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ABSTRACT
We present thrifty-malloc: a transaction-friendly dynamic
memory manager for high-end embedded multicore systems.
The manager combines modularity, ease-of-use and hard-
ware transactional memory (HTM) compatibility in a light-
weight and memory-efficient design. Thrifty-malloc is easy
to deploy and configure for non-expert programmers, yet
provides good performance with low memory overhead for
highly-parallel embedded applications running on massively
parallel processor arrays (MPPAs) or many-core architec-
tures. In addition, the transparent mechanisms that increase
our manager’s resilience to unpredictable dynamic situations
incur a low timing overhead in comparison to established
techniques.

1. INTRODUCTION
Each generation of embedded systems provides more and

more processing cores, and it remains a challenge to pro-
vide application programming interfaces (APIs) that facili-
tate safe and effective programing. For shared-memory em-
bedded systems, dynamic memory management is particu-
larly important. Modern object-oriented languages require
the ability to create objects in a way that cannot be pre-
dicted statically. Because embedded systems are frequently
resource-constrained, static, conservative over-allocation is
not feasible. Instead, such systems require a lightweight, dy-
namic memory manager, which must be implemented with-
out relying on an underlying operating system.

For multithreaded and parallel/distributed applications,
locks have been historically used as synchronization primi-
tives. Nevertheless, it is known that lock performance scales
poorly, and locking has many pitfalls, especially for non-
expert programmers. In particular, deadlocks may be dis-
astrous for embedded applications. Hardware transactional
memory (HTM) [13] is a more programmer-friendly synchro-
nization alternative. It optimistically allows critical sections
to execute in parallel, providing built-in recovery mecha-
nisms if data conflicts do occur. Unfortunately, conven-
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tional dynamic memory managers[6] are usually not com-
patible with HTM mechanisms: calls to malloc() and free()
must take place outside of transactions, complicating the
programmer’s task, often requiring static over-allocation.
Moreover, the few memory managers that are compatible
with HTM[15, 8] are not well-suited to resource-constrained
embedded systems.

To overcome these problems, we propose a general method
to make dynamic memory management compatible with both
embedded systems and HTM, with the goal of providing
both performance scalability and ease of use. The program-
mer calls malloc() and free() either from inside or outside
transactions. For better performance, this method mini-
mizes the number of synchronization operations by provi-
sioning a small local (private) memory pool to each thread.
Under normal conditions, a thread allocates from and frees
to this pool without synchronization. Under exceptional
conditions, a thread may exhaust its local pool, falling back
to a transparent runtime mechanism which automatically al-
locates additional memory to the threads that need it. This
service is performed using transactions that are dedicated
to this purpose only, and are clearly separated from any
application-level transactions specified by the programmer.
The only a priori difference between using local pools and
allocating directly from the heap is that allocating directly
from the heap offers more flexibility in the use of the mem-
ory (none of it is reserved for any given thread). However
this flexibility comes with a temporal cost: threads have to
synchronize everytime they want to perform a malloc.

We call our efficient dynamic memory manager Thrifty
malloc. Thrifty malloc can be used with locks or HTM and is
particularly suitable for embedded multicore systems. This
paper makes the following contributions:

• Thrifty malloc is lightweight: it does not depend on
an underlying operating system.
• Thrifty malloc is tunable. It works correctly without

programmer intervention, but offers a simple tuning
interface that can be adapted to specific applications.
• We compare thrifty malloc to two alternatives: man-

aging memory entirely outside of transactions, and us-
ing locks to protect the heap. Experimental results
show that in most cases, thrifty malloc outperforms or
matches these alternatives.

The remainder of the paper is organized as follows: Sec-
tion 2 contains a presentation of the related work, Section 3
presents our method, its algorithms and our underlying ar-
chitecture. Section 4 presents the results obtained using our
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method on representative benchmarks, and finally Section 5
concludes.

2. BACKGROUND AND RELATED WORK
2.1 Dynamic memory management

Most dynamic memory management systems use a shared
data structure, shared by all the threads, to represent avail-
able memory blocks [26]. Each time a thread allocates or
frees memory, it must synchronize access to the shared data
structure with any concurent threads. Such frequent syn-
chronization can degrade performance, especially for threads
that require substantial dynamic memory management.

One common technique to alleviate such synchronization
overheads is to split memory into multiple pools, allowing
requests to distinct pools to be handled in parallel. Pools
may be thread-private or shared. In turn, each pool can
be divided into bins (subpools), each bin managing blocks
of one particular size. A thread allocating a block actually
allocates the smallest block of size greater than or equal
to the size requested. Although bins can waste memory,
most existing memory management systems are designed to
optimize speed. Dynamic memory managers employing bins
include Hoard [6], TCmalloc [11] and others [19].

Many embedded systems, however, are memory-limited.
As a result, the number and size of the pools requires a
tradeoff between the quantity of memory available in the
system, the desired degree of parallelism, and the simplicity
of the memory manager design. Thrifty-malloc is designed
with all these constraints in mind.

2.2 Hardware Transactional Memory
Shared-memory multicores need a way to synchronize con-

current access to shared data structures. Usually, concur-
rent threads synchronize via locks. Locks, however, can
slow performance and consume excessive energy, as they
typically require energy-expensive read-modify-write opera-
tions that traverse the memory hierarchy. In addition, locks
must be deployed conservatively whenever conflicts are pos-
sible, even if they are very unlikely. By contrast, specu-
lative synchronization mechanisms detect conflicts dynami-
cally, rolling back and retrying computations when conflicts
actually occur, instead of delaying computations that might
encounter them.

