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Abstract

Acoustic source localization has many important applications. Convex relaxation provides a viable approach
of obtaining good estimates very efficiently. There are two popular convex relaxation methods using either semi-
definite programming or second order cone programming. However, the performances of the methods have not
been studied properly in the literature and there is no comparison in terms of accuracy and performance. The aims
of this paper are twofold. First of all, we study and compare several convex relaxation methods. We demonstrate
by numerical examples that most of the convex relaxation methods cannot localize the source exactly even in the
performance limit when the time difference of arrival (TDOA) information is exact. In addressing this problem,
we propose a novel mixed SDP-SOCP relaxation model and study the characteristics of the optimal solutions and
its localizable region. Furthermore, an error correction scheme for the proposed SDP-SOCP model is developed so
that exact localization can be achieved in the performance limit. Experimental data have been collected in a room
with two different array configurations to demonstrate our proposed approach.

I. INTRODUCTION

Acoustic source localization remains to be an important problem in the signal processing literature owing to their importance
in many applications including radar, sonar, teleconferencing, wireless communications and voice control. Typically, the source
location is estimated in two stages. In the first stage, the TDOA between each pair of microphones is estimated and transformed
into distance measurements between sensors, resulting in a set of nonlinear hyperbolic equations. There are various techniques
that can be used to compute the TDOA, such as cross-correlation (CC) method [1], phase transform (PHAT) and the maximum
likelihood estimator (ML) [2]. In the second stage, efficient algorithms are needed to find the intersection of these nonlinear
hyperbolic equations and obtain an estimate to the location of the source. However, finding the intersection of hyperbolic
equations is a highly nonlinear problem.

One approach is to employ convex relaxation to convert the localization problem into a convex optimization problem, such
as a semi-definite program or a second order cone program. In this way, very efficient algorithms can be derived. Semi-definite
programming (SDP) is a generalization of linear programming (LP) where the decision variables are arranged in a symmetric
matrix instead of a vector, and the non-negative orthant is replaced by the cone of positive semi-definite matrices [3], [4], [5].
Since interior point algorithms can be employed, semi-definite programming has polynomial time computational complexity.
It has been successfully applied to a number of signal processing problems, such as filter design [6], antenna design [7],
beamformer design [8], window design [9], filter bank design [10], sensor network localization [11] and configuration design
[12]. The SDP and SOCP relaxation models have also been considered for solving optimal power flow problem in [13].
Sufficient conditions under which the convex relaxation is exact was presented in [14]. One formulation based on semi-definite
programming for solving localization problems has been studied in [15]. Besides, another formulation using second order cone
programming (SOCP) has been applied in [16]. For the SOCP relaxation, it has been proven in [16] that the optimized source
location always lies in the convex hull of the microphone array. It is unfavourable for acoustic localization since the speaker
is usually standing in front of the microphone array instead of being surrounded by the microphones.

Motivated by the above works, in this paper, we study the convex relaxation method for solving the source localization
problem extensively and propose a novel mixed relaxation model. We first study and compare several convex relaxation
methods. When the sound source is placed in front of the sensor array, we find that most existing convex relaxation methods
in the literature cannot localize the source exactly even in the performance limit when the time difference of arrival (TDOA)
information is exact. Furthermore, we find that the geometry of the array and the speaker location relative to the array are

© 2016 ACM. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of 
Record was published in ACM Transactions on Sensor Networks (TOSN), http://dx.doi.org/10.1145/10.1145/2968449.

This is the Pre-Published Version.



2

important factors affecting the accuracy of the solutions. In order to address these problems, we propose a novel mixed SDP-
SOCP relaxation model and derive the characteristics of the optimal solution. We study the speaker localizable region, in the
sense that the exact source location can be sought directly in the performance limit. We derive the exact geometry of the
localizable region for the proposed mixed model. Furthermore, an error correction scheme is developed to recover the exact
source location in the performance limit when the speaker is outside the localizable region. To demonstrate the method for
practical applications, we also employ real recordings with two different array configurations collected in a meeting room.

The rest of the paper is organized as follows. In Section 2, we present different convex relaxation models for solving the
source localization problem; then we formulate the mixed SDP-SOCP relaxation model. In Section 3, the characteristics of
the optimal solution to the mixed SDP-SOCP model are derived and the geometry of the exact localizable region is derived.
We present an error correction scheme in section 4 to recover the exact source location for the mixed SDP-SOCP model in
the performance limit. Numerical results are shown in Section 5; comparison results with other convex relaxation models are
also given. Several examples with real recordings are presented to illustrate the effectiveness of the proposed method.

II. FORMULATION AND CONVEX RELAXATION MODELS

Assume we have microphones with locations ai = (ai1, ai2)T , i = 1, · · · ,m. Given a source location s = (s1, s2)T , the
time difference of arrivals (TDOA) are given by

τij ≡ T ({ai,aj}, s) =
‖s− ai‖ − ‖s− aj‖

c0
, i, j = 1, · · · ,m, (1)

where c0 is the speed of sound in the air. The estimate is denoted by τ̂ij using the signals received at the ith and jth microphone.
The source localization problem is to estimate the source location ŝ from the set of nonlinear hyperbolic equations (1). In the
following, we introduce three relaxation models for solving this source localization problem. The first two models are using
semi-definite programming and second order cone programming, respectively. Then the mixed SDP-SOCP relaxation model is
presented.

A. SDP Relaxation Model
With a set of delay estimates, the problem is to find ŝ such that

‖s− ai‖ − ‖s− aj‖ = c0τ̂ij , i, j = 1, · · · ,m. (2)

These equations can also be expressed as 1
βi − βj = c0τ̂ij , i, j = 1, · · · ,m,
‖s− ai‖2 = αi, i = 1, · · · ,m,
αi = β2

i , i = 1, · · · ,m,
βi ≥ 0, i = 1, · · · ,m.

(3)

We relax the equality constraints αi = β2
i to

(
1 βi
βi αi

)
� 0, which ensures that αi ≥ β2

i . Without the relaxation, αi should

be equal to the β2
i ; therefore, αi should be as small as possible after the relaxation. Thus we set the objective function be

min
∑m
i=1 αi and transform the source localization problem into

min

m∑
i=1

αi

s.t. βi − βj = c0τ̂ij , i, j = 1, · · · ,m,
‖s− ai‖2 = αi, i = 1, · · · ,m,(

1 βi
βi αi

)
� 0, i = 1, · · · ,m,

βi ≥ 0, i = 1, · · · ,m.

(4)

Noting that

‖ai − s‖2 =
(
aTi − 1

)( I
sT

)
[I s]

(
ai
−1

)
=
(
aTi − 1

)( I s
sT sT s

)(
ai
−1

)
. (5)

Let y = sT s. Then the above problem is equivalent to

1A different way of transforming (2) has been proposed in [15], which ends up with a different optimization model.
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min

m∑
i=1

αi

s.t. βi − βj = c0τ̂ij , i, j = 1, · · · ,m,(
aTi − 1

)( I s
sT y

)(
ai
−1

)
= αi, i = 1, · · · ,m,(

1 βi
βi αi

)
� 0, i = 1, · · · ,m,

βi ≥ 0, i = 1, · · · ,m,
y = sT s.

(6)

An effective method for solving this problem is to relax y = sT s to

Z :=

(
I s
sT y

)
� 0.

Then, the relaxed version of the problem (6) can be represented by the following mixed SDP relaxation model

min

m∑
i=1

αi

s.t. βi − βj = c0τ̂ij , i, j = 1, · · · ,m,(
aTi − 1

)
Z

(
ai
−1

)
= αi, i = 1, · · · ,m,(

1 βi
βi αi

)
� 0, i = 1, · · · ,m,

βi ≥ 0, i = 1, · · · ,m,
Z1:d,1:d = Id,Z � 0, s = Z1:d,d+1.

(7)

B. SOCP Relaxation Model
For equation (2), instead of (3), it can also be expressed as{

βi − βj = c0τ̂ij , i, j = 1, · · · ,m,
‖s− ai‖ = βi, i = 1, · · · ,m.

