation [15].

Modern processors provide hardware floating point units
which dramatically reduce the time and energy required for
floating point computations. However, these units normally
support just two floating point types, typically binary32

(float) and binary64 (double).

3.1 Our Approach
We propose a set of non-standard floating point multibyte

types that we refer to as flytes. Rather than emulating com-
putation on flytes in software, we convert them to/from the
next largest natively supported type. Thus, a 24-bit flyte
(flyte24) is converted to binary32 before computation, and
the binary32 result is converted back to flyte24 afterwards.

We need to solve two problems: (1) efficiently loading and
storing non-standard data sizes, such as 24-bit data, where
there is no hardware support for such operations, and (2)
quickly converting between built-in floating point types and
our non-standard types.

In general, converting between floating point formats has
many special cases. In particular, converting between for-
mats with different-sized exponents may cause numbers to
overflow to infinity or underflow to/from sub-normal num-
bers. Dealing correctly with these cases in software is com-
plicated and slow.

Our solution to the problem is that in all our flyte types,
the size of the exponent is equal to the size of the exponent
of the next largest built-in type. For example, in our
flyte16 and flyte24 types, the exponent has eight bits, just
like binary32. This dramatically reduces the complexity of
conversions.

Efficiently supporting non-standard floating point types
using this approach creates two types of problems. The first
is supporting the loading, storing, and conversion of reduced
precision types with acceptably low overhead. This is the
topic of the majority of this paper.

The second type of problem is that performing computa-
tion in one floating point type and storing values in a less
precise type introduces issues, such as double-rounding, that
complicate numerical analysis. We make every effort to be
clear about this latter group of problems but in most cases
we do not have comprehensive solutions. Double rounding
in particular is a topic of extensive study, and we refer the
reader to the work of Boldo and Melquiond [2] for an in-
depth discussion.

Our techniques are aimed squarely at problems where
some approximation is acceptable and the developer has a
good understanding of exactly how much precision is re-
quired. Our main contribution is to show how to implement
multibyte floating point formats efficiently; the question of
whether to use them in any particular algorithm depends on
the numerical properties of the algorithm.

PREPRINT

3.2 Simple Scalar Code Approach
Figure 1 shows a simple implementation of the flyte24

type in C++. It relies on the bit field facility in C/C++ to
specify that the num field contains a 24-bit integer. It also
uses the GCC packed attribute to indicate to the compiler
that arrays of the type should be packed to exactly 24 bits,
rather than padded to 32 bits. Figure 1 also shows a routine
for converting from flyte24 to float (i.e. binary32). The
24-bit pattern stored in the flyte24 variable is scaled to 32
bits and padded with zeros. The resulting 32-bit pattern is
returned as a float.

class flyte24 {

private:

unsigned num:24;

public:

operator float() {

u32 temp = num << 8;

return(cast_u32_to_f32(temp));

};

...

} __attribute__((packed));

Figure 1: Simple implementation of flyte24 in C++

The code that is sketched in Fig. 1 can be used to imple-
ment programs with arrays of flyte24 values, but it is very
slow. Figure 6a shows a comparison of the execution time
of several BLAS kernels using flyte24 and other flyte and
IEEE-754 types.

The order of magnitude difference in execution time is
the result of (1) the cost of converting between flyte24 and
binary32 before and after each computation; and (2) the
cost of loading and storing individual 24-bit values.

In particular, storing data to successive elements of packed
flyte24 arrays can result in sequences of overlapping 3-byte
aligned stores. Load/store hardware in GPPs is not designed
to deal with such operations, which results in extraordinarily
slow execution.

Table 1 summarizes our proposed set of multibyte formats
for floating-point values which preserve the sign and expo-
nent fields of the corresponding IEEE-754 representations.

Table 1: flyte storage formats for IEEE-754 types.

flyte layout (bits)

IEEE-754 type flyte format Sign Exp. Mant.

binary32 16-bit 1 8 7
binary32 24-bit 1 8 15
binary32 32-bit 1 8 23

binary64 40-bit 1 11 28
binary64 48-bit 1 11 36
binary64 56-bit 1 11 44
binary64 64-bit 1 11 52

4. ACCESS IN REDUCED PRECISION
Reading and writing reduced precision representations might

be expected to incur a significant performance penalty due
to the overheads outlined in Section 3.2. Particular con-
cerns are (1) the overhead of conversion between data for-
mats, in addition to (2) the overheads of memory access to

arrays of datatypes that may have non–power-of-two byte
width, where memory movements may be overlapping and
misaligned. Although these overheads are encountered both
when reading and when writing reduced-precision represen-
tations, there are important differences between the two
cases.