Transactional memory [13, 23], is a speculation technique
that allows critical sections to execute in parallel. If a data
conflict does take place, it is detected, and one or more of
the conflicting threads is rolled back and restarted. When
designing hardware speculative synchronization mechanisms
for embedded devices, it is essential to keep both the under-
lying hardware and the software interface simple and scal-
able. There are three main components required to imple-
ment hardware transactional memory: transactional book-
keeping, data versioning, and conflict management/resolution.
Transactional bookkeeping tracks transactional readers and
writers. For each data line, there can be multiple transac-
tions reading that line, or a single transaction writing it. If
a transaction attempts to access (i.e., read or write) a data
line that has been modified (i.e., written) by another trans-
action, a data conflict occurs. Data versioning keeps track
of speculative and non-speculative versions of data. That is,
if a transaction modifies data, the old non-speculative data
must be saved somewhere so it can be resorted in the event
of a conflict. Finally, the conflict management and resolu-
tion scheme is responsible for initiating the recovery pro-

cess, selecting the transactions that must be aborted, have
their original data restored, and restart their execution from
the beginning. Repeated aborts can be very costly both in
terms of runtime and power overhead so care must be taken
to minimize the conflict rate.

In conventional architectures, locks are memory locations
manipulated by test-and-set (or similar) operations. In the
architecture used here, locks reside is a dedicated test-and-
set memory distinct from main memory. In either case, locks
should not be manipulated inside transactions. In conven-
tional architectures, such as Intel’s Haswell [16], test-and-
set operations are forbidden within transactions, and will
cause the containing transaction to abort. In our architec-
ture, rolling back a transaction would not release any locks
it might have acquired.

2.3 Allocating memory within transactions
Since the combination of transactional memory and locks

can be dangerous, classical allocators that rely on locks to
synchronize cannot be used inside transactions. To overcome
this problem, allocators that are compatible with transac-
tional memory were developed. The basic idea is to use
lock-free algorithms in order to perform synchronizations,
or to include special kernel drivers to monitor the execution
and take actions when necessary.
McRT-Malloc.

Hudson et al. present a scalable software transactional
memory allocator called McRT-Malloc [15]. The heap is di-
vided into superblocks that the threads can request and own.
These superblocks are used as memory bins, containing only
sub-blocks of a certain size that threads can use to serve the
malloc() requests. Superblocks are organized using two lists:
one private list from which the thread owning the superblock
can allocate, and one public list to which concurrent threads
can return the sub-blocks that were originally allocated from
the superblock. When there are no more blocks to allo-
cate in the private list, the owner thread tries to repatri-
ate the blocks in the public list to the private list using a
non-blocking algorithm. Although allocating from the pri-
vate list requires no synchronization, returning blocks to the
public list is performed via concurrent accesses, and thus re-
quires synchronization. This memory freeing process is per-
formed by non-blocking algorithms based on the Compare-
And-Swap primitive (CAS). Consequently, this method re-
quires hardware support under the form of an efficient CAS
primitive. The algorithm is designed in order to minimize
the use of the CAS primitive, and implements a protocol
which reuses freed bits in order to efficiently avoid the ABA
problem[14]1. Overall, this allocator displays good perfor-
mance scaling on the tested benchmarks. However this solu-
tion is subject to some limitations that may make it difficult
to use in embedded systems:

• This allocator does not allow concurrent allocation be-
tween transactional threads and non-transactional ones:
in other words, a thread cannot call malloc() from out-
side a transaction unless this call is statically guaran-
teed to never happen concurrently with a call from
inside a transaction. We want our solution to allow
the transparent use of malloc() from both inside and

1The ABA problem: a thread reads a value A from a shared
location, other threads change the location to value B, and
back to A again (but with other parts of the data structure
modified), causing a CAS to succeed when it shouldn’t.



outside transactions at the same time, in order to sim-
plify the programmer’s work.

• As we described, the method relies on dividing the
heap into superblocks which are themselves divided
into memory bins. This design was created with average-
case performance as the only optimization criterion,
and does not take into account the particular con-
straints of embedded systems. As a consequence, this
memory allocation strategy is not naturally conserva-
tive in terms of overall memory requirements. Enforc-
ing memory efficient behavior for any particular ap-
plication would require individual tuning and config-
uration, and in turn, experienced programmers with
good knowledge of the behavior of the embedded ap-
plications. This means increased development costs,
increased time-to-market, and potentially more bugs.
For embedded systems, a simpler even if less efficient
mechanism is preferable.

Our allocator trades some performance for ease-of-use
(in particular it can be used on different applications
without reconfiguration) and a simple allocation strat-
egy implementing a general memory-efficient behavior.

• It requires some standard Operating System (OS) ser-
vices, in particular for transactional memory virtual-
ization. We want our solution to provide services that
do not rely on an OS, since many embedded systems
execute baremetal code, i.e. without an OS running.

LFMalloc.
In LFMalloc[8], the allocator divides the heap into su-

perblocks allocated to each processing core. The objective is
to find a tradeoff between totally centralized structures that
perform poorly for parallel applications, and thread-local
pools that use a lot of memory as the number of threads
increases. The authors report very good performance scal-
ing of their allocator, especially when only one thread is
executed per core: since the memory pools are allocated to
the cores, no extra synchronization is necessary when only
one thread executes on each core. This setup is compati-
ble to our target embedded execution platform, where only
one thread is allowed to execute on each core. However,
LFMalloc was designed for a complex multithreaded envi-
ronment, featuring thread migration and preemption. The
allocator is similar to Hoard[6], utilizing superblocks as in
McRT-Malloc.

The main differences between these allocators are:

• In LFMalloc, the superblocks are allocated on a per-
core basis instead of on a per-thread basis, which makes
the memory requirements independent from the num-
ber of threads.

• The LFMalloc algorithm uses a lock to synchronize
threads when they return memory to the public list
of a superblock, while McRT-Malloc and Hoard use
CAS-based lock-free algorithms.

• To deal with scheduling events such as preemptions
and migrations, which make the use of a lock haz-
ardous, LFMalloc relies on a special kernel driver[24].
Should such an event occur while a thread is execut-
ing the critical section of the allocator algorithm, the
driver would detect it and act as a transactional abort
mechanism.