(8)

Similar to the method in [16], we relax the equality constraints ‖s− ai‖ = βi to ” ≤ ” inequality constraints, which yields a
second order cone problem. Since without the relaxation, ‖s− ai‖ should be equal to the βi; therefore βi should be as small
as possible after relaxation. Thus we set the objective function be min

∑m
i=1 βi and transform the source localization problem

into the following SOCP relaxation model
min

m∑
i=1

βi

s.t. βi − βj = c0τ̂ij , i, j = 1, · · · ,m,
‖s− ai‖ ≤ βi, i = 1, · · · ,m.

(9)

C. Mixed SDP-SOCP Relaxation Model
For equation (2), we can expressed it as{

βi − βj = c0τ̂ij , i, j = 1, · · · ,m,
‖s− ai‖ = βi, i = 1, · · · ,m.

(10)

Adding some redundant constraints 
βi − βj = c0τ̂ij , i, j = 1, · · · ,m,
‖s− ai‖ = βi, i = 1, · · · ,m,
‖s− ai‖2 = αi, i = 1, · · · ,m,
αi = β2

i , i = 1, · · · ,m,

(11)
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it is equivalent to the following problem 

βi − βj = c0τ̂ij , i, j = 1, · · · ,m,
‖s− ai‖ = βi, i = 1, · · · ,m,
‖s− ai‖2 = αi, i = 1, · · · ,m,
αi ≥ β2

i , i = 1, · · · ,m,
αi ≤ β2

i , i = 1, · · · ,m.

(12)

The inequality constraints αi ≥ β2
i is equivalent to

(
1 βi
βi αi

)
� 0, and αi ≤ β2

i is equivalent to ‖s − ai‖ ≤ βi. Thus we

relax the equality constraints ‖s − ai‖ = βi to ” ≤ ” inequality constraints, which yields a second order cone problem. The
source localization problem can be transformed into

min

m∑
i=1

αi

s.t. βi − βj = c0τ̂ij , i, j = 1, · · · ,m,
‖s− ai‖ ≤ βi, i = 1, · · · ,m,
‖s− ai‖2 = αi, i = 1, · · · ,m,(

1 βi
βi αi

)
� 0, i = 1, · · · ,m.

(13)

The above problem is equivalent to

min

m∑
i=1

αi

s.t. βi − βj = c0τ̂ij , i, j = 1, · · · ,m,
‖s− ai‖ ≤ βi, i = 1, · · · ,m,(
aTi − 1

)( I s
sT y

)(
ai
−1

)
= αi, i = 1, · · · ,m,(

1 βi
βi αi

)
� 0, i = 1, · · · ,m,

y = sT s.

(14)

After relaxation of problem (14), the mixed SDP-SOCP relaxation model becomes

min

m∑
i=1

αi

s.t. βi − βj = c0τ̂ij , i, j = 1, · · · ,m,
‖s− ai‖ ≤ βi, i = 1, · · · ,m,(
aTi − 1

)
Z

(
ai
−1

)
= αi, i = 1, · · · ,m,(

1 βi
βi αi

)
� 0, i = 1, · · · ,m,

Z1:d,1:d = Id,Z � 0, s = Z1:d,d+1.

(15)

In the following section, we investigate thoroughly the optimality conditions for this problem. Indeed, it is obvious that the
solution of (2) is a feasible solution for (15). On the contrary, it is important to learn the conditions for which the solution of
(15) satisfies the original problem (2) in the performance limit when all the TDOA’s are correct. In fact, it boils down to the
relative position of the speaker to the array and the array geometry. These relative positions form a region in which accurate
speaker localization is possible. We will establish this region in the following section.
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III. SPEAKER LOCALIZABLE REGION

A. A Representation Theorem for The Mixed SDP-SOCP
For the source localization problem with time difference information of m microphones, we denote

α = (α1, α2, · · · , αm)T , β = (β1, β2, · · · , βm)T , s = (s1, s2)T .

Let
ai = (ai1, ai2)T , i = 1, 2, · · · ,m

be m points in R2 with m ≥ 3, and assume

rank{a1,a2, · · · ,am} = 2.

For ease of analysis, the mixed SDP-SOCP (15) written in the following algebraic form will be used:
min α1 + α2 + · · ·+ αm

s.t. βi − βj = c0τ̂ij , i, j = 1, 2, · · · ,m,
‖s− ai‖2 + (y − ‖s‖2) = αi, i = 1, 2, · · · ,m,
y ≥ ‖s‖2, αi ≥ β2

i , βi ≥ ‖s− ai‖, i = 1, 2, · · · ,m.

(16)

Also, we use the notation (s, y,β,α) to denote a feasible solution for (16). Let s∗ = (s∗1, s
∗
2)T be the true source location,

i.e., it satisfies
‖s∗ − ai‖ − |s∗ − aj‖ = c0τ̂ij , i, j = 1, 2, · · · ,m.

Denote by β∗i = ‖s∗ − ai‖, i = 1, 2, · · · ,m. In general, we can first establish a simple relationship between the optimal
solution of (16) and the true solution (s∗, y∗,β∗,α∗) by the following lemma.

Lemma 1. Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (16). Then there exists a λ ≥ 0 such that

β̂i = β∗i − λ, i = 1, 2, · · · ,m.

Proof. Set β∗ = (β∗1 , β
∗
2 , · · · , β∗m)T , α∗ = ((β∗1)2, (β∗2)2, · · · , (β∗m)2)T , and y∗ = ‖s∗‖2. Then (s∗, y∗,β∗,α∗) is a feasible

solution of the mixed SDP-SOCP (16). Since

α∗i = (β∗i )2 = ‖s∗ − ai‖2, i = 1, 2, · · · ,m (17)

and (ŝ, ŷ, β̂, α̂) is an optimal solution of (16), then we have
m∑
i=1

β̂2
i ≤

m∑
i=1

α̂i ≤
m∑
i=1

α∗i =

m∑
i=1

(β∗i )2.

Notice that β̂i, i = 1, · · · ,m and β∗i , i = 1, · · · ,m are the solution of the linear equations with m variables and 2 equations:

xm − xi = c0τ̂mi, i = 1, 2, · · · ,m− 1,

and the rank of the coefficient matrix of the above linear equations is 2, then there exists λ ∈ R such that

β̂i = β∗i − λ, i = 1, · · · ,m. (18)

From
m∑
i=1

(β∗i − λ)2 ≤
m∑
i=1

(β∗i )2,

we have λ > 0.

As indicated by the above lemma, it is clear that if λ > 0, then the solution of (16) will not be the solution of the original
problem (2) and hence is not the true speaker location. In order to study the property of this λ, we further assume the array
form a triangle. In fact, since most array configurations can be represented by a union of triangular array, it will be sufficient
to derive the conditions for a triangular array and then generalize to other configurations.
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Fig. 1.

When m = 3, we have α = (α1, α2, α3)T , β = (β1, β2, β3)T , s = (s1, s2)T , and ai = (ai1, ai2)T , i = 1, 2, 3, be three
microphone locations in R2. The mixed SDP-SOCP (15) model becomes

min α1 + α2 + α3

s.t. β1 − β2 = c0τ̂12,

β1 − β3 = c0τ̂13,

‖s− ai‖2 + (y − ‖s‖2) = αi, i = 1, 2, 3,

y ≥ ‖s‖2, αi ≥ β2
i , βi ≥ ‖s− ai‖, i = 1, 2, 3.

(19)

Let s∗ = (s∗1, s
∗
2)T be the exact source location satisfying

‖s∗ − a1‖ − ‖s∗ − a2‖ = c0τ12, ‖s∗ − a1‖ − ‖s∗ − a3‖ = c0τ13.

Define β∗i = ‖s∗ − ai‖, i = 1, 2, 3, β∗ = (β∗1 , β
∗
2 , β
∗
3)T , α∗ = (β∗1

2, β∗2
2, β∗3

2)T , and y∗ = ‖s∗‖2. Clearly (s∗, y∗,β∗,α∗)
is a feasible solution of (19). However, the opposite is not straightforward. As a start, we first show that, if the speaker is
surrounded by the microphones, then the optimality of this solution is proven in the following theorem.

Theorem 1. If s∗ is in the triangle region ∆a1a2a3 determined by the three points a1, a2 and a3, then (s∗, y∗,β∗,α∗) is an
optimal solution of (19).

Proof. The proof will be given in the appendix.

For the more general situation when the speaker is standing in front of the microphone array, the optimal solution of (19)
is not necessary the optimal solution to the original problem. In order to understand the conditions for this to be true, we need
the following lemmas, which summarize some properties of the optimal solution of (19).