4.1 Reading In Reduced Precision
Modern instruction set architectures typically have native

support for data movement using types with power-of-two
byte widths – usually 1, 2, 4, and 8 bytes. Since our flyte
types differ in width from standard IEEE-754 types by mul-
tiples of 8 bits, this means we can always fetch a flyte with
a single read using a wider native type (e.g. a 4-byte read
for a flyte24).

Since we propose to store flytes packed consecutively in
arrays without padding, the majority of such accesses will be
misaligned. Specifically, a consecutive flyte array access will
only be aligned to the next largest native type once every
lcm(nativebits, flytebits)/flytebits array elements.

Unaligned access can cause extra cache misses versus aligned
access due to the possibility that the accessed item spans a
cache line boundary. The strategy of using overlapping ac-
cesses at the next largest native type allows us to utilize the
vectorization approach of Anderson et al. [1]. (Section 4.3)
for our vector memory accesses. Also, the conversion pro-
cess when reading flytes is relatively simple, requiring only
that the read data be shifted and padded with zero bits.

4.2 Writing In Reduced Precision
Writing data to a reduced-precision format is more com-

plex than reading, both in terms of the memory movement
(since memory locations are modified), and due to the fact
that when writing, the number format narrows, and preci-
sion is lost.

Loss of precision is a natural consequence of working with
floating point numbers. The precise result of a floating point
computation can be a real number which cannot be exactly
encoded in a finite representation (for example, it might re-
quire infinitely many digits). In these cases, loss of precision
is necessary to make the result representable.

The IEEE-754 standard specifies several methods which
are used to round numbers to a nearby representable value.
One straightforward way to perform rounding is to simply
truncate extra digits (i.e. bits, in a binary representation).
This is the standard round-to-zero rounding mode [17]. Other
rounding modes are specified by the IEEE-754 standard,
including round-to-nearest-even and round-to-infinity (pos-
itive or negative).

4.3 Vectorized Reading and Writing
We propose a compiler-based approach which can greatly

reduce the overhead of operating on flyte arrays using auto-
matic vectorization. Our approach uses vector instructions
to load, convert, and store flytes. We generate vectorized
code to load a number of flyte values at once, and unpack
those values in parallel to the next largest IEEE type using
vector shuffle and blend instructions. We use vectorization
not only to amortize the cost of converting each element
(as it does for other operations), but also to help overcome
penalties associated with flyte types’ unnaturally aligned
memory accesses.

PREPRINT

By restricting the size of a flyte to be a multiple of 8 bits,
we ensure that widely available fast byte-level vector reorga-
nization instructions can be used. Finally, when computa-
tion is complete, we again use vector instructions to convert
back to flyte types. This may involve a rounding step when
reducing the precision of a standard IEEE-754 format to a
flyte type, followed by packing the data in vector registers
before the results are written to memory.

Vectorized loading and storing of packed data elements
that do not correspond to any native machine type presents
additional challenges over scalar memory movement. Since
vector lengths on modern GPPs are usually a power-of-two
bytes, vectorized access to flyte arrays often leads to the
splitting of data elements across vector memory operations,
where the leading bytes of an element are accessed by one op-
eration, and the trailing bytes by the next. Figure 2 displays
one such scenario: storing in flyte24 format computational
results produced in binary32.

f24 f24 f24 f24

f24 f24 f24 f24

f24 f24 f24 f24

f24

f24

f24 f24

f32 f32 f32 f32 f32 f32 f32 f32

rounding

packing

128 bits

Figure 2: Layout of data in 128-bit (16-byte) vector regis-
ters. (top) before format conversion, (center) after rounding
to the desired size, and (bottom) the desired layout in mem-
ory. Note that the desired memory layout requires data
elements to straddle the boundary between vector registers.

While vectorized reading is not significantly more compli-
cated than scalar reading, vectorized writing has additional
issues. A straightforward approach to vectorized writing of
unpadded flyte data could pack as many consecutive flyte
elements in a vector register as would fit, and perform a
store with the trailing unused byte positions predicated off.

Subsequent stores, if there are more than one, could over-
lap prior stores in these unused positions, so that the data is
consecutive in memory. Due to the structure of load/store
hardware in GPPs, this approach is likely to be extremely
inefficient.

Our vectorized approach to storing values in reduced pre-
cision format works by packing all the rounded data elements
to be stored consecutively in a set of vector registers, which
are mapped to a set of consecutive, non-overlapping vec-
tor memory movements (shown in Figure 2).

We use a two-phase permute and blend approach. Vec-
tor permute instructions are initially used to compact the
rounded data in each register into memory order, and align
the contents of some registers so that the leading data ele-
ment in each register is located at the position of the first
unused byte in the previous register. Next, the compacted
vector registers are combined together using vector blend
instructions until a number of fully packed vector registers
result.

The resulting registers can be stored without overlap, and
data elements are correctly split across register boundaries.
If the data written cannot be packed perfectly into full vector
registers, some vector stores may be partial stores with some
additional implementation concerns. These are described in
detail in the vectorization approach of Anderson et al. [1].

4.4 Controlling Format Conversion
Programming language designers have three conflicting

goals when deciding the rules for evaluating floating point
expressions. Evaluating expressions at higher precision may
result in more accurate answers, which suggests that higher
precision should be used if it is available.

On the other hand, programmers like to get bit-exact iden-
tical results from their program regardless of which compiler
is used, which suggests that the language should strictly de-
fine the precise precision and each floating point operation.

The IEEE-754 standard stipulates [17, §11] that conform-
ing languages should support reproducible programming,
and defines circumstances when programs should have nu-
merically identical results across compliant platforms. Fi-
nally, giving the compiler the freedom to choose precision
may result in more efficient code.

Controlling exactly when format conversion occurs is an
important part of using non-standard formats such as our
flytes. Languages such as C99 [8] provides features aimed
at providing consistency in the output of the same program
on different platforms.

In particular, the programmer can choose to specify the
rules determining the precision of intermediate values in ex-
pressions using the FLT_EVAL_METHOD facility.

The programmer can also use the pragma directive STDC

FP_CONTRACT to enable or disable contraction – atomic eval-
uation of floating point expressions which can use higher
precision and omit rounding errors implied by the source
code and FLT_EVAL_METHOD [8, §6.5]. Both facilities modify
behaviour at the expression level.

For example, the programmer can choose to have all subex-
pressions within an expression tree evaluated at the exact
width of the widest operand to each operator (by setting
FLT_EVAL_METHOD = 0).

Such strict constraints on the types of all intermediate
floating point values can result in very poor performance for
flytes. For example, flyte24 is stored in memory as a 24-bit
value, but we must convert it to binary32 before performing
any operations. In a larger expression of flyte24 values, the
generated code is likely to be much faster if all intermediate
values can be kept in binary32 rather than being converted
down to flyte24 after every operation.

C99 also provides a feature that allows floating point op-
erations to be performed at a higher precision than the
source values or result: contraction of floating point expres-
sions, which is controlled by the standard pragma directive
FP_CONTRACT. In all our experiments, FP_CONTRACT is on.

One problem not addressed by C99’s floating point sup-
port is the issue of using higher precision values across state-
ments. C99 requires that the value stored in a variable must
be convered to the type of that variable at the point where
it is written to storage.

We propose a type qualifier AT_LEAST which is used to tag
a floating point type informing the compiler that it is free
to use a higher precision to store results of that type, rather
than converting strictly to the precision of the storage type.

PREPRINT

This allows the use of higher-precision types in code like
that in Figure 3 where accumulation into a variable would
otherwise result in many lossy conversions.

flyte24 sum(flyte24 * a, int size)

{

AT_LEAST flyte24 sum = 0.0;

for(int i = 0; i < size; i++) {

sum = sum + a[i];

/*

without AT_LEAST, C99 will truncate

sum here in every loop iteration

*/

}

return sum;

}

Figure 3: Example of the use of the AT_LEAST qualifier
to allow accumulation in a higher precision than the in-
put/output.

The code in Figure 3 shows the variable sum of type AT_LEAST
flyte24 which the compiler can represent as any floating
point type with at least the precision of a flyte24. In gen-
eral, the next largest native type is a good choice for a use
of the AT_LEAST qualifier.

5. ROUNDING
When numbers represented in IEEE-754 floating point for-

mat are used in computations (such as addition and sub-
traction), the natural result of computation is often a real
number which is not exactly representable in the finite rep-
resentation. In these cases, the standard specifies a way to
round these numbers to a nearby representable value.

Computations on flytes are performed using the next largest
standard floating point size. After each operation, the built-
in floating point type performs its own rounding. However,
a question arises when we convert from IEEE floating point
types to flytes: should we round again during conversion?

Double rounding is discussed in considerable depth by
Boldo and Melquiond [2], and we do not reproduce their
arguments here. Note that our aim in this paper is simply
to demonstrate that a low-overhead implementation of cus-
tomized floating point types is feasible on general purpose
processors.

Any compiler framework which might implement our pro-
posed scheme should take the necessary steps to ensure that
the transformations applied to convert between floating point
representations are correct; in the remainder of this section,
we describe some low-overhead mechanisms which can be
used to implement them.

5.1 Round-towards-zero
The simplest approach is to round by truncating the lower

matissa bits, an option which is known as round-towards-
zero in IEEE 754. Rounding towards zero is simple to im-
plement, but IEEE floating point has a number of special
cases that we must treat correctly.

In IEEE-754 a NaN value has an exponent consisting en-
tirely of ones, and a mantissa value that is non-zero. If the
non-zero part of the mantissa is in the lower bits, truncat-
ing those bits may cause the entire mantissa to have a zero

value. This would change the value from NaN to a value
with all ones in the exponent and zero matissa, which rep-
resents infinity in IEEE-754.