To overcome this last limitation, LFMalloc has been im-
plemented using HTM (with lock elision) for its own syn-
chronization[10]. Nevertheless, this does not make this im-
plementation directly compatible with system-level HTM
synchronization, since nested transactions may not be sup-
ported by the hardware. Moreover, as with McRT-Malloc,
the division of the available memory into superblocks and
bins can be problematic in the particular context of embed-
ded systems.
CIA-Malloc.

In [9], the authors address the particular problem of cache
conflict misses that can be induced by memory allocators.
On architectures featuring a data cache, allocating blocks
without considering where they are mapped in the L1 cache
may result in an unbalanced repartition of the active blocks
over the cache indices. This situation increases the miss con-
flict rate in the cache and incurs timing penalties. In systems
featuring HTM, these miss conflicts can trigger unnecessary
aborts that are even more expensive. Cache-Index Aware
Malloc (CIA-Malloc) [4] was proposed to tackle the conflict
misses problem. As with LFMalloc, it is based on local pools
allocated to each core, and divided into superblocks acting
like memory bins. Since all sub-blocks of a superblock have
the same size, the repartition of their addresses usually fol-
lows a regular pattern. This regularity can limit the number
of cache indices corresponding to the sub-block addresses.
In order to distribute the sub-blocks to a wider range of in-
dices, CIA-Malloc features a particular organization of the
superblocks: some sub-block addresses are shifted by the
size of a cache line (and thus correspond to a new index in
the cache), by making ranges of addresses non allocatable.
This technique trades some memory to significantly reduce
the conflict miss rate compared to index-oblivious allocators,
and avoids pathological situations in the presence of HTM.
Although this issue must be taken seriously for architectures
featuring a data cache, we do not consider it in the scope
of this paper. Our method is general and could be adapted
without difficulty to take into account cache indices, but in
the context of our work presented in this paper we target the
cacheless architecture of Section 3.2 in which this particular
problem does not occur.
Software Transactional Memory related issues.

Baldassin et al. present a similar problem that can arise
when working with software transactional memory (STM) [5].
Indeed, one possible design for STM is to use locks to emu-
late the transactional behavior. In order to keep the num-
ber of locks relatively low, the memory space is divided into
areas called stripes, each of which is protected by a lock.
Consequently, enlarging the stripes reduces the number of
required locks. However, it also increases the probability
that two memory addresses accessed by different transac-
tions will be mapped to the same stripe. In this case, the
first transaction to access a memory location in the stripe
will acquire the lock and access the memory. If a second
transaction tries to access another memory location in the
stripe before the first transaction ends, it will be unable to
acquire the lock and will be aborted as a result. This kind
of abort is referred to as false abort. This situation makes
the abort rate of transactions dependent on the memory al-
location policy: depending on how and where the allocated
blocks are picked, false aborts will be more or less likely to
occur. Although this is an important problem, in the scope
of our work we limit ourselves to HTM, for which the trans-



actional mechanisms are part of the hardware design and are
thus not emulated using locks. As a result, the placement of
the allocated memory blocks cannot result in false aborts.

3. THRIFTY-MALLOC IMPLEMENTATION
In this section, we present the principles of our method in

more detail along with some implementation features of our
memory manager.

Shared memory heap

Thread 1

malloc() free()

Application shared data structures

Thread n

malloc() free()

return_pool()allocate_pool() return_pool()allocate_pool()

Stage 1

Stage 2

Private pool Private pool

Figure 1: High-level view of our 2-stages memory manager

3.1 Allocation/deallocation principles
Our memory manager implements a two-level scheme, as

depicted in Figure 1; each thread is allocated a private mem-
ory pool from the heap at system startup, from which it
can directly allocate and return memory blocks at runtime.
Using private pools greatly reduces the number of synchro-
nizations the threads have to perform, and is thus adapted
to parallel applications. The private pools allocated to the
threads at system startup do not cover the entirety of the
heap. Most of the memory remains unallocated, and can
be used to refill the local pools of the threads, should they
run out at run-time. Using this approach, we preserve the
dynamicity of the applications, by letting the threads re-
quest memory if and when they need it, instead of statically
dividing all the memory prior to the execution.

Our memory manager follows a first fit strategy [26]: the
free memory blocks of the heap and of the private pools
are represented by a free list. When malloc() is called, the
list is scanned until a block large enough to satisfy the re-
quest is found. From this block, a sub-block of the requested
size is allocated, and the potential remainder is returned to
the free list. This allocation method does not round up
the requested memory size to a predetermined size, as is
the case with bin-based solutions. It is, as a consequence,
more memory-efficient. We implement a coalescing strategy:
when a memory block is returned (either by free() or when
a memory block is allocated from a larger block and the re-
mainder is returned), the manager groups it with adjacent
blocks in the free list whenever possible. This strategy limits
memory fragmentation[26].

In order to keep the number of synchronizations low, a
thread calling the free() function on a memory block re-
turns it to its own private pool. This operation requires no
synchronization, since the considered thread is the only one
that can access its own private pool. However, if the mal-
loc()/free() ratio is less than 1 for a particular thread, then
this thread will tend to accumulate and concentrate the free
memory of the system. In turn, this situation could lead
to memory starvation of other threads. There are multiple
ways to re-distribute the free memory; however, they require
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additional synchronizations between threads, and thus po-
tentially downgrade the performance of the application. In
practice, we have only encountered applications where the
malloc()/free() ratio is greater than 1 for all threads, mean-
ing that inside the parallel sections of the considered appli-
cations, more memory was allocated than freed (most of the
memory is usually freed only at the end of the application
run). Consequently this has not been an issue: we consider
this particular problem to be out of the scope of this paper,
and constitutes by itself a topic of future work.