Lemma 2. Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (19). Then ‖ŝ − ai‖ < β̂i, i = 1, 2, 3 cannot be satisfied at the same
time.

Proof. The proof will be given in the appendix.

Lemma 3. Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (19). Then β̂2
i < α̂i, i = 1, 2, 3 cannot be satisfied at the same time.

Proof. The proof will be given in the appendix.

In the following, for simplicity of notation, we locate the microphones as: a1 = (a, 0)T , a2 = (b, 0)T and a3 = (0, c)T

where a ≤ 0, b > 0, c < 0. As illustrated in Figure 1, let Ω be the region enclosed by lines u2 = 0, u1 − a = −acu2 and
u1 − b = − bcu2, i.e.

Ω =
{
u = (u1, u2)T | u2 ≥ 0, u1 − a > −acu2 and u1 − b < − bcu2

}
.

Since (s∗, y∗,β∗,α∗) is an optimal solution of (19) if s∗ is in the triangle region ∆a1a2a3 determined by the three points a1,
a2 and a3, we only consider the case when the speaker is in front of the array, which means s∗ ∈ Ω with s∗2 > 0.

For λ ∈ [0,min1≤i≤3 β
∗
i ], as illustrated in Figure 2, we have

B(a1, β
∗
1 − λ) ∩B(a2, β

∗
2 − λ) ⊂ B(a3, β

∗
3 − λ),
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Fig. 2.

where B(a, r) = {u| |u− a| ≤ r}. In particular, β∗3 − λ > −c.
Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (19). By Lemma 1, there exists λ ∈ [0,min1≤i≤3 β

∗
i ] such that

β̂i = β∗i − λ, i = 1, 2, 3.

Then
ŝ ∈ ∩3i=1B(ai, β̂i) = ∩3i=1B(ai, β

∗
i − λ) = B(a1, β

∗
1 − λ) ∩B(a2, β

∗
2 − λ). (20)

By Lemma 2 and Lemma 3, we have one of the following seven cases :
(C1): 

‖ŝ− a1‖2 = (β∗1 − λ)2,

‖ŝ− a2‖2 = (β∗2 − λ)2,

‖ŝ− a3‖2 ≤ (β∗3 − λ)2 = α̂3;

(21)

(C2): {
‖ŝ− a1‖2 = (β∗1 − λ)2,

(β∗2 − λ)2 − ‖ŝ− a2‖2 = (β∗3 − λ)2 − ‖ŝ− a3‖2 > 0;
(22)

(C3): {
‖ŝ− a2‖2 = (β∗2 − λ)2,

(β∗1 − λ)2 − ‖ŝ− a1‖2 = (β∗3 − λ)2 − ‖ŝ− a3‖2 > 0;
(23)

(C4): ‖ŝ− a1‖2 = (β∗1 − λ)2, ‖ŝ− a2‖2 < (β∗2 − λ)2 = α̂2, ‖ŝ− a3‖2 ≤ (β∗3 − λ)2, and
(β∗2 − λ)2 − ‖ŝ− a2‖2 > (β∗3 − λ)2 − ‖ŝ− a3‖2;

(C5): ‖ŝ− a1‖2 = (β∗1 − λ)2, ‖ŝ− a2‖2 < (β∗2 − λ)2, ‖ŝ− a3‖2 ≤ (β∗3 − λ)2 = α̂3, and
(β∗2 − λ)2 − ‖ŝ− a2‖2 < (β∗3 − λ)2 − ‖ŝ− a3‖2;

(C6): ‖ŝ− a1‖2 < (β∗1 − λ)2 = α̂1, ‖ŝ− a2‖2 = (β∗2 − λ)2, ‖ŝ− a3‖2 ≤ (β∗3 − λ)2, and
(β∗1 − λ)2 − ‖ŝ− a1‖2 > (β∗3 − λ)2 − ‖ŝ− a3‖2;

(C7): ‖ŝ− a1‖2 < (β∗1 − λ)2, ‖ŝ− a2‖2 = (β∗2 − λ)2, ‖ŝ− a3‖2 ≤ (β∗3 − λ)2 = α̂3, and
(β∗1 − λ)2 − ‖ŝ− a1‖2 < (β∗3 − λ)2 − ‖ŝ− a3‖2.

We will prove that cases (C4), (C5), (C6) and (C7) can never happen by the following theorem. In this way, the optimal
solution of (19) must satisfy only (C1), (C2) or (C3).

Theorem 2. (Representation theorem). Assume that −c ≥ |a+b|. Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (19). Then ŝ2 ≥ 0
and there exists λ ≥ 0 such that β̂ = β∗ − λ, and one of (C1), (C2) and (C3) holds. Furthermore, if ŝ1 ∈ [a, b], then (C1)
must be true.

Proof. The proof will be completed by lemma 4-8 given in the appendix.
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Fig. 3. Exact localizable region

B. A Characterization Theorem
In this section, we study the conditions such that (s∗, y∗,β∗,α∗) is also the optimal solution of (19) when s∗1 ∈ [a, b]. Let

(ŝ, ŷ, β̂, α̂) be the optimal solution of (19) and assume that ŝ1 ∈ [a, b]. Then by Theorem 2, ŝ2 > 0 and ŝ is a solution of
equation (21). Define

D =

{
λ|λ ∈ (0,min{β∗1 , β∗2 , β∗3})

}
. (24)

Assume ŝ to be a solution of equation (21), define

M(λ) :=(β∗1 − λ)2 + (β∗3 − λ)2 + ‖ŝ− a2‖2 + 2((β∗3 − λ)2 − ‖ŝ− a3‖2), λ ∈ D.

It follows from Theorem 2 that (s∗, y∗,β∗,α∗) is an optimal solution of (19) if and only if

g(λ) := M(λ)− ((β∗1)2 + (β∗2)2 + (β∗3)2) > 0 ∀λ ∈ D. (25)

The following theorem gives a characterization such that the mixed SDP-SOCP (19) model can give the true solution under
the condition −c ≥ |a+ b| in Theorem 2.

Theorem 3. (Characterization theorem). Assume that −c ≥ |a+ b|. Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (19) and assume
that ŝ1 ∈ [a, b]. Set

Ψ(s∗) := −
(

(β∗1)2 − (β∗3)2 +
a((β∗1)2 − (β∗2)2)

b− a
+ ab+ c2

)
×
(
β∗1 − β∗2 − 3β∗3 +

2a(β∗1 − β∗2)

b− a

)
− 2c2

(
−2β∗1 +

((β∗1)2 − (β∗2)2 + (b− a)2)(β∗1 − β∗2)

(b− a)2

)
.

(26)

If Ψ(s∗) > 0, then ŝ = s∗, i.e., the mixed SDP-SOCP (19) model gives the true solution. Inversely, if the mixed SDP-SOCP
(19) model gives the true solution, then Ψ(s∗) ≥ 0.

Proof. The proof will be given in the appendix.

To illustrate the characterization theorem, we give a simple example here. Assume a = −1, b = 1, c = −1, by Theorem
3, we find the localizable region of the mixed SDP-SOCP model (Figure 3). For the SOCP relaxation model, the localizable
region is the convex hull of the microphone array [16]. It is unfavorable for acoustic localization since the speaker is usually
standing in front of the microphone array instead of surrounded by the microphones. From Figure 3, for the mixed SDP-SOCP
relaxation model, we can find that there is an extended region to the convex hull of the triangular array which has the exact
localizable property. That means when the sound source is placed in front of the microphone array, we can still localize the
source exactly when the TDOA information is exact. This result is better than the SOCP relaxation model.

From this illustrative example for a triangular array, we know that the localizable region is shaped like a fan Figure 4.
We further consider and simulate a more complex situation. Assume there are four microphones located at the coordinates
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Fig. 5. Localizable region with four microphones

{(−1.5, 0), (0, 0.5), (1.5, 0), (0,−1.9)}, its localizable region is shown in Figure 5. We find that the localizable region is like
a combination of several fan-shaped regions. Since the distance between two points is invariant under translation and rotation,
we can state a general form of Theorem 3 in the following theorem.

Theorem 4. Let a1,a2,a3 be three points in R2 and r be the foot of the perpendicular from point a3 to the line segment
between a1 and a2. Set

a = −‖a1 − r‖, b = ‖a2 − r‖, c = −‖a3 − r‖,

and
β∗i = ‖s∗ − ai‖, i = 1, 2, 3.