However, there are two types of NaNs: signalling NaNs,
which cause a floating point exception, and quiet NaNs which
indicate an invalid value with causing an exception. In
IEEE-754 binary floating point formats, quiet NaNs are dis-
tinguished from signalling NaNs by the value of the most
significant bit of the mantissa, which is preserved by trun-
cation of up to M − 1 bits.

In IEEE-754, a subnormal number has a zero exponent,
and the mantissa represents a very small fixed-point number.
Truncating the final bits of a sub-normal number may cause
its value to change to zero. This is correct behaviour, since
the non-zero part of the number is too small to represent in
our smaller flyte type, and zero is the closest representable
value.

5.2 Round-to-nearest
Round-towards-zero is simple to implement, but it can

result in large errors. For example, if round-towards-zero
were applied in decimal, the number 9.9 would be rounded
to 9, rather than 10. The maximum error can be reduced
by rounding to the nearest representable number rather than
simply truncating.

A special case is where the number to be rounded is ex-
actly between two values. To break the tie, IEEE-754 spec-
ifies that exact ties should be rounded to the nearest even
number.

Figure 4 shows a 32-bit floating point number being rounded
to our 24-bit representation using round-to-nearest, where
exact ties between two values are rounded to the nearest
even value.

Rounding to nearest even is expressed in terms of the re-
lationship between three bits (Guard, Round and Sticky)
around the point where the number is rounded. There are no
hardware instructions in conventional processors for round-
ing floating point values to flytes, and we must therefore
round in software.

G R

S

Sign Exponent Mantissa

1 0 0

1 0 1

1 1 0

1 1 1

0 X X

P

Down

Tie

Up

Up

Up

Figure 4: Rounding to nearest even. Marked bit positions
correspond to Guard, Round, and Sticky bits. To avoid
overflow into the exponent when rounding to nearest even
in software, the pre-guard bit (P) must also be inspected.

In the most straightforward case, rounding to nearest even
simply involves computing the nearest representable num-
ber. An easy way to do this is shown in Figure 5.
The code in Figure 5 adds half of a unit of least precision
(ULP) in the new smaller format to the value in the existing
larger format.

As long is the number to be rounded is not exactly be-
tween two representable values in the new format, this will
result in correct round-to-nearest-even. Implementing pre-
cise round-to-nearest-even requires checking for this tied spe-
cial case, and rounding accordingly. In addition, there are

PREPRINT

flyte24 round_to_nearest(float num)

{

u32 temp = cast_f32_to_u32(num);

// round by adding 0.5 ULP

temp = temp + 128;

// truncate last eight bits

temp = temp >> 8;

return cast_u32_to_flyte24(temp);

}

Figure 5: Heuristically rounding to nearest even by adding
half of a unit of least precision (ULP).

numerous special cases which must be checked to correctly
implement IEEE-754 mandated behaviour.

5.3 Treatment of Special Values
The IEEE-754 floating point standard has special values

and ranges as previously outlined in Section 2. Rounding
interacts in different ways with these values and ranges, and
behaviour which may be appropriate for some scenarios may
not be for others.

The application programmer must make a choice of round-
ing approach based on the information available. We de-
scribe the behaviour of each of our proposed rounding ap-
proaches here with respect to IEEE-754 special values and
ranges.

5.3.1 Normalized numbers
When a normalized number is being rounded, an infinity

occurs when the rounded value is so large that the expo-
nent is all ones after rounding (overflow). This is a natural
consequence of conversion from a larger to a smaller finite
representation.

However, when a normalized number is so small that its
exponent is all zeros after rounding (underflow), it does not
get rounded directly to zero, but instead to a subnormal
number.

Underflow is gradual, and a number will underflow to zero
only when it is so small that both exponent and mantissa are
all zeros after rounding. Normalized numbers may therefore
naturally be rounded to several different classes of value.

Very large positive or negative numbers may go to infinity
when rounded, and very small numbers may become subnor-
mal. This behaviour conforms to IEEE-754 semantics.

5.3.2 Subnormal numbers
Subnormal numbers are distinguished by a zero exponent,

and lack the implied leading 1 in their mantissa. They rep-
resent numbers very close to zero. The expected behaviour
of format conversion for subnormal numbers is slightly com-
plicated due to the issues of overflow and underflow.

The closest value in the target representation for a very
large subnormal number may be a very small normalized
number (overflow), while the closest value for a very small
subnormal number may be zero (underflow).

For subnormal numbers, rounding may validly cause the
class of the value to change, either by underflow to zero, or
by overflow to a small normalized number.

5.3.3 Infinities
Positive and negative infinities are encoded with an expo-

nent which is all 1s and a zero mantissa. There are only two
values in this class, which are distinguished from each other
by their sign. The expected behaviour of format conver-
sion for infinities is a correctly signed infinity in the target
format.