3.2 Evaluation platform
Scaling to large many-core systems is enabled in modern

designs by interconnecting tightly-coupled clusters with a
scalable medium such as a NoC [17] [18]. Clusters consist
of a small/medium number of simple processing units (PU)
sharing high-performance local interconnection and mem-
ory, as shown in Figure 2. In our case, each cluster con-
tains 16 RISC32 PUs, each featuring a private instruction
cache. Processors communicate through a multi-banked,
multi-ported Tightly-Coupled Data Memory (TCDM). This
shared level-1 TCDM is implemented as explicitly managed
SRAM banks (i.e., scratchpad memory), to which processors
are interconnected through a low-latency, high-bandwidth
mesh of trees (MoT) data interconnect enabling 1-cycle L1
accesses. As is common in constrained embedded designs,
data caches and associated coherency protocols are entirely
absent (replaced by the TCDM), allowing for a more scalable
and lightweight design. The interconnection supports up
to 16 concurrent memory accesses targeting different banks
(one port per bank). Since the L1 TCDM has limited ca-
pacity (256KB) it is impossible to permanently host all data
therein or to host large data chunks. The software must thus
explicitly orchestrate data transfers from main memory to
L1, for better locality. For performance- and energy- effi-
cient transfers, the cluster is equipped with a DMA engine.

This architectural template captures the key traits of ex-
isting cluster-based many-cores such as STMicroelectron-
ics STHORM [18], Kalray MPPA [17], TI Keystone II [2],
Adapteva Parallela [1] or the Toshiba Energy Efficient Many-
Core [3] in terms of core organization, number of clusters,
interconnection system and memory hierarchy. For our eval-
uation platform, we built a cycle-accurate SystemC simula-
tor, based on the VirtualSoC platform [7]. VirtualSoC is
a prototyping framework. More specifically, we consider a
single cluster, plus a memory controller to the off-chip main



memory. To build a many-core platform, clusters can be
replicated and interconnected via a Network-on-Chip (NoC)
as shown in Figure 2.

The system leverages a partitioned global address space.
Each processor in the system can explicitly address every
memory segment: local TCDM, remote TCDMs (when mul-
tiple clusters are considered) and main memory. The heap
spans all the memory banks of the TCDM. Likewise, the
private pools that are dynamically allocated from the heap
can physically reside in any of these banks.

Processors can synchronize by means of standard read and
write operations within a TCDM address range. This pro-
vides test-and-set semantics, on top of which we implement
standard locking mechanisms. In addition, as a synchro-
nization alternative, the described clusters are augmented
with hardware transactional memory (HTM) support. We
leverage the design from Papagiannopoulou et al. [22], which
targets the same class of shared memory clusters that we
consider in this work. This HTM system relies on dis-
tributed conflict detection and resolution logic (employing
an eager scheme), implemented as an extension to TCDM
banks, which enables scalable and fast transaction manage-
ment, as presented in [21].

3.3 Transparent refill of private pools
In order to make it robust and more flexible, we want our

memory manager to handle the refill of empty private pools
in a way that remains transparent to the programmer and
the user. A thread running out of memory can request a
new, fresh private pool from the shared heap. This process
requires extra synchronizations which we implement using
transactions. This mechanism must be able to refill a private
pool regardless of whether the malloc() call that triggered it
was performed inside a transaction or not. Next, we present
how both cases are treated.

3.3.1 Malloc() called outside of transactions
Whenever a malloc() call placed outside of a transaction

cannot be served because there is not enough memory re-
maining in the corresponding private pool, a fallback rou-
tine is executed: first the potentially remaining memory in
the private pool is returned to the heap, then a fresh pri-
vate pool is allocated from the heap. After that, malloc()
is called recursively but will this time allocate from the new
private pool. The size of this new heap is computed us-
ing the memory size requested in the malloc() call and the
current private pool size. Since the call was performed out-
side a transaction, refilling a private pool with just the size
requested by the malloc() call is enough to guarantee its suc-
cess (it is, in fact the most memory conservative solution),
and in turn to guarantee progress in the execution. How-
ever, doing this means that the new private pool is empty
again after the call.

If subsequent calls to malloc() are performed, the fallback
routine will have to be executed again, degrading the perfor-
mance of the application. We chose a more pessimistic (and
thus less conservative) tradeoff in our implementation: the
refreshed pool has size max(current size, double request),
where current size is the size of the current private pool
when it was allocated, and double request is twice the size
requested by the malloc() call. This method increases the
size of the private pool only when a single malloc() by itself
requests more memory than half of the private pool, and just
refills the pool in other cases. This tradeoff remains memory-
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EXECUTE malloc()

END
TRANSACTION

flag = 1
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(2counter*current_size)
return_pool()

ABORT 
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?
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other
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Figure 3: malloc() inside transaction pool refill scheme.

conservative while avoiding the need for a large number of
pool refills. Indeed, in most cases a pool running out is just
the symptom of a malloc()/free() ratio greater than 1, and
simply refilling the private pool is enough to allow the thread
to go on. Each step of the fallback routine (which returns
the private pool to the heap and allocates a new one) is ex-
ecuted in a dedicated transaction. This results in a total
of two transactions in order to synchronize accesses to the
shared heap.

3.3.2 Malloc() called inside a transaction
Calling malloc() from inside a transaction is a bit more

complicated. Here, having dedicated transactions for the
fallback routine, as discussed in Section 3.3.1, would result
in nested transactions. Since nested transactions are not
supported by certain transactional memory systems (and
semantics vary for those that do [25]), we chose to avoid
them.

A näıve solution would be to execute the fallback routine
functions without their dedicated transactions. Instead, the
initial transaction in which malloc() is called would also syn-
chronize the operations of the routine. However, proceeding
that way would increase the size and duration of the initial
transaction, increasing the probability of aborts.

Thrifty-malloc employs another strategy which has two
main advantages compared to this näıve solution. First, it
keeps the size and duration of the initial transaction un-
changed. Second, it enforces a clear logical separation be-
tween the initial transaction and the transactions of the fall-
back routine.

Our strategy is illustrated in Figure 3. If a call to mal-
loc() cannot be serviced because a private pool does not have
enough memory remaining, the transaction in which mal-
loc() was called is aborted. Following the traditional trans-
actional memory behavior, the modifications made to the
memory and the processor registers as part of the aborted
transaction are reverted. At this point the memory and reg-
isters are in the clean state in which they were when entering
the transaction for the first time. Then, instead of restarting
the transaction right away, as in a normal abort, a fallback
routine is executed: the remaining memory in the private
pool is returned to the heap, and a fresh pool is allocated.
Since these operations are performed outside of the initial
transaction, their execution is protected by dedicated trans-
actions (as in the case of Section 3.3.1). A flag is raised as a
reminder that the pool has already been refilled: should the
fallback routine be executed again with the flag raised, the
size of the private pool would be doubled. The initial trans-
action is then executed from the start. The flag is cleared
only when the transaction commits. The fallback routine
executed when malloc() runs out of memory inside a trans-
action is thus different than the one described in the previous



malloc()

Application code

(a)

(b)

(c)

…
1: malloc();

…

…
1.1: if(not_enough_memory){
1.2: TriggerFallback();
1.3: compute_new_size();
1.4: fallback_routine();
1.5: malloc();}
1.6: else {

…
1.7: flag = 0;
1.8: return block;}

Figure 4: The malloc() fallback flow outside a transaction.

section. Indeed, we cannot know a priori the cumulated size
that will be requested as part of a given transaction, since
multiple malloc() calls may happen. In order to keep the
refill mechanism simple, generic and memory conservative,
we use the iterative procedure that we just described.

In the best case, the näıve solution will execute the fallback
routine, then resume execution and commit without a con-
flict and thus without having to abort. Our solution, on the
other hand, imposes one abort each time a pool is refilled, in
the best case. However, in the average case, the probability
that additional aborts will occur is much reduced with our
solution because it keeps each transaction as small as possi-
ble, where the näıve solution enlarges the initial transaction.
Moreover, with the näıve solution, if the transaction aborts
after the execution of the fallback routine, the modifications
made to the private pool are reverted during the abort. As
a consequence, the fallback routine has to be executed again
in the next attempt of the transaction run. With our solu-
tion, since dedicated transactions are used for the fallback
routine, the modifications made to the private pool are saved
prior to restarting the initial transaction. Consequently, we
do not have to run the fallback routine again if the initial
transaction aborts. To sum up, our solution reduces the
probability that aborts occur thereby reducing the overall
performance penalty for running out of memory.

3.4 Implementation in our manager and
simulation platform

Next, we provide a detailed description of the implemen-
tation of our memory manager for embedded systems, along
with the associated transactional mechanism extensions.

As stated in Section 3.3.2, our method requires support
from the HTM. We implement this by providing a primi-
tive called TriggerFallback() which is used exclusively in the
malloc() function. When malloc() detects that it cannot
find enough contiguous memory in the corresponding pri-
vate pool, it calls TriggerFallback(), which signals the hard-
ware that the fallback routine will have to be executed. As
previously, we distinguish between two cases, depending on
where the TriggerFallback() function was called.

If TriggerFallback() is called outside of transactions (and
thus malloc() was also called outside of transactions), the
hardware discards the signal, and the execution resumes
seemlessly. Indeed, since the call happened outside of a
transaction, no hardware support for abort is required, and
the algorithm of Section 3.3.1 can be implemented entirely
in software. It is done by calling the fallback routine, then re-
cursively calling malloc(). This sequence of calls is declared
inside the malloc() function, just after the TriggerFallback()
call. Figure 4 describes how this is done. When the ap-
plication calls malloc() (a), the function is executed until
it reaches a test (1.1): if there is enough memory to allo-

cate a block of the requested size (1.6), the memory block
is returned (b), and the application resumes its execution.
Otherwise, TriggerFallback() is called but ignored by the
hardware (1.2), the new size of the pool is computed us-
ing the current size of the pool and the size requested by
the malloc() call (1.3), and the fallback routine is executed
(1.4). When it is done, malloc() is called recursively (c).

If TriggerFallback() is called inside a transaction, the cor-
responding core signals the transactional memory system
that it must revert the modifications made as part of the
ongoing transaction. Once this is done, the core restores
its registers to their values before the transaction started.
At this point, the fallback routine must be executed before
restarting the transaction. This can be implemented in dif-
ferent ways, including:
• Setting the program counter (PC) to the address of the

fallback routine in memory. Once the fallback routine
has finished executing, the PC must be set again, this
time to the start of the transaction. This solution in-
volves resetting the PC twice and being able to detect
the end of the fallback routine. Since the fallback rou-
tine is composed of transactions, the address of the
initial transaction must be saved to a special place
before setting the PC to the fallback routine. More-
over, the programmer must be able to communicate
the address of the fallback routine to the hardware,
since for arbitrary applications and architectures the
address may not be the same. This adds complexity
to the hardware support.
• Calling the fallback routine just after TriggerFallback()

(as in the non-transactional solution), and branching
the PC to the start of the transaction afterwards. Al-
though simpler, this solution still involves saving the
address of the transaction to a special place before the
fallback routine is executed.

In order to keep our solution as simple and general as
possible, we choose instead to build a special software prim-
itive on top of the START TRANSACTION() one, which
we call special transaction() in Figure 5. This new prim-
itive wraps a sequence composed of a conditional branch
to the fallback routine, followed by an unconditional call
to the START TRANSACTION() primitive. This prim-
itive signals the hardware that the execution is entering
a transactional section (whose end is marked by a similar
END TRANSACTION() primitive).

By using special transaction() as an inline function, a call
to the fallback routine is guaranteed to be located at a fixed
offset before the start of any transaction, in any application.
When TriggerFallback() is called (and after the memory and
registers have been reverted), the core sets the PC to the
saved value of the start of the transaction, minus a fixed
offset. The control flow is thus redirected to the fallback
routine call located just before the start of the transaction.
When the fallback completes, the PC does not need to be
set again, since the start of the transaction is located just
after. To avoid executing the fallback routine when the exe-
cution reaches the transaction for the first time, the fallback
routine call is guarded by an if() construct whose condition
always evaluates to false. The only way for the control to
reach the fallback routine inside the conditional branch is
by executing the TriggerFallback() statement. We illustrate
this implementation in Figure 5.

When the execution reaches the special transaction() in-
line function, it first evaluates a false condition (1.1), and



malloc()

Application code

(a)

(c)

(b)

special_transaction()

inline

…
1: special_transaction();

…
2: malloc();

…
3: END_TRANSACTION();

…

1.1: if(false){
1.2: fallback_routine();
1.3: flag = 1;}
1.4: START_TRANSACTION();

…
2.1: if(not_enough_memory){
2.2: TriggerFallback();
2.3: compute_new_size();
2.4: fallback_routine(); 
2.5: malloc();}
2.6: else {

…
2.7: flag = 0;
2.8: return block;}

Figure 5: The malloc() fallback flow inside a transaction.

jumps directly to the START TRANSACTION() statement
(1.4). Then the code of the transaction is executed, until
a malloc() call is reached (2). As in the previous case, the
function is executed (a) and reaches the point where it tests
if a large enough block exists in the private pool (2.1). If it
is the case (2.6), the iteration flag is reset to 0, the carved
block is returned (b) and the application resumes its ex-
ecution until either a memory conflict is detected (leading
to an abort of the transaction), or the end of the transac-
tion (3) which commits the last allocations, and the flag
value reset to 0. If there is not enough memory to serve
the request (2.1), the TriggerFallback() function is called
(2.2). The hardware detects the signal, orders the memory
to revert the transactional changes, and resets the registers
to their value before the transaction. Then, it modifies the
PC (c) to redirect the control flow to the fallback routine
call of (1.2). In this case, the instructions (2.3), (2.4) and
(2.5) are not reached. The execution resumes from (1.2):
the fallback routine is executed, the iteration flag is set to 1,
and the transaction is started again.

We end this section by pointing out that, although we have
presented the complete solution as a HW/SW codesign, our
software solution is by itself compatible with existing pro-
cessors featuring HTM. Indeed the Intel Haswell family of
processors featuring HTM includes an XABORT instruction
that allows transactions to be aborted and a specified fall-
back software routine is then executed [16]; it is a possible
implementation of our TriggerFallback() mechanism.

4. RESULTS
We evaluate Thrifty-malloc first on a synthetic benchmark

to better understand memory pressure behavior, and then
on three applications developed as part of the STAMP[20]
and MiBench[12] benchmark suites: vacation, genome, and
patricia. We chose these three standard benchmarks be-
cause they feature dynamic memory allocation inside their
critical sections and are well known within the transactional
memory community.

To perform the evaluation, we measure the timing perfor-
mance and memory usage of these applications implemented
with Thrifty-malloc and compare them to results obtained
with two other memory management strategies. In the first
alternative strategy, the applications perform their calls to
malloc() and free() outside of the transactions. This strat-
egy can be adopted whenever a non HTM-compliant mem-
ory manager is used in conjunction with transactional mem-
ory. It requires extra work from the programmers to take

the malloc() and free() calls out of the transactions, and
thus potentially increases the likelihood of errors.

The second alternative strategy consists of synchronizing
the applications with locks instead of transactions, and uses
a variant of the C stdlib memory manager that is optimized
for the targeted multicore (simulated) architecture. This
strategy is the current de facto standard for embedded ap-
plications that require dynamic memory management. We
emphasize here again the fact that no existing memory man-
ager was able to tackle directly the problem of managing
memory inside transactions, and without OS support. As a
result, rather than comparing Thrifty-malloc with existing
managers (which was not possible in our context), we found
it more interesting to validate our approach by comparing
different memory management strategies using malloc() im-
plementations that are close to each other in terms of their
internal mechanisms (representation of the free memory, al-
location routines, etc.), but differ in their synchronization
mechanisms, and thus in the way they can be deployed in an
application. We show that real differences exist in terms of
timing performance and memory conservancy, and observe
that our strategy offers the best tradeoff between these cri-
teria while providing the largest opportunity for tunability.

4.1 Synthetic benchmark evaluation
As a first experiment, in order to demonstrate the benefits

of calling malloc() inside transactions instead of only out-
side, we designed a simple synthetic benchmark composed
of a parallelized loop working on a linked-list. Each itera-
tion i starts by a first transaction in which a condition (a
shared Boolean variable) is evaluated: if the condition is
true, then the executing thread advances to the ith element
of the list, removes it from the list and frees it, before leaving
the transaction. If the condition is false, the thread leaves
the transaction right away. In both cases, the thread then
enters a second transaction in which the same condition is
evaluated again. If it is true, the thread calls malloc(), and
adds the newly allocated block at the end of the linked-list.
Once again, if the condition is false, the thread just leaves
the transaction.

We measure the performance of Thrifty-malloc in terms
of timing and pressure put on the heap in this setting, and
we compare it to the strategy where malloc() can only be
called outside of transactions. In this second strategy, mal-
loc() is called between the two transactions, regardless of the
value of the condition (since the condition is a shared vari-
able in this example, it cannot be evaluated safely outside
of transactions). The pressure we measure is the quantity of
memory that is currently not available because it has been
allocated and was not freed yet, at any given time during the
execution. We believe this measure is more accurate than
the total quantity of allocated memory considering that we
are evaluating a dynamic manager. To clarify, when calcu-
lating pressure for the Thrifty-malloc case, we did not con-
sider the private pools themselves since this memory is still
available for serving malloc requests by the thread owning
the pool (without explicitly freeing it). This is different for
the “malloc() outside” case since memory may be allocated
but never used by the thread, and cannot be used for other
malloc requests.

In our experiment, we use the shared Boolean variable to
vary the quantity of work that must be performed by the
threads as part of the transactions. We consider 4 cases:
the condition is true in either 100%, 50%, 30% or 0% of the
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Figure 6: Execution time and memory requirements of the benchmarks without pool refill

Percentage of working iterations
0% 30% 50% 100%

Thrifty-malloc 0% 0% 0% 0%
malloc outside 81% 57% 40% 0%

Table 1: Extra pressure on heap when calling malloc() out-
side of transactions compared to calling it inside

iterations.
We display the results in Table 1. As expected, Thrifty-

malloc never puts pressure on the heap. Indeed, each mal-
loc() call is performed after a corresponding free() call. On
the other hand, when malloc() is called outside of the trans-
actions, since it is not guarded by the execution condition,
the extra pressure on the heap — which corresponds to mem-
ory leaks or useless, semi-static allocations — grows linearly
with the proportion of iterations where the condition is false.
It reaches its maximum in the case where the condition is
always false (i.e., the 0% column in the table), since mal-
loc() is called for nothing at each iteration, and no free()
operation is performed. In this particular context, the per-
centages here correspond to the quantity of“leaked”memory
compared to the size of the linked list. Each of these per-
centages also grows linearly with the number of iterations
performed.

An interesting consequence for this synthetic benchmark
is that for any setting where the condition is not always true,
calling malloc() outside of the transactions will eventually
empty the heap and crash the benchmark: this situation can
happen every time a malloc() call is guarded by a shared
condition in an application. Thrifty-malloc, on the other
hand, is immune to this problem and is thus better suited
for such applications.

With regard to run time execution for this synthetic bench-
mark, we realized that placing the malloc() inside or outside
the transaction has the side effect of significantly altering its
data conflict behavior. As a consequence, its execution time
is more sensitive to the difference in data conflict abort rates
than to the fact that calls to malloc() are performed inside
or outside of transactions, and therefore we do not report
the execution times here.

4.2 Performance without pool refill
Next, we present in Figure 6 the results for the STAMP

and MiBench benchmarks when no private pool needs to be
refilled. In order to ensure that property, we provide each
thread with a large enough private memory pool at system
startup. In our experiments, using a pool of size 1024 bytes
for each but one thread was enough to achieve this. One
thread (the main thread) requires (potentially a lot) more
memory since it is responsible for initializing some shared

1 core 2 cores 4 cores 8 cores 16 cores
Thrifty-malloc 0 6% 12% 27% 60%
malloc outside 0 6% 12% 19% 29%

Table 2: Transaction abort rates for Patricia

data structures, both for the application itself and for the
OpenMP management structures, prior to the execution of
the parallel section of the application. The execution times
we provide here are measurements for the parallel section
of each of the benchmarks: we do not take into account the
initialization phase where the initial shared structures of the
application are being allocated and initialized. Indeed, we
focus on the performance of our manager during the paral-
lel phase of the execution, which is common practice when
evaluating HTM (or HTM-related) designs.

The first observation we can make is that using hardware
transactional memory to synchronize the application scales
better than using locks. For both Vacation (Fig. 6(a)) and
Patricia (Fig. 6(c)), the best results are obtained when the
memory management is performed outside of the transac-
tions. For these two benchmarks, this strategy is imple-
mented by making all the malloc() calls during the initializa-
tion phase, and by stocking pointers to the allocated memory
blocks inside arrays. This has two important consequences
on our measurements: first, the time spent for the alloca-
tion (the multiple executions of malloc()) is not accounted
for since we do not measure the execution time of the ini-
tialization phase. Second, since the malloc() calls are per-
formed outside the transactions, the duration of the trans-
action is reduced compared to executing the malloc() calls
inside. In turn, this reduces the abort rate of the transac-
tions. This phenomenon is particularly present in Patricia:
in Table 2, we display the abort rates of transactions for
both strategies. The abort rate remains limited when mal-
loc() calls are performed outside of transactions, but reaches
60% with Thrifty-malloc. These two elements explain why
calling malloc() outside transactions obtains the best results
in Vacation and Patricia.

For the Genome implementation, we decided to imple-
ment the“malloc() outside”strategy in another way: instead
of allocating the memory in the initialization phase, we call
malloc() inside the parallel section, just before starting the
transactions. This way, the execution time of the malloc()
calls is accounted for in our measurements. As shown in
Fig. 6(b), for this benchmark, the two HTM-based strate-
gies deliver equivalent performance for 14 cores, and overall
Thrifty-malloc has the best results as soon as parallelism is
involved. The reason why the “malloc() outside” strategy
does not perform better than Thrifty-malloc lies in the fact
that it has to overallocate memory. Indeed some transac-
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Figure 7: Pressure on heap relative to standard C malloc().
Thrifty (with solid bars) refers to our method allowing mal-
loc() inside a transaction, while outside (with dashed bars)
refers to malloc() outside the transaction.

tions feature conditional branches whose condition can only
be evaluated inside the transaction. Since the “malloc() out-
side” strategy imposes calling malloc() before the transac-
tions, such conditions cannot be evaluated and the malloc()
call must be performed in any case. The execution of these
additional malloc() calls increases the execution time of the
parallel section of the application. This overallocation phe-
nomenon is also present in the other benchmarks, but since
the malloc() calls are performed before the parallel section,
we did not measure its influence on performance.

To evaluate the memory usage of Thrifty-malloc, we mea-
sure the maximum pressure put on the heap during the ex-
ecution. Results are shown in Figure 7.