Assume that r is between a1 and a2, and −c ≥ |a + b|. Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (19) and assume that
ŝ1 ∈ [a, b]. If Ψ(s∗) > 0, then ŝ = s∗. Conversely, if the mixed SDP-SOCP (19) model gives the true solution, then Ψ(s∗) ≥ 0.

Corollary 1. For any three point a1,a2,a3 with ‖a1 − a3‖ = ‖a2 − a3‖, set

b = ‖a1 − a2‖/2, c = −
√
‖a2 − a3‖2 − b2.

Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (19) and assume that ŝ1 ∈ [a, b]. If

3
(
(β∗1)2 + (β∗2)2 − 2(β∗3)2 − 2b2 + 2c2

)
β∗3 −

c2

b2
(
((β∗1)2 − (β∗2)2)− 4b2(β∗1 + β∗2)

)
> 0,

then the mixed SDP-SOCP (19) model gives the true solution.
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Conversely, if the mixed SDP-SOCP (19) model gives the true solution, then

3
(
(β∗1)2 + (β∗2)2 − 2(β∗3)2 − 2b2 + 2c2

)
β∗3 −

c2

b2
(
((β∗1)2 − (β∗2)2)− 4b2(β∗1 + β∗2)

)
≥ 0.

Proof. Since under the condition a = −b, a3 can be simplified to

a3 = 8Ψ(s∗) = 12
(
(β∗1)2 + (β∗2)2 − 2(β∗3)2 − 2b2 + 2c2

)
β∗3

− 4c2

b2
(
((β∗1)2 − (β∗2)2)− 4b2(β∗1 + β∗2)

)
.

Thus, Corollary 1 is a consequence of Theorem 4.

Corollary 2. Let a1,a2, · · · ,an be n points in R2, then the interior of the union of all the localizable regions determined by
any three points in the convex hull formed by these n points is a localizable region for the n points.

Proof. If s∗ is in this interior, then there exists a triangular convex hull containing s∗. Thus we have Ψ(s∗) > 0. Therefore
the mixed SDP-SOCP (19) model gives the true solution.

IV. AN ERROR CORRECTION ALGORITHM

From the previous analysis, we know that if the source location is outside the exact localizable region, then the proposed
mixed SDP-SOCP model cannot find the source location exactly. In this section, a method is developed to recover the exact
solution when the source location is outside the exact localizable region. The method is based on the idea of correcting the
solution to the mixed SDP-SOCP relaxation model by a second order polynomial equation. We consider source localization
with time-difference information of m points. By Lemma 1, from (17) and (18), we know there exists λ ≥ 0 such that
β∗ = β̂ + λ, i.e, s∗ is a solution of the equations

‖s− ai‖ = β̂i + λ, i = 1, 2, · · · ,m. (27)

This implies
‖s− am‖2 − ‖s− ai‖2 = (β̂m + λ)2 − (β̂i + λ)2, i = 1, 2, · · · ,m− 1.

That is

2

d∑
j=1

(aij − amj)sj =

d∑
j=1

(a2ij − a2mj) + (β̂2
m − β̂2

i ) + 2λ(β̂m − β̂i), i = 1, · · · ,m− 1. (28)

Define
B = (bij)(m−1)×d, C = (c1, · · · , cm−1)T , D = (d1, · · · , dm−1)T ,

where
bij = 2(aij − amj), i = 1, 2, · · · ,m− 1, j = 1, · · · , d,

and

ci =

d∑
j=1

(a2ij − a2mj) + (β̂2
m − β̂2

i ), di = 2(β̂m − β̂i), i = 1, 2, · · · ,m− 1.

Then the equations (28) can be re-written as
Bs = C + λD, (29)

which implies
BTBs = BTC + λBTD.

Therefore,
s = (BTB)−1BTC + λ(BTB)−1BTD. (30)

Substituting (BTB)−1BTC + λ(BTB)−1BTD for s in ‖s− am‖2 = (β̂m + λ)2, we obtain

‖(BTB)−1BTC + λ(BTB)−1BTD − am‖2 = (β̂m + λ)2. (31)
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It can be re-arranged into the following form

λ2
(

1− ((BTB)−1BTD)T (BTB)−1BTD
)

+ λ

(
2β̂m − 2

(
(BTB)−1BTC − am

)T
(BTB)−1BTD

)
+ β̂2

m − ((BTB)−1BTC − am)T ((BTB)−1BTC − am) = 0.

(32)

By solving this second order polynomial equation, we can obtain the exact solution for the source location from the solution
of the mixed SDP-SOCP relaxation. We summarize the result in the following theorem.

Theorem 5. Let ai = (ai1, ai2, · · · , aid)T , i = 1, 2, · · · ,m, be m points in Rd satisfying

rank{a1,a2, · · · ,am} = d.

Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (16) and let λ̂ (error corrector) be a positive solution of the equation (32). Define

s∗ = (BTB)−1BTC + λ̂(BTB)−1BTD, (33)

then s∗ is the true source location, i.e.,

‖s∗ − ai‖ − |s∗ − aj‖ = c0τ̂ij , i, j = 1, 2, · · · ,m. (34)

Remark 1. If m = d+ 1, then
(BTB)−1BT = B−1.

Therefore, equation (30) and (32) can be simplified to

s∗ = B−1C + λ̂B−1D, (35)

λ2
(

1−DT (B−1)TB−1D
)

+ λ
(

2β̂d+1 − 2
(
B−1C − ad+1

)T
B−1D

)
+β̂2

d+1 − (B−1C − ad+1)T (B−1C − ad+1) = 0.
(36)

Remark 2. If d = 2 and m = 3, then

B =

(
2(a11 − a31) 2(a12 − a32)
2(a21 − a31) 2(a22 − a32)

)
,

C =

(
a211 + a212 − a231 − a232 + β̂2

3 − β̂2
1

a221 + a222 − a231 − a232 + β̂2
3 − β̂2

2

)
,

D =

(
2(β̂3 − β̂1)

2(β̂3 − β̂2)

)
.

V. EXAMPLES AND APPLICATIONS

In this section, we first present some numerical results for comparison between the three convex relaxation models described
in Section II and also YWL’s model ([15]), under the condition that there are no TODA errors. The SDPT3 ([17]) will be
employed as the solver. Assume there are three microphones located at the coordinates {(−1, 0), (0,−1), (1, 0)} and the source
location is (0.5, 0.35). The results of using SDP relaxation model, SOCP relaxation model, YWL’s model and mixed SDP-
SOCP relaxation model are shown in Figure 6. From Table I, we can see that the proposed mixed SDP-SOCP can indeed find
the exact location subject to some numerical errors, and is therefore more accurate than the other convex relaxation models.

SDP SOCP YWL SDP-SOCP

ESL
(0,
−0.1707)

(0.4650,
−0.0023)

(0.7033,
0.5092)

(0.5000,
0.3498)

Error 0.7219 0.3540 0.2582 1.6939e− 04
TABLE I

If the source location is outside the exact localizable region, we can use the developed error correction method to recover
the solution. Assume there are three microphones located at the coordinates {(−1, 0), (0,−1), (1, 0)} and the source location
is (0.8, 2.8). The results of using SDP relaxation model, SOCP relaxation model, YWL’s model, mixed SDP-SOCP relaxation
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Fig. 6. Comparion between various relaxation models

SDP SOCP YWL SDP-SOCP SDP-SOCP-EC

ESL
(−0.0004,
0.0762)

(0.2608,
−0.0004)

(−0.0240,
0.1153)

(0.2775,
0.3518)

(0.8000,
2.8000)

Error 2.8389 2.8519 2.8083 2.5033 6.0688e− 13

TABLE II

model together with the error correction method are shown in Figure 7. From Table II, we can see that the proposed error
correction method can indeed find the exact location if the source location is outside the exact localizable region.

In the next example, we study the effect of reverberation via the image-source method (ISM) described in [18]. The
ISM is a well-known technique that can be used in order to generate a synthetic room impulse response (RIR) in a given
environment. Once such a RIR is available, a sample of audio data can be obtained by convolving the RIR with a given
source signal [19]. This provides a simulated sample of the sound signal received at the sensor in the considered en-
vironment. Here we assume the room is 5 x 5 x 2.5m (L x W x H). There are nine microphones located at the coor-
dinates {(0.9, 1.4, 1),(1.3, 1.8, 1),(1.7, 2.2, 1),(2.1, 2.6, 1),(2.5, 3, 1),(2.9, 2.6, 1),(3.3, 2.2, 1),(3.7, 1.8, 1), (4.1, 1.4, 1)} and the
true source location is (2.5, 1, 1) . The reverberation time T60 is 0.2s. First we use the ISM technique to generate a synthetic
room impulse response. Then we estimate the τ̂ij using the signals received at the ith and jth microphone by the cross-
correlation method [1]. After that we use the mixed SDP-SOCP relaxation model with error correction to estimate the source
location. We can see from Figure 8 that the estimated source location denoted by star point is almost at the same position as
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−0.5

0

0.5

1

1.5

2

2.5

3

3.5

m

m

 

 

side

microphone

true source location

estimator using SDP

estimator using SOCP

estimator using YWL’s

estimator using SDP−SOCP

estimator using SDP−SOCP−EC

Fig. 7. Comparion between various relaxation models
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the circle point which is the true source location. The corresponding error is 0.0209.
We continue to study the use of the mixed SDP-SOCP model with error correction method for localization using real data.

In collecting the experimental data, the microphone arrays used for the recording consist of 8 microphones, rectangular shape
and L- shape in a room with 4 x 4.5 x 2.4m (L x W x H). The microphones are custom built and are connected to OctaMic
amplifier, which is then connected to ADI-648 by RME to Hammerfall DSP interface card in computer. All these equipments
are from RME. The sound driver used is ASIO Hammerfall DSP. All the microphone has been calibrated before used. The
speakers are connected using Delta 1010LT sound-card by M-Audio. Note that separate sound devices are used for recording
and playback but their sampling frequency are set to be the same, which is 48000Hz. The speech signals used for the recordings
are from NOIZEUS database.

First we use this real data to estimate the τ̂ij , and then solve the formulated mixed SDP-SOCP model (15) to get ŝ. A
rectangular array is employed in Figure 9 while L-shape array is applied in Figures 10 and 11, where the circle point is the
true source location and the star point is the estimated source location computed from using error correction method with ŝ
as a starting point. Clearly, the results look promising and the proposed method is very efficient computationally.

VI. CONCLUSION

In this paper, we have proposed a novel mixed SDP-SCOP relaxation model for solving the source localization problem with
TDOA information. The characteristics of the solution to the proposed model have been studied rigorously. Furthermore, based
on the proven representation theorem, we have derived the geometry of the localizable region. When the source point is not
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within the localizable region, an error correction algorithm has been developed to recover the exact solution under exact TDOA
information. Numerical results have shown that the proposed model is more accurate than other convex relaxation methods
in the literature. By applying the proposed model on real data, we have demonstrated that the method is an accurate and
effective way of solving the problem. As a future extension, the method can be generalized easily to problems with estimated
microphone locations and this work is well-underway. Moreover, it is of interest to extend the method for localization of
multiple sources.
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[17] K. C. Toh, R. H. Tütüncü, and M. J. Todd, “On the implementation and usage of SDPT3-a matlab software package for semidefinite-
quadratic-linear programming, version 4.0,” 2006.

[18] E. Lehmann and A. Johansson, “Prediction of energy decay in room impulse responses simulated with an image-source model,” Journal
of the Acoustical Society of America, vol. 124, no. 1, pp. 269–277, 2008.

[19] Z. B. Li, K. F. C. Yiu, and S. Nordholm, “On the indoor beamformer design with reverberation,” IEEE Trans Audio, Speech Lang
Proc, vol. 22, no. 8, pp. 1225–1235, 2014.



16

APPENDIX

Appendix

Proof of Theorem 1
Proof. Let (ŝ, ŷ, β̂, α̂) be an optimal solution of (19), then there exists a λ ≥ 0 such that

β̂i = β∗i − λ, i = 1, 2, 3.

Thus
ŝ ∈ ∩3i=1B(ai, β

∗
i − λ) ⊂ ∩3i=1B(ai, β

∗
i ).

But if s∗ ∈ ∆a1a2a3 , then

∩3i=1 B(ai, β
∗
i ) = {s| ‖s− ai‖ ≤ β∗i = ‖s∗ − ai‖, i = 1, 2, 3} = {s∗}.

Therefore ŝ=s∗.

Proof of Lemma 2
Proof. If for all i = 1, 2, 3, ‖ŝ− ai‖ < β̂i. Then it is clear that ŷ > ‖ŝ‖2. Let δ = mini=1,2,3{β̂i − ‖ŝ− ai‖}, β̃i = β̂i − δ/2.
Given ε > 0 such that ŷ−‖ŝ‖2 ≥ ε and (β̂i− δ/2)2 ≤ α̂i− ε, i = 1, 2, 3, let s̃ = ŝ, ỹ = ŷ− ε, α̃i = α̂i− ε, then (s̃, ỹ, β̃, α̃)
is also a feasible solution of (19) and α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3. Thus, (ŝ, ŷ, β̂, α̂) is not optimal.

Proof of Lemma 3
Proof. If for all i = 1, 2, 3, β̂2

i < α̂i. Then it is clear that ŷ > ‖ŝ‖2. Choose δ > 0, such that α̂i − δ ≥ β̂2
i , i = 1, 2, 3 and

ŷ− ‖ŝ‖2 ≥ δ. Let s̃ = ŝ, ỹ = ŷ− δ, β̃i = β̂i, α̃i = α̂i − δ, i = 1, 2, 3. Then (s̃, ỹ, β̃, α̃) is also a feasible solution of (19) and
α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3. Therefore, (ŝ, ŷ, β̂, α̂) is not optimal.

Lemma 4. Let (ŝ, ŷ,β∗−λ, α̂) be a feasible solution of (19). If (ŝ, ŷ,β∗−λ, α̂) satisfies (C4) or (C6), then (ŝ, ŷ,β∗−λ, α̂)
is not an optimal solution of (19).

Proof. We only consider case (C4) since case (C6) is similar. Assume that (ŝ, ŷ,β∗ − λ, α̂) satisfies (C4). If ŝ is below of
x-axis, let ŝ∗ denote the reflection of ŝ with respect to x-axis, then ‖ŝ− a2‖ = ‖ŝ∗ − a2‖, ‖ŝ− a1‖ = ‖ŝ∗ − a1‖, and

(β∗3 − λ)2 − ‖ŝ∗ − a3‖2 ≤ (β∗3 − λ)2 − ‖ŝ− a3‖2

< (β∗2 − λ)2 − ‖ŝ− a2‖2 = (β∗2 − λ)2 − ‖ŝ∗ − a2‖2.

Set
g(λ,u) = (β∗3 − λ)2 − ‖u− a3‖2 −

(
(β∗2 − λ)2 − ‖u− a2‖2

)
,

u ∈ ∩3i=1B(ai, β
∗
i − λ).

Then g(λ, sλ) > 0, g(λ, ŝ) < 0 and g(λ, ŝ∗) < 0, thus there exists s̃ with sλ1 < s̃1 < ŝ1
∗, s̃2 > 0, and ‖s̃− a1‖2 = (β∗1 − λ)2

and ‖s̃− a2‖2 < (β∗2 − λ)2 = α̂2, such that
g(λ, s̃) = 0.

Set ỹ = ‖s̃‖2 + (β∗2 − λ)2 − ‖s̃− a2‖2, β̃ = β∗ − λ and α̃1 = (β∗1 − λ)2 + (β∗2 − λ)2 − ‖s̃− a2‖2, α̃2 = β̃2
2 , α̃3 = β̃2

3 . Then
(s̃, ỹ, β̃, α̃) is a feasible solution of (19), and α̃1 < (β∗1 − λ)2 + (β∗2 − λ)2 − ‖ŝ− a2‖2, and so

α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3.

Thus, (ŝ, ŷ,β∗ − λ, α̂) is not optimal.

Lemma 5. Assume that −c ≥ |a + b|. Let (ŝ, ŷ,β∗ − λ, α̂) be a feasible solution of (19). If ŝ2 < 0 or ŝ1 ∈ [a, b], and
(ŝ, ŷ,β∗ − λ, α̂) satisfies either (C2) or (C3), then (ŝ, ŷ,β∗ − λ, α̂) is not an optimal solution of (19).