5.3.4 NaN values
NaN values represent the result of expressions of indeter-

minate form, which cannot be computed, such as ∞−∞.
The expected behaviour of format conversion of a NaN value
is a NaN value in the target format. However, NaN is not
a singular value, but a value range. NaN values occupy a
range of bit patterns distinguished by an exponent which is
all ones and any nonzero value in the mantissa.

Since the mantissa is truncated by conversion to a shorter
format, some NaN values cannot be represented after down-
conversion, and indeed truncation may cause the non-zero
part of the mantissa to be lost entirely.

However, as described in section 5.1, IEEE-754 non sig-
nalling (or quiet) NaNs always have a 1 in the most signif-
icant bit of their mantissa. Thus, although the exact man-
tissa value of a NaN may change after truncation, a quiet
NaN cannot become a non-NaN value through truncation.

Signalling NaNs are different: the non-zero bits of a sig-
nalling NaN’s mantissa may be entirely in the lower bits.
A signalling NaN may be corrupted to become an infinity
value by truncation. Thus, signalling NaNs should not be
used with flyte values, unless the signal handler is modified
to place a non-zero value in the higher-order bits of the NaN.

When using our add-half-an-ULP heuristic, a further prob-
lem can arise with non-signalling NaNs. If the mantissa
value of the non-signalling NaN is the maximum representable
value after truncation, then adding even half an ULP will
cause an overflow from the mantissa to the exponent, and
potentially into the sign bit, if the exponent is all ones.

Our slowest and most correct round-to-nearest mode checks
for this case, and corrects the value if necessary. Our fast
heuristic round to nearest approach (Figure 5) does not.
However, despite extensive testing we have never seen a case
where the floating point unit creates such a pathological
NaN value as the result of arithmetic.

6. EXPERIMENTAL EVALUATION
We benchmarked the performance of our proposed scalar

code implementation from Section 3.2 and vectorized imple-
mentation from Section 4.3. Experiments were run on 64-bit
Linux with a 4.2 series kernel, using a machine with 16GB
of RAM and an Intel Core i5-3450 (Ivy Bridge) processor.

We followed Intel’s guidelines for benchmarking short pro-
grams on this architecture [12]. Figures 6 and 7 present the
results of benchmarking. In our experiments, we use round-
ing towards zero, FP_CONTRACT is on, and variables which
are used to accumulate are declared as AT_LEAST the target
precision.

Problem size in experimental figures refers to the number
of elements in arrays in BLAS operations - for vector-vector
operations (BLAS Level 1) this is the number of elements
in a vector, while for operations involving matrices (BLAS
Level 2 and 3) this is the number of elements in a row or
column of a square matrix, so that the total number of data
elements is the square of the problem size.

PREPRINT

 0

 10

 20

 30

 40

 50

 60

 70

dot-product max min magnitude scale

N
o

rm
a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

:
C

lo
c
k
 C

y
c
le

s
(p

e
r

d
a
ta

 e
le

m
e
n
t,

 p
ro

b
le

m
 s

iz
e

 3
0
7
2

)

BLAS L1 Routine

double
flyte56
flyte48
flyte40

float
flyte24
flyte16

 0

 10

 20

 30

 40

 50

 60

 70

gemv

BLAS L2 Routine

 0

 20000

 40000

 60000

 80000

 100000

 120000

gemm

BLAS L3 Routine

9(a) Scalar code (Approach shown in Figure 1)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

dot-product max min magnitude scale

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

:
C

lo
c
k
 C

y
c
le

s
(p

e
r

d
a

ta
 e

le
m

e
n
t,

 p
ro

b
le

m
 s

iz
e

 3
0
7
2

)

BLAS L1 Routine

double
flyte56
flyte48
flyte40

float
flyte24
flyte16

 0

 0.5

 1

 1.5

 2

 2.5

gemv gemv-unroll2

BLAS L2 Routine

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

gemm gemm-unroll2

BLAS L3 Routine

9(b) 128-bit SSE code (Approach shown in Figure 2)

Figure 6: Variation of performance with precision of memory representation across a number of BLAS kernels. Performance
displayed as normalized execution time (cycles per data element) – lower is better. Overhead versus native types can be
read as the difference between any flyte type and the next largest native type.

6.1 Overheads: SIMD vs Non-SIMD
The large overhead of scalar access in Figure 6a is due to

the design mismatch between our non-standard use-case and
the typical structure of a GPP scalar datapath, discussed in
more detail in Section 3.2. The GPP datapath is ill equipped
to handle simultaneous misaligned accesses to data stored in
packed non–power-of-two multibyte formats.

In contrast, our compiler-based vectorized approach (Fig-
ure 6b) marshalls and unmarshalls this data into consec-
utive, non-overlapping power-of-two length accesses which
are the best-case for performance using the (SSE) vector
datapath.

Overheads in the scalar implementation are in the mid
to high tens of cycles per accessed element, while in the
vectorized implementation, overheads versus native IEEE-
754 types are on the order of a single cycle per data ele-
ment. In computationally heavy programs like magnitude

this overhead is effectively hidden by instruction-level par-
allelism (Figure 6b).

The relatively high overhead of flyte40 and flyte24 in
the scale benchmark in Figure 6b is due to two factors:
the alignment of the accesses is odd (5 and 3 bytes, respec-
tively) meaning that data must be shuffled between vectors,
rather than simply within vectors, as with other types. Fur-
thermore, the benchmark performs an in-place update of
the data, where reads and writes overlap, which reduces the
available instruction-level parallelism.

However, the overhead is still on the order of 3 cycles per
data element in the worst case, which may be perfectly ac-
ceptable in many scenarios in return for a 37.5% reduction
in memory traffic. Indeed, as can be seen from our results
in Figure 7a, flyte40 is only marginally slower overall con-
sidering BLAS Level 1 programs, and significantly reduces
second-last and last-level cache misses for BLAS Level 2 and
Level 3 programs.

PREPRINT

 0

 1

 2

 3

 4

 5

 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e
:
C

lo
c
k
 C

y
c
le

s
(p

e
r

d
a
ta

 e
le

m
e
n
t,
 g

e
o
m

e
a
n
 a

c
ro

s
s
 a

ll
b
e
n
c
h
m

a
rk

s
)

Problem Size

BLAS L1

double
f56
f48
f40

float
f24
f16

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1000 1500 2000 2500 3000

Problem Size

BLAS L2

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1000 1500 2000 2500 3000

Problem Size

BLAS L3

9(a) Normalized variation in absolute performance (clock cycles per element processed) at each BLAS level as problem size increases. Lower
is better.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e
:
L
2
 C

a
c
h
e
 M

is
s
e
s

(p
e
r

d
a
ta

 e
le

m
e
n
t,
 g

e
o
m

e
a
n
 a

c
ro

s
s
 a

ll
b
e
n
c
h
m

a
rk

s
)

Problem Size

BLAS L1

double
f56
f48
f40

float
f24
f16

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 1000 1500 2000 2500 3000

Problem Size

BLAS L2

 0

 50

 100

 150

 200

 250

 300

 1000 1500 2000 2500 3000

Problem Size

BLAS L3

9(b) Normalized variation in second-last level cache misses as problem size increases (misses per element processed). Lower is better.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e
:
L
a
s
t
L
e
v
e
l
C

a
c
h
e
 M

is
s
e
s

(p
e
r

d
a
ta

 e
le

m
e
n
t,
 g

e
o
m

e
a
n
 a

c
ro

s
s
 a

ll
b
e
n
c
h
m

a
rk

s
)

Problem Size

BLAS L1

double
f56
f48
f40

float
f24
f16

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1000 1500 2000 2500 3000

Problem Size

BLAS L2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1000 1500 2000 2500 3000

Problem Size

BLAS L3

9(c) Normalized variation in last-level cache misses as problem size increases (misses per element processed). Lower is better.

Figure 7: Summary of absolute performance (cycles per processed element) and cache behaviour (cache misses at L2 and L3)
for our vectorized BLAS benchmark programs as problem size increases. Performance for each BLAS level is measured as the
geometric mean performance across all the programs in that level. The programs in each BLAS level are shown in Figure 6b.

6.2 Effect of Unrolling Loops
The benchmark gemv-unroll2 in Figure 6b is the BLAS

Level 2 GEMV kernel unrolled twice to increase the amount of
data movement per vectorized loop iteration. In this bench-
mark, data transfer accounts for a large portion of total
execution time.

The benchmark demonstrates that a win-win is possible:
the choice of a reduced-precision memory representation can
actually increase overall performance versus the next largest
IEEE-754 type, while also reducing memory requirements,
even on a general purpose processor without special hard-
ware support for non-standard floating point.

The benchmark gemm-unroll2 in Figure 6b is the BLAS
Level 3 GEMM kernel unrolled twice to increase the amount of
data movement per vectorized loop iteration.

In effect, unrolling is equivalent to a simple 1-dimensional
loop tiling with tile size 2× VF where VF is the vectorization
factor. In this benchmark, data transfer accounts for a large
portion of total execution time.

However, unlike GEMV, GEMM exhibits a slowdown when un-
rolled. We inspected the performance data and found that
the number of last level cache misses was significantly ele-
vated when GEMM was unrolled.

In this case, unrolling simply introduces too much data
movement in the inner loop. It is likely that less näıve tilings
could mitigate this effect, however, we aim only to show the
effect of using reduced precision types.

