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ABSTRACT
Internet-of-Things (IoT) envisions an infrastructure of

ubiquitous networked smart devices offering advanced moni-
toring and control services. Current art in IoT architectures
utilizes gateways to enable application-specific connectivity
to IoT devices. In typical configurations, an IoT gateway
is shared among several IoT devices. However, given the
limited available bandwidth and processing capabilities of
an IoT gateway, the quality of service (QoS) of IoT devices
must be adjusted over time not only to fulfill the needs of
individual IoT device users, but also to tolerate the QoS
needs of the other IoT devices sharing the same gateway.

In this paper, we address the problem of QoS management
for IoT devices under bandwidth, battery, and processing
constraints. We first formulate the problem of resource-
aware QoS tailored to the IoT paradigm and then propose
an efficient problem decomposition that enables the adoption
of a recurrent dynamic programming approach with reduced
execution time overhead. We evaluate the efficiency of the
proposed approach with a case study and through extensive
experimentation over different IoT system configurations
regarding to the number and type of the employed IoT-
devices. Experiments show that our solution improves the
overall QoS by 50% compared to an unsupervised system
while both meet the constraints.
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1 Introduction
The Internet of Things (IoT) is a novel paradigm in which

many of the objects that surround us, such as sensors, actua-
tors, smartphones, and other smart devices, will be networked
and connected to the Internet to offer better services in dif-
ferent domains including healthcare monitoring, automotive,
smart buildings, etc. [1, 2, 3, 4].
Recent advancements in technology, emerging techniques

in embedded systems, wireless communication, and sensors
have enabled the design of small-size, ultra-low power, and
low cost IoT devices [4]. They sense information from physi-
cal phenomena and send the data after pre-processing to a
gateway node, which aggregates the streams of sensed data
in real-time and sends them to a central server, e.g. a cloud
server [5, 6].

IoT envisions a model in which the increasingly ubiquitous
portable smart devices (e.g. smartphones [7]) provide gateway
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Figure 1: Local networks of IoT devices connected
to the Internet via gateways

services [8] , as illustrated in Figure 1. Other IoT devices are
able to provide gateway service, too. Especially with the exis-
tence of small-size, low-power multi-radio chips which provide
multiple communication technologies (e.g. WiFi, Bluetooth,
ZigBee, etc.) on a single chip, IoT devices can provide gate-
way service, if necessary.

The battery-powered IoT devices need to fulfill a specific
expected lifetime before the next recharge takes place. To
manage the energy consumption under the battery lifetime
constraints, each IoT device has generally two control knobs:
1) changing the quality of service (QoS) and 2) changing the
on-board processing policy. For instance, in an IoT-based
health monitoring device which captures and transmits an
Electrocardiogram (ECG) signal to the Internet through a
smartphone, when the battery level is low, the device can
reduce the sampling rate of data acquisition from 360Hz to
250Hz. Alternatively (or conjointly) it can stop performing
digital filter for baseline wandering removal [9], and offload
it to the gateway. However, the gateway (smartphone) is
battery-powered with limited energy sources too. It has
limited resources for receiving data and limited processing
capability to perform the offloaded computations. Depend-
ing on its remaining energy, the gateway should restrict its
available bandwidth and processing power offered to other
IoT devices. It should be noted that although the gateway
might be equipped with a high-bandwidth connection to the
Internet (e.g. WiFi), its interface with IoT devices is still a
low-power wireless connection such as Bluetooth Low Energy
or ZigBee, which have a low bandwidth [10, 11, 12].

In such a local network, IoT devices aim at reaching the
highest overall QoS while meeting their battery lifetime
constraints. A mechanism is needed to capture the dynamism



in an IoT network and help the IoT devices to choose their
best operational configuration using their control knobs (i.e.
QoS level and offloading scheme). The QoS management
under battery lifetime constraints in IoT needs dynamic
online solutions due to the following reasons:

1. The remaining energy of IoT devices varies over time due
to consumption or recharge.

2. In case of having a general device as the gateway (e.g.
smartphone), the available bandwidth or processing capa-
bility may change over time due to other workloads, or
due to its available power.

3. The number of IoT devices connected to the gateway may
change [13].

4. The gateway may change in an IoT local network [7, 10].

An online solution is necessary to address efficient QoS
management in such a dynamic IoT configuration. In relevant
approaches, MiLAN [14] is a middleware which manages and
allocates network resources for applications that fuse data
from multiple sensors and need to select optimal set of sensors.
However, the QoS of each sensor is fixed. Moreover, MiLAN
considers only the bandwidth limitation of network while the
processing capability is not modelled. Besides, it does not
model the on-board processing and therefore cannot support
combination of offloading schemes. In [15], an approach
is proposed to minimize the energy consumption of sensor
nodes by computation offloading. This approach is used for
finding optimal partitions of an application for computation
offloading. The output of this approach is an input to our
problem.

The novel contributions of this paper are as fol-
lows:

• We present a QoS management scheme for IoT systems
with constraints on battery, bandwidth and processing
power.

• We present an Integer Linear Programming (ILP) for-
mulation for the problem and show that this problem is
NP-hard.

• We propose a pseudo-polynomial time scheme which not
only reuses sub-solutions of a problem instance, but also
reuses the pre-computed solutions for the next problem
instance.

Paper structure: in Section 2, we present the problem
formulation and then we provide a detailed presentation of
our proposed solution in Section 3. Section 4 illustrates the
effectiveness of our solution by means of a case study. Exper-
imental results and evaluations are presented in Section 5,
while we conclude the paper in Section 6.

2 Problem Formulation
Consider a local network with a set of N IoT devices,

where each device is uniquely identified by an integer value
d ∈ {1, . . . , N}.

Id =
(
Xd, Rd, Bd, ed, Ud(·), Sd(·), Td(·), Cd(·)

)
(1)

Each IoT device Id is specified by a tuple, where

• Xd denotes the set of possible input data rates of device Id.
They depend on the sensor sampling frequency and data
resolution. An IoT device offers its service at Md different
QoS levels, with each level having a different input data
rate and thus providing a different service quality. For
instance, consider an IoT-based heart monitoring device
that can capture ECG signals at multiple discrete sampling

rates (e.g. 100Hz, