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ABSTRACT
In the low-end mobile processor market, power, energy and
area budgets are significantly lower than in other markets
(e.g. servers or high-end mobile markets). It has been shown
that vector processors are a highly energy-efficient way to in-
crease performance; however adding support for them incurs
area and power overheads that would not be acceptable for
low-end mobile processors. In this work, we propose an in-
tegrated vector-scalar design for the ARM architecture that
mostly reuses scalar hardware to support the execution of
vector instructions. The key element of the design is our
proposed block-based model of execution that groups vec-
tor computational instructions together to execute them in
a coordinated manner.

CCS Concepts
•Computer systems organization → Single instruc-
tion, multiple data;
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1. INTRODUCTION
Vector processors [1] are energy efficient architectures that

yield high performance whenever there is enough data-level
parallelism (DLP) [7]. Besides the long and successful his-
tory of vector processors in supercomputers, vector units
have been proposed in microprocessor design [6, 4, 2]. Re-
cent research on vector processors shows that they can be
a good match even for applications from domains such as
column-store databases [5]. Although vector processors are
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energy efficient, they still have too high power and area over-
heads for low-end mobile processors. This is mostly due to
their highly restrictive power and area budget.

This paper contributes a method to increase the perfor-
mance of the low-power low-end embedded systems in an
energy-efficient way. The energy efficiency is attained by
modifying a scalar core to execute vector instructions on
the existing infrastructure. In particular, we propose an in-
tegrated vector-scalar design that combines scalar and vec-
tor processing mostly using existing resources of an energy-
efficient scalar processor (in our evaluation environment it is
based on the ARM Cortex A7). In addition to a design that
uses a conventional vector execution model, we also con-
tribute a novel block-based model of execution for vector
computational instructions.

2. INTEGRATED DESIGN
As a baseline, we use a scalar core based on the highly

energy-efficient ARM Cortex-A7. It is an in-order processor
that implements the ARM v7 architecture with an 8-stage
pipeline (non-highlighted gray blocks in Figure 1).

In our proposed integrated vector-scalar design, we at-
tempt to maximize the reuse of resources already present
in the baseline scalar core (white blocks in Figure 1) while
adding support for vector instructions. While the front-end
of the pipeline is the same (fetch and decode1 stages), in the
back-end we added two structures to support the execution
of vector instructions on the scalar core: a vector register
file, and a vector memory unit (blue blocks in Figure 1).
There is also additional logic that controls the execution of
vector instructions. Vector execution control logic (VECL)
is added in the issue stage to support the execution of com-
putational vector instructions. Aliasing control logic (ACL)
exchanges information between the vector memory and the
data cache unit and forces scalar and vector memory in-
structions to be executed in-order. We implement support
for chaining [9], a well-known concept in vector processors.
Similar to result forwarding in scalar processors, chaining
allows starting the execution of a dependent vector instruc-
tion as soon as the first element of the vector is generated

1With the obvious exception of the decode logic, which needs
to be extended to support the new vector instructions.
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Figure 1: Block diagram of the integrated design.

by the previous computational instruction. Chaining con-
trol logic (CCL) is responsible for the execution of chained
dependent computational instructions.

2.1 Vector Computational Instructions
For executing the vector computational instructions on

the existing scalar FUs, we study two alternatives: 1) the
One-By-One model of execution (OBO), in essence the clas-
sic vector execution model, in which a vector instruction is
executed to completion once it starts execution in a func-
tional unit, i.e. for all the operations of the vector; and 2) a
novel execution model called Block-Based Execution (BBE).
In this model, for a block of consecutive vector computa-
tional instructions, first all operations on the first element
of the vectors are executed, then the operations of the second
element, and so on.

2.1.1 Block-Based Execution
In order to support this model of execution, we added sim-

ple control logic and a small table that keeps the information
of the instructions of the block. In the design presented in
this paper, the blocks of vector computational instructions
are formed dynamically in a very simple way: once a compu-
tational vector instruction is ready for execution, the control
logic examines the next instruction in the issue queue and
adds it to the block if it is a vector computational instruc-
tion. This process stops when the next instruction in the
issue queue is of another type (a scalar or vector memory
instruction) or the block table is full.

3. INITIAL EVALUATION
We have extended the gem5 simulator [3] and McPAT

[8] to evaluate our integrated design. We used eight ker-
nels from various benchmarks and vectorized them. The
results show that our integrated design reduces energy over
the scalar baseline for most of the kernels with a small area

overhead (only 4.7% when using a vector register with 32 el-
ements). We report up to 5x energy reduction for our block-
based execution model over the scalar baseline. Addition-
ally, we found that the block-based execution model provides
better results (up to 26% of energy saving) than a conven-
tional vector unit with dedicated units. The area overhead
of adding the conventional vector unit with a floating-point
unit is significant, around 44% with vector registers of 32 el-
ements. Regarding performance gains, we report more than
a 6x speed-up compared to the scalar baseline. Moreover,
our block-based execution model is up to 1.4x faster than
the conventional vector unit for floating-point kernels.

4. CONCLUSION
Power dissipation, energy consumption and area are crit-

ical concerns in processor design, especially for embedded
systems in the low-end market. In this paper, we propose an
integrated vector-scalar design. The integrated design allows
for execution of vector computational instructions mostly
reusing resources of an ARM in-order core. We implement
two models to execute vector computational instructions:
one-by-one and block-based execution models. Initial eval-
uation shows substantial savings.
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