PREPRINT

6.3 Effect on Cache Behaviour
The primary effect of using shorter data representations is

seen in the behaviour of the second-last and last-level caches.
Using a shorter data representation means that each indi-
vidual memory operation (i.e. cache line read or write from
DRAM) stores or retrieves a larger proportion of data ele-
ments, resulting in fewer cache misses overall. Reducing the
number of last-level cache misses in particular has a large
effect on performance, and on energy efficiency [7].

6.3.1 BLAS Level 1
Figure 7 displays a summary of the absolute performance

(cycles per data element) as well as the second-last and last-
level cache behaviour for our benchmark programs. As in
Figure 6, the programs are divided into three categories, one
for each BLAS level.

For BLAS level 1 programs, we see that the variation
in absolute performance remains small as problem size in-
creases. BLAS level 1 programs are mostly compute-bound,
so using smaller types does not significantly affect perfor-
mance.

Figures 7b and 7c show that, for BLAS Level 1, there is
very little difference in the number of second-last and last-
level cache misses from using shorter types.

6.3.2 BLAS Level 2
For BLAS level 2 programs, we see that initially there is

little variation in performance at small problem sizes. How-
ever, as the problem size increases, the effect of using smaller
types becomes apparent. For BLAS Level 2 programs, we
see a large variation in performance once the problem size
exceeds the capacity of the L1 cache.

In Figure 7a, we see that for BLAS Level 2 programs,
float and double initially outperform their reduced-precision
representations, but once the problem size grows large enough,
the situation is reversed.

Moreover, smaller representations outperform larger ones,
in general. At the largest problem size in experiments, GEMV
on flyte40 outperforms GEMV on double by 23.5% (Fig-
ure 7a, center graph).

Figures 7b and 7c display the large reduction in second-
last and last-level cache misses for BLAS Level 2 programs.
In some cases, the reduction is as many as 6× fewer last-level
cache misses (compare flyte40 and double in Figure 7c,
center graph).

6.3.3 BLAS Level 3
For BLAS Level 3, we again see that using smaller types

results in many fewer second-last and last-level cache misses,
although the reduction is less pronounced for flyte40. 5-
byte accesses are frequently split across cache lines, causing
two misses, which offsets the reduction in misses from simply
transferring less data overall.

However, we again see that performance closely tracks
cache behaviour - our straightforward implementation of
GEMM is heavily memory-bound, so this is not surprising.
Overall, we see a significant reduction in cache misses for
smaller types: as many as 4.5× fewer last-level cache misses
comparing flyte56 and double (Figure 7c, rightmost graph).

7. RELATED WORK
Much prior work discusses reduced precision floating point [3,

10,13]. Jenkins et al. [9] evaluate a reduced-precision scheme

using GPPs in an extreme-scale computing context. They
do not utilize SIMD, address only reads, and convert in a
pre-pass.

Many approaches use FPGAs or otherwise customized
hardware; notably Tong et al. [16], who propose customiz-
ing ALUs to support short-mantissa representations. More
recently, De Dinechin et al. [5] also propose custom hard-
ware to support reduced precision. Ou et al. accelerate
mixed-precision floating point using a vector processor with
a customized datapath [11].

Our approach, since it targets GPPs, is necessarily less
flexible than FPGA/custom hardware based approaches. How-
ever, it is precisely because GPPs are so widely deployed
that reduced precision support on GPPs is attractive.

Prior work on loading only portions of floating point num-
bers by Jenkins et al. [9] does not perform an explicit round-
ing step, but directly truncates values. They perform a byte-
level transpose on a matrix of floating point numbers stored
in memory, chopping off some number of trailing bytes of
each number.

This conversion approach is semantically equivalent to
rounding to zero. Jenkins et al. evaluate the error intro-
duced by rounding to zero and find it acceptable for their
purposes.

In contrast, using our proposed techniques, the rounding
step in Figure 2 can be implemented in any way which is
suitable for the needs of the application, including rounding
towards zero, rounding to nearest even, or rounding to odd
as proposed by Boldo and Melquiond [2].

8. CONCLUSION
In this paper, we propose flytes; a scheme representing

floating-point data in memory at precisions along a contin-
uum between IEEE-754 types, converting to and from stan-
dard IEEE-754 types to perform computations.

We propose a method for converting between IEEE-754
floating point and flytes, and show how it can be accelerated
using vectorization on general purpose processors, without
requiring special hardware support.

Our proposed technique handles both reads and writes,
and supports reduced precision floating point memory rep-
resentations with very low overhead.

Our investigation shows that reducing the precision of
floating point data in memory, and using SIMD operations
as the basis of a compiler-accelerated scheme for performing
conversions presents a low-overhead path to supporting cus-
tomized floating point on commodity general purpose pro-
cessors.