Proof. We only consider condition (C2). If ŝ is below x-axis, denote by ŝ∗ the reflection of ŝ with respect to x-axis. Then

(β∗3 − λ)2 − ‖ŝ∗ − a3‖2 <(β∗3 − λ)2 − ‖ŝ− a3‖2.
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If (β∗3 − λ)2 − ‖ŝ∗ − a3‖2 ≥ (β∗2 − λ)2 − ‖ŝ∗ − a2‖2, set ỹ = ‖ŝ∗‖2 + (β∗3 − λ)2 − ‖ŝ∗ − a3‖2, β̃ = β∗ − λ and
α̃1 = (β∗1 − λ)2 + (β∗3 − λ)2 − ‖ŝ∗ − a3‖2, α̃2 = ‖ŝ∗ − a2‖2 + (β∗3 − λ)2 − ‖ŝ∗ − a3‖2, α̃3 = β̃2

3 . Then (ŝ∗, ỹ, β̃, α̃) is a
feasible solution of (19), and α̃i < α̂i for i = 1, 2, and so

α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3.

Thus, (ŝ, ŷ,β∗−λ, α̂) is not optimal. If (β∗3−λ)2−‖ŝ∗−a3‖2 < (β∗2−λ)2−‖ŝ∗−a2‖2, then there exists s̃ with ŝ2 < s̃2 < ŝ∗2,
‖s̃−a1‖2 = (β∗1 −λ)2 and ‖s̃−a2‖2 < (β∗2 −λ)2, such that g(λ, s̃) = 0. Set ỹ = ‖s̃‖2 + (β∗2 −λ)2−‖s̃−a2‖2, β̃ = β∗−λ
and α̃1 = (β∗1 − λ)2 + (β∗2 − λ)2 − ‖s̃ − a2‖2, α̃2 = β̃2

2 , α̃3 = β̃2
3 . Then (s̃, ỹ, β̃, α̃) is a feasible solution of (19), and

α̃1 < (β∗1 − λ)2 + (β̂2 − λ)2 − ‖ŝ− a2‖2, and so

α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3,

which implies that (ŝ, ŷ,β∗ − λ, α̂) is also not optimal. Therefore, ŝ must be above x-axis, i.e., ŝ2 ≥ 0, and sλ1 < ŝ1.
The equation (β∗3 − λ)2 − ‖u− a3‖2 = (β∗2 − λ)2 − ‖u− a2‖2 can be written as

2cu2 = 2bu1 + (β∗2 − λ)2 − (β∗3 − λ)2 − b2 + c2,

which is a straight line with a negative slope. Assume that the straight line intersects the circle {u| ‖u − a1‖ = β∗1 − λ}
at ŝ(1) = (ŝ

(1)
1 , ŝ

(1)
2 )T and ŝ(2) = (ŝ

(2)
1 , ŝ

(2)
2 )T , where ŝ(1)2 ≤ ŝ

(2)
2 . Without loss of generality, assume that ŝ(1)2 < ŝ

(2)
2 , then

ŝ
(2)
2 > 0, and ŝ = ŝ(1) or ŝ = ŝ(2). If ŝ = ŝ(1), for ε > 0, set

uε1 = ŝ1 − ε,

uε2 =
b

c
uε1 +

(β∗2 − λ)2 − (β∗3 − λ)2 − b2 + c2

2c
= ŝ2 −

b

c
ε.

Then when ε is small enough, uε = (uε1, u
ε
2)T ∈ B(a1, β

∗
1 − λ) ∩B(a2, β

∗
2 − λ),

‖uε − a1‖2 + (β∗2 − λ)2 − ‖uε − a2‖2 > (β∗1 − λ)2,

and
(β∗3 − λ)2 − ‖uε − a3‖2 = (β∗2 − λ)2 − ‖uε − a2‖2 < (β∗2 − λ)2 − ‖ŝ− a2‖2.

Set ỹ = ‖uε‖2 + (β∗2 − λ)2 −‖uε −a2‖2, β̃ = β∗ −λ and α̃1 = ‖uε −a1‖2 + (β∗2 − λ)2 −‖uε −a2‖2, α̃2 = β̃2
2 , α̃3 = β̃2

3 .
Then (uε, ỹ, β̃, α̃) is a feasible solution of (19), and α̃1 < (β∗1 − λ)2 + (β∗2 − λ)2 − ‖ŝ− a2‖2, and so

α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3.

Therefore, (ŝ, ŷ, β̂, α̂) is not optimal.
If ŝ = ŝ(2) and ŝ1 ≥ a, for ε > 0, set

uε1 = ŝ1 − ε, uε2 = ŝ2 − ε.

Then
‖uε − a1‖2 = (β∗1 − λ)2 − 2ε(|ŝ1 − a|+ ŝ2) +O(ε2),

and so, for ε small enough, uε ∈ B(a1, β
∗
1 − λ). Set

λε = λ+ (β∗1 − ‖uε − a1‖)
β∗1 − λ

|ŝ1 − a|+ ŝ2
.

Then
λε = λ+ ε+O(ε2),

and
b

c
uε1 +

(β∗2 − λε)2 − (β∗3 − λε)2 − b2 + c2

2c
= ŝ2 −

β∗2 − β∗3 + b

c
ε+O(ε2).

Since |β∗2 − β∗3 | <
√
b2 + c2 < b− c, we have β∗2 − β∗3 + b > c, i.e., β

∗
2−β

∗
3+b
−c > −1 which yields

uε2 <
b

c
uε1 +

(β∗2 − λε)2 − (β∗3 − λε)2 − b2 + c2

2c
.

Noting that ŝ2 > 0 and sλ1 < ŝ1, we see that (β∗2 − λ)2 > ‖ŝ− a2‖2. Then we can choose ε0 > 0 small enough such that for
all ε ∈ (0, ε0), uε ∈ B(a1, β

∗
1 − λε) ∩B(a2, β

∗
2 − λε),

‖uε − a1‖2 + (β∗3 − λε)2 − ‖uε − a3‖2 > (β∗1 − λε)2,
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and
uε2 <

b

c
uε1 +

(β∗2 − λε)2 − (β∗3 − λε)2 − b2 + c2

2c
.

Noting that
(β∗3 − λε)2 − ‖u− a3‖2 > (β∗2 − λε)2 − ‖u− a2‖2

if and only if

u2 <
b

c
u1 +

(β∗2 − λε)2 − (β∗3 − λε)2 − b2 + c2

2c
,

thus we have
(β∗3 − λε)2 − ‖uε − a3‖2 > (β∗2 − λε)2 − ‖uε − a2‖2.

Set ỹ = ‖uε‖2 + (β∗3 − λε)2 − ‖uε − a3‖2, β̃ = β∗ − λε and α̃1 = ‖uε − a1‖2 + (β∗3 − λε)2 − ‖uε − a3‖2, α̃2 =
‖uε − a2‖2 + (β∗3 − λε)2 − ‖uε − a3‖2, α̃3 = β̃2

3 . Then (uε, ỹ, β̃, α̃) is a feasible solution of (19). Since

‖uε − a1‖2 − ‖ŝ− a1‖2 = −2ε ((ŝ1 − a) + ŝ2) +O(ε2),

‖uε − a2‖2 − ‖ŝ− a2‖2 = −2ε ((ŝ1 − b) + ŝ2) +O(ε2),

‖uε − a3‖2 − ‖ŝ− a3‖2 = −2ε (ŝ1 + (ŝ2 − c)) +O(ε2),

and
(β∗3 − λε)2 − (β∗3 − λ)2 = −2ε(β∗3 − λ) +O(ε2),

we have
α̃1 + α̃2 + α̃3 − (α̂1 + α̂2 + α̂3) = ‖uε − a1‖2 − ‖ŝ− a1‖2 + ‖uε − a2‖2

− ‖ŝ− a2‖2 − 2
(
‖uε − a3‖2 − ‖ŝ− a3‖2

)
+ 3

(
(β∗3 − λε)2 − (β∗3 − λ)2

)
= −4cε+ 2ε(a+ b)− 6ε(β∗3 − λ) +O(ε2).

Therefore, under the condition −c ≥ |a+ b|, when ε is small enough, α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3, and so, (ŝ, ŷ,β∗−λ, α̂)
is also not optimal. This is a contradiction.