In terms of memory usage, Thrifty-malloc is almost equiv-
alent to the standard C malloc() on the three benchmarks.
The “malloc() outside” strategy overallocates memory for
the reason that we explained before. Moreover, for the same
reason this strategy cannot perform free() calls easily, and
the overallocation turns into “over-pressure” on the heap.
In Vacation, this maximum requirement of memory varies
between 39% more than Thrifty-malloc for the single core
experiment and 23% more for the 16 core experiment. In
Genome, the maximum memory required is constant and
approximately 87% more than in Thrifty-malloc. In Patri-
cia, the maximum memory required varies around 30% more
than the pressure generated by Thrifty-malloc.

These results show that Thrifty-malloc handles memory
as conservatively as the C standard malloc(), while enabling
the use of hardware transactional memory and thus with
improved performance scaling. We emphasize again that,
for embedded systems, total memory capacity is typically
severely limited (e.g. the L1 scratchpad memory of the entire
cluster is only 256K); therefore, our allocation policy could
significantly extend the performance and applicability of the
system.

4.3 Local pool refill overhead
In Table 3 we measure the cost of refilling a private pool.

To do so we decrease the initial size of the private pool, so
the threads run out of memory and request a refill at some
point during the execution. We compare the measurements
with the execution time using Thrifty-malloc when no pool
refill is needed (standard C malloc() results are also given
as an additional reference).

For Vacation and Genome, the overhead for refilling the
private pool is negligible compared to the execution time
using locks and the C malloc(). We display the number

Initial pool size of last core
1024 bytes 512 bytes 256 bytes 128 bytes

Vacation
Thrifty-malloc 100% 100% 101% 109%
C malloc() 265% 265% 265% 265%
Genome
Thrifty-malloc 100% 100% 100% 103%
C malloc() 281% 281% 281% 281%
Patricia
Thrifty-malloc 100% 99% 112% 109%
C malloc() 120% 120% 120% 120%

Table 3: Execution time with pool refills relative to Thrifty-
malloc without refill (standard C malloc() for reference)

Initial pool size of last core
1024 bytes 512 bytes 256 bytes 128 bytes

Vacation 0 1 2 5
Genome 0 0 0 2
Patricia 0 1 1 7

Table 4: Pool refills as a function of initial size of last pool.

of pool refills executed for each benchmark and each initial
pool size in Table 4. For Vacation, 1 pool refill is executed
when the initial pool size is 512 bytes, 2 when the initial
pool size is 256 bytes, and 5 when the initial pool size is
128 bytes. For Genome, no refills are necessary for private
pools of sizes 1024, 512 or 256 bytes. However 2 refills are
executed for an initial pool size of 128 bytes. This jump from
no refill to 2 refills can be explained by multiple factors.
First, when the first refill happens the private pool may
not be empty. The remaining memory may be either non-
contiguous, or there may not be enough memory remaining
to serve the request. In this case, the non-empty remainder
of the private pool is returned to the shared heap during
the refill, and the thread will not be able to use it to serve
further requests. The second factor is the relative timing
of the threads during the execution. A refilling thread has
to execute the fallback routine, which modifies its timing
relatively to the other threads, compared to an execution
where no refill is performed. This adds dynamicity to the
system, and modifies the quantity of work each thread has
to perform as well as the abort rate of transactions.

This second factor particularly affects the Patricia bench-
mark. No pool refill is needed for an initial size of 1024 bytes.
For 512 and 256 bytes, 1 pool refill is executed. However,
these refill scenarios occur at different instances of the over-
all execution, and thus have different consequences on the
overall execution time. In the 512 bytes example, the overall
execution time is reduced compared to the no-refill experi-
ment. In the 256 bytes experiment, the execution time of
the application is increased by around 12%. Finally in the
128 bytes experiment, 7 pool refills are executed, and the
execution time is comparable to the 256 bytes experiment.
Even though a slight timing overhead occurs when the initial
private pool size is 256 bytes or 128 bytes, Thrifty-malloc
always delivers a better performance than the standard C
malloc().

The pool refill timing overhead in our solution is always
negligeable compared to the performances obtained with the
standard C malloc() combined with locks. Indeed, even in
the worst cases where the pool must be refilled seven times
our solution still performs better. In the best case, our so-
lution is close to three times faster than the lock-based one.
Such a difference is not due to significant differences in the
implementation of the allocators themselves, but rather in
the fact that Thrifty-malloc enables the system-level use of



HTM for synchronization. The speculative execution in turn
allows good performance scaling when increasing the num-
ber of cores, while lock-based synchronization does not. As a
consequence, we strongly advocate the use of HTM-friendly
memory managers such as Thrifty-malloc in the context of
multicore architectures featuring HTM.

5. CONCLUSION
In this paper we presented a novel method for dynamic

memory management for embedded applications and in the
presence of transactional memory. This method combines
simplicity, flexibility and a lightweight design (in terms of
memory usage), making it appealing for embedded systems.
We demonstrated its performance on transactional memory
benchmarks, and showed that the low overhead incurred by
the memory reprovision technique is an acceptable tradeoff
for the improved memory usage and the flexibility Thrifty-
malloc provides to the system. We also showed that by
allowing the use of HTM synchronization, and the manage-
ment of memory directly inside transactions, our solution
allowed a more than 2 times execution speedup on certain
applications, and could also reduce the pressure on the heap
by nearly half, compared to allocating memory outside of
transactions.

In the future, we intend to pursue our work in multiple
directions:
• Develop techniques that help maintain a fair reparti-

tion of the free memory among the private pools.
• Experiment with more elaborate reprovision patterns.
• Evaluate our memory manager with different trans-

action abort policies, since abort policies can have a
non-negligeable impact on performance depending on
the application.
• Extend our memory management method for applica-

tions executed across multiple computing clusters.
• Develop a transaction-friendly memory virtualization

technique based on a software cache implemented in
the transactional memory space, and using DMA calls
to communicate with the L3 memory.
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