Acknowledgements
We would like to thank Ayal Zaks for many helpful com-
ments on an initial draft of this paper. We would also like
to thank the reviewers of PACT 2016 for their close atten-
tion which helped us greatly in improving the presentation.

This work was supported by Science Foundation Ireland
grant 12/IA/1381, and also by Science Foundation Ireland
grant 10/CE/I1855 to Lero — the Irish Software Research
Centre (www.lero.ie).

PREPRINT

9. REFERENCES
[1] A. Anderson, A. Malik, and D. Gregg. Automatic

vectorization of interleaved data revisited. ACM
Transactions on Architecture and Code Optimization
(TACO), 12(4):50, 2015.

[2] S. Boldo and G. Melquiond. When double rounding is
odd. In 17th IMACS World Congress, page 11, 2004.

[3] A. Buttari, J. Dongarra, J. Kurzak, J. Langou,
J. Langou, P. Luszczek, and S. Tomov. Exploiting
mixed precision floating point hardware in scientific
computations. In High Performance Computing
Workshop, 2006.

[4] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen,
R. C. Harting, V. Parikh, J. Park, and D. Sheffield.
Efficient embedded computing. IEEE Computer, (7),
2008.

[5] F. De Dinechin, C. Klein, and B. Pasca. Generating
high-performance custom floating-point pipelines. In
International Conference on Field Programmable Logic
and Applications. IEEE, 2009.

[6] P. R. Dixon, T. Oonishi, and S. Furui. Fast acoustic
computations using graphics processors. In
International Conference on Acoustics, Speech and
Signal Processing. IEEE, 2009.

[7] J. Gustafson. Exascale: Power, cooling, reliability, and
future arithmetic. HPC User Forum Seattle,
September 2010.

[8] B. S. Institution. The C standard: incorporating
Technical Corrigendum 1 : BS ISO/IEC 9899/1999.
John Wiley, 2003.

[9] J. Jenkins, E. R. Schendel, S. Lakshminarasimhan,
D. Boyuka, T. Rogers, S. Ethier, R. Ross, S. Klasky,
N. F. Samatova, et al. Byte-precision level of detail
processing for variable precision analytics. In

International Conference for High Performance
Computing, Networking, Storage and Analysis (SC).
IEEE, 2012.

[10] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski,
and M. P. LeGendre. Automatically adapting
programs for mixed-precision floating-point
computation. In International Conference on
Supercomputing. ACM, 2013.

[11] A. Ou, K. Asanovic, and V. Stojanovic. Mixed
precision vector processors. Technical Report No.
UCB/EECS-2015-265, 2015.

[12] G. Paoloni. How to benchmark code execution times
on Intel IA-32 and IA-64 instruction set architectures.
Intel Corporation, 2010.

[13] C. Rubio-González, C. Nguyen, H. D. Nguyen,
J. Demmel, W. Kahan, K. Sen, D. H. Bailey, C. Iancu,
and D. Hough. Precimonious: Tuning assistant for
floating-point precision. In International Conference
on High Performance Computing, Networking, Storage
and Analysis (SC). ACM, 2013.

[14] E. Schkufza, R. Sharma, and A. Aiken. Stochastic
optimization of floating-point programs with tunable
precision. ACM SIGPLAN Notices, 49(6), 2014.

[15] N. Sidwell and J. Myers. Improving software floating

point support. Proceedings of GCC DeveloperâĂŹs
Summit, 2006.

[16] J. Y. F. Tong, D. Nagle, R. Rutenbar, et al. Reducing
power by optimizing the necessary precision/range of

floating-point arithmetic. IEEE Transactions on Very
Large Scale Integration Systems, 8(3), 2000.

[17] D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate,
D. Bailey, S. Bass, D. Bhandarkar, M. Bhat,
D. Bindel, S. Boldo, et al. IEEE Standard for
Floating-point Arithmetic. IEEE Std 754-2008, 2008.

	1 Motivation
	2 Customizing Floating Point
	3 Reduced Precision on GPPs
	3.1 Our Approach
	3.2 Simple Scalar Code Approach

	4 Access in Reduced Precision
	4.1 Reading In Reduced Precision
	4.2 Writing In Reduced Precision
	4.3 Vectorized Reading and Writing
	4.4 Controlling Format Conversion

	5 Rounding
	5.1 Round-towards-zero
	5.2 Round-to-nearest
	5.3 Treatment of Special Values
	5.3.1 Normalized numbers
	5.3.2 Subnormal numbers
	5.3.3 Infinities
	5.3.4 NaN values

	6 Experimental Evaluation
	6.1 Overheads: SIMD vs Non-SIMD
	6.2 Effect of Unrolling Loops
	6.3 Effect on Cache Behaviour
	6.3.1 BLAS Level 1
	6.3.2 BLAS Level 2
	6.3.3 BLAS Level 3

	7 Related Work
	8 Conclusion
	9 References