Lemma 6. Assume that −3c ≥ |a+ b|. Let (ŝ, ŷ,β∗ − λ, α̂) be a feasible solution of (19). If ŝ2 = 0 and either (C5) or (C7)
is true, then (ŝ, ŷ,β∗ − λ, α̂) is not an optimal solution of (19).

Proof. We only consider condition (C5). Suppose that ŝ2 = 0, then ŝ1 = β∗1 −λ+ a. If (β∗3 −λ)2−‖ŝ−a3‖2 > (β∗2 −λ)2−
‖ŝ− a2‖2, then

α̂1 + α̂2 + α̂3 = ‖ŝ− a1‖2 + ‖ŝ− a2‖2 + 2((β∗3 − λ)2 − ‖ŝ− a3‖2) + (β∗3 − λ)2

= (β∗1 − λ)2 + (β∗1 − λ+ a− b)2 + 2((β∗3 − λ)2 − (β∗1 − λ+ a)2 − c2) + (β∗3 − λ)2.

Choose ε0 > 0 such that for any ε ∈ [0, ε0),

(β∗3 − λε)2 − ‖ŝε − a3‖2 > (β∗2 − λε)2 − ‖ŝε − a2‖2,

where λε = λ+ ε and ŝε = (ŝ1 − ε, 0)T . Set ỹ = ‖ŝε‖2 + (β∗3 − λε)2 − ‖ŝε − a3‖2, β̃ = β∗ − λε and α̃1 = ‖ŝε − a1‖2 +
(β∗3 − λε)2 − ‖ŝε − a3‖2, α̃2 = ‖ŝε − a2‖2 + (β∗3 − λε)2 − ‖ŝε − a3‖2, α̃3 = β̃2

3 . Then

α̃1 + α̃2 + α̃3 = ‖ŝ− a1‖2 + ‖ŝ− a2‖2 + 2((β∗3 − λ)2 − ‖ŝ− a3‖2) + (β∗3 − λ)2 − 2ε(β∗1 − λ)

+ ε2 − 2ε(β∗1 − λ+ a− b) + ε2 − 6ε(β∗3 − λ) + 3ε2 + 4ε(β∗1 − λ+ a)− 2ε2

= α̂1 + α̂2 + α̂3 + 2ε (a+ b− 3(β∗3 − λ)) + 3ε2.

Therefore, noting that β∗3 −λ > −c, under the condition −3c ≥ |a+b|, when ε is small enough, α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3.
Therefore, (ŝ, ŷ,β∗ − λ, α̂) is not optimal.

Lemma 7. Assume that −c ≥ |a + b|. Let (ŝ, ŷ,β∗ − λ, α̂) be a feasible solution of (19). If one of (C5) and (C7), then
(ŝ, ŷ,β∗ − λ, α̂) is not an optimal solution of (19).

Proof. We only consider the condition (C5). Suppose that (ŝ, ŷ,β∗ − λ, α̂) is an optimal solution of (19). Then by Lemma
6, ŝ2 > 0, and ŝ is above x-axis by a similar argument in the proof of Lemma 5. Thus, ŝ is above x-axis with s̃2 > 0 and
sλ1 < ŝ1.

For ε > 0, set

uε1 = ŝ1 −
ε(ŝ1 − a)

|ŝ1 − a|
, uε2 = ŝ2 − ε.
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Then
‖uε − a1‖2 = (β∗1 − λ)2 − 2ε (|ŝ1 − a|+ ŝ2) + 2ε2 +O(ε2),

and so, for ε small enough, uε ∈ B(a1, β
∗
1 − λ). Set

λε = λ+ (β∗1 − ‖uε − a1‖)
β∗1 − λ

|ŝ1 − a|+ ŝ2
.

Then
λε = λ+ ε+O(ε2),

Noting that for s̃2 > 0 and sλ1 < ŝ1, we can see that (β∗2 − λ)2 > ‖ŝ− a2‖2. Then we can choose ε0 > 0 small enough such
that for all ε ∈ (0, ε0), uε ∈ B(a2, β

∗
2 − λε).

Set ỹ = ‖uε‖2 + (β∗3 − λε)2 − ‖uε − a3‖2, β̃ = β∗ − λε and α̃1 = ‖uε − a1‖2 + (β∗3 − λε)2 − ‖uε − a3‖2, α̃2 =
‖uε − a2‖2 + (β∗3 − λε)2 − ‖uε − a3‖2, α̃3 = β̃2

3 . Then (uε, ỹ, β̃, α̃) is a feasible solution of (19). Since

‖uε − a1‖2 − ‖ŝ− a1‖2 = −2ε

(
(ŝ1 − a)

|ŝ1 − a|
(ŝ1 − a) + ŝ2

)
+O(ε2),

‖uε − a2‖2 − ‖ŝ− a2‖2 = −2ε

(
(ŝ1 − a)

|ŝ1 − a|
(ŝ1 − b) + ŝ2

)
+O(ε2),

‖uε − a3‖2 − ‖ŝ− a3‖2 = −2ε

(
(ŝ1 − a)

|ŝ1 − a|
ŝ1 + (ŝ2 − c)

)
+O(ε2),

and
(β∗3 − λε)2 − (β∗3 − λ)2 = −2ε(β∗3 − λ) +O(ε2),

we have
α̃1 + α̃2 + α̃3 − (α̂1 + α̂2 + α̂3) = ‖uε − a1‖2 − ‖ŝ− a1‖2 + ‖uε − a2‖2 − ‖ŝ− a2‖2

− 2
(
‖uε − a3‖2 − ‖ŝ− a3‖2

)
+ 3

(
(β∗3 − λε)2 − (β∗3 − λ)2

)
= −4cε+ 2(a+ b)

ε(ŝ1 − a)

|ŝ1 − a|
− 6ε(β∗3 − λ) +O(ε2).

Therefore, under the condition −c ≥ |a+ b|, when ε is small enough, α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3, and so, (ŝ, ŷ,β∗−λ, α̂)
is also not optimal. This is a contradiction.

Lemma 8. Let (ŝ, ŷ,β∗ − λ, α̂) be an optimal solution of (19). If (ŝ, ŷ,β∗ − λ, α̂) satisfies (C1), then ŝ2 > 0.

Proof. If ŝ2 < 0, denote by ŝ∗ the reflection of ŝ with respect to x-axis. Then

‖ŝ∗ − a1‖2 = (β∗1 − λ)2, ‖ŝ∗ − a2‖2 = (β∗2 − λ)2, ‖ŝ∗ − a3‖2 ≤ (β∗3 − λ)2

and
(β∗3 − λ)2 − ‖ŝ∗ − a3‖2 <(β∗3 − λ)2 − ‖ŝ− a3‖2.

Set ỹ = ‖ŝ∗‖2 + (β∗3 − λ)2 − ‖ŝ∗ − a3‖2, β̃ = β∗ − λ and α̃1 = (β∗1 − λ)2 + (β∗3 − λ)2 − ‖ŝ∗ − a3‖2, α̃2 = ‖ŝ∗ − a2‖2 +
(β∗3 − λ)2 − ‖ŝ∗ − a3‖2, α̃3 = β̃2

3 . Then (ŝ∗, ỹ, β̃, α̃) is a feasible solution of (19), and α̃i < α̂i for i = 1, 2, and so

α̃1 + α̃2 + α̃3 < α̂1 + α̂2 + α̂3.

Thus, (ŝ, ŷ,β∗ − λ, α̂) is not optimal.
If ŝ2 = 0, then ŝ1 = β∗1−λ+a and ŝ1 = β∗2−λ−b. Therefore, b−a = β∗2−β∗1 . This is a contradiction of that b−a, β∗1 , β∗2

are three edges of the triangle 4a1a2s∗ .
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Proof of Theorem 3
Proof. By ‖ŝ− a1‖2 = (β∗1 − λ)2 and ‖ŝ− a2‖2 = (β∗2 − λ)2, we have

(b− a) (2ŝ1 − (a+ b)) =(β∗1 − λ)2 − (β∗2 − λ)2 = (β∗1 − β∗2) (β∗1 + β∗2 − 2λ) ,

which yields

ŝ1 =
(β∗1 − β∗2)

2(b− a)
(β∗1 + β∗2 − 2λ) +

a+ b

2
.

Therefore,

ŝ22 =(β∗1 − λ)2 −
(

(β∗1 − β∗2)

2(b− a)
(β∗1 + β∗2 − 2λ) +

b− a
2

)2

.

Noting that ŝ2 > 0, we obtain

ŝ2 =

√
(β∗1 − λ)2 −

(
(β∗1 − β∗2)

2(b− a)
(β∗1 + β∗2 − 2λ) +

b− a
2

)2

.

By some algebraic manipulations, we have

(β∗1 − λ)2 −
(

(β∗1 − β∗2)

2(b− a)
(β∗1 + β∗2 − 2λ) +

b− a
2

)2

=
1

(b− a)2
(
(b− a)2 − (β∗1 − β∗2)2

)(
λ− β∗1 + β∗2 − (b− a)

2

)
×
(
λ− β∗1 + β∗2 + (b− a)

2

)
.

Noting that the sum of the lengths of any two sides of a triangle is always greater than the length of the third one, we have

0 <
β∗1 + β∗2 − (b− a)

2
< min{β∗1 , β∗2}.

Let ŝ0 denote the point of intersection of the lines a3s
∗ and a1a2. Then we also have β∗1 −‖a1− ŝ0‖ < β∗3 , β

∗
2 −‖a2− ŝ0‖ <

β∗3 , and ‖a1 − ŝ0‖+ ‖a2 − ŝ0‖ = b− a. Thus

β∗1 + β∗2 − (b− a)

2
< β∗3 ,

and so
0 <

β∗1 + β∗2 − (b− a)

2
< min{β∗1 , β∗2 , β∗3}.

Thus, when 0 < λ <
β∗
1+β

∗
2−(b−a)
2 ,

(β∗1 − λ)2 −
(

(β∗1 − β∗2)

2(b− a)
(β∗1 + β∗2 − 2λ) +

b− a
2

)2

> 0;

and when β∗
1+β

∗
2−(b−a)
2 < λ <

β∗
1+β

∗
2+(b−a)
2 ,

(β∗1 − λ)2 −
(

(β∗1 − β∗2)

2(b− a)
(β∗1 + β∗2 − 2λ) +

b− a
2

)2

< 0.

Since min{β∗1 , β∗2 , β∗3} <
β∗
1+β

∗
2+(b−a)
2 , from 0 ≤ λ < min{β∗1 , β∗2 , β∗3} and

(β∗1 − λ)2 −
(

(β∗1 − β∗2)

2(b− a)
(β∗1 + β∗2 − 2λ) +

b− a
2

)2

≥ 0,

we obtain λ < β∗
1+β

∗
2−(b−a)
2 , that is, D =

(
0,

β∗
1+β

∗
2−(b−a)
2

)
.
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Now, since
(β∗3 − λ)2 − ‖ŝ− a3‖2 = (β∗3 − λ)2 − ŝ21 − ŝ22 + 2cŝ2 − c2

= (β∗3 − λ)2 −
(

(β∗1 − β∗2)

2(b− a)
(β∗1 + β∗2 − 2λ) +

a+ b

2

)2

− (β∗1 − λ)2 +

(
(β∗1 − β∗2)

2(b− a)
(β∗1 + β∗2 − 2λ) +

b− a
2

)2

− c2

+ 2c

√
(β∗1 − λ)2 −

(
(β∗1 − β∗2)

2(b− a)
(β∗1 + β∗2 − 2λ) +

b− a
2

)2

= −(β∗1 − β∗3)(β∗1 + β∗3 − 2λ)− a
(

(β∗1 − β∗2)

b− a
(β∗1 + β∗2 − 2λ) + b

)
− c2

+ 2c

√
(β∗1 − λ)2 −

(
(β∗1 − β∗2)

2(b− a)
(β∗1 + β∗2 − 2λ) +

b− a
2

)2

,

we obtain
g(λ) = 3λ2 − 2λ (β∗1 + β∗2 + β∗3)− 2(β∗1 − β∗3)(β∗1 + β∗3 − 2λ)

− 2a

(
(β∗1 − β∗2)

b− a
(β∗1 + β∗2 − 2λ) + b

)
− 2c2

+ 4c

√
(β∗1 − λ)2 −

(
(β∗1 − β∗2)

2(b− a)
(β∗1 + β∗2 − 2λ) +

b− a
2

)2

.

From Theorem 2, we know that (s∗, y∗,β∗,α∗) is an optimal solution of (19) if and only if g(λ) > 0, which is equivalent to
g̃(λ) > 0, where

g̃(λ) :=

(
3λ2 − 2λ (β∗1 + β∗2 + β∗3)− 2(β∗1 − β∗3)(β∗1 + β∗3 − 2λ)

− 2a

(
β∗1 − β∗2
b− a

(β∗1 + β∗2 − 2λ) + b

)
− 2c2

)2

− 16c2

(
(β∗1 − λ)2 −

(
β∗1 − β∗2
2(b− a)

(β∗1 + β∗2 − 2λ) +
b− a

2

)2
)
.

Notice that
g̃(0) = 0, g̃

(
β∗1 + β∗2 − (b− a)

2

)
≥ 0,

and for any β∗
1+β

∗
2−(b−a)
2 ≤ λ ≤ β∗

1+β
∗
2+(b−a)
2 ,

(β∗1 − λ)2 −
(
β∗1 − β∗2
2(b− a)

(β∗1 + β∗2 − 2λ) +
b− a

2

)2

≤ 0,

which implies that for any β∗
1+β

∗
2−(b−a)
2 ≤ λ ≤ β∗

1+β
∗
2+(b−a)
2 ,

g̃(λ) ≥ 0.

Therefore, we can write
g̃(λ) = λ

(
9λ3 + a1λ

2 + a2λ+ a3
)
,
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where
a1 : = 12

(
β∗1 − β∗2 − 3β∗3 +

2a(β∗1 − β∗2)

b− a

)
= 12

(
−3β∗3 +

(a+ b)(β∗1 − β∗2)

b− a

)
≤ 12 (−3β∗3 + |a+ b|) ≤ −24β∗3 < 0,

a2 : = 4

(
β∗1 − β∗2 − 3β∗3 +

2a(β∗1 − β∗2)

b− a

)2

− 12((β∗1)2 − (β∗3)2)− 12a((β∗1)2 − (β∗2)2)

b− a

+
16(β∗1 − β∗2)2

(b− a)2
− 12ab− 28c2,

a3 : = 8Ψ(s∗)

= −8

(
(β∗1)2 − (β∗3)2 +

a((β∗1)2 − (β∗2)2)

b− a
+ ab+ c2

)
×
(
β∗1 − β∗2 − 3β∗3 +

2a(β∗1 − β∗2)

b− a

)
− 16c2

(
−2β∗1 +

((β∗1)2 − (β∗2)2 + (b− a)2)(β∗1 − β∗2)

(b− a)2

)
.

This implies that (s∗, y∗,β∗,α∗) is an optimal solution of (19) if and only if for any λ ∈ D

f̃(λ) :=9λ3 + a1λ
2 + a2λ+ a3 > 0.

In particular, a3 = f̃(0) ≥ 0, and so, a3 ≥ 0 is a necessary condition.
Conversely, if a3 > 0, then by limλ→−∞ f̃(λ) = −∞, we see that there exists λ0 < 0 such that

f̃ (λ0) = 0.

Let λ1 and λ2 denote other two roots of the equation f̃(λ) = 0. Then

λ0 + λ1 + λ2 = −1

9
a1.

Therefore, by − 1
9a1 ≥

8
3β
∗
3 > β∗1 + β∗2 − (b− a),

λ1 + λ2 > β∗1 + β∗2 − (b− a),

which implies that one of λ1 and λ2 is bigger than (β∗1 + β∗2 − (b− a))/2. On the other hand, since

f̃ (0) > 0, and f̃
(
β∗1 + β∗2 − (b− a)

2

)
≥ 0,

if f̃
(
β∗
1+β

∗
2−(b−a)
2

)
> 0, then the number of roots in ((0, β∗1 + β∗2 + b− a)/2) of f̃(λ) = 0 must be even number. Therefore,

either f̃
(
β∗
1+β

∗
2−(b−a)
2

)
= 0, or both λ1 and λ2 are in ((β∗1 + β∗2 + b − a)/2,∞); thus, the mixed SDP-SOCP (19) model

gives the true solution. The proof is completed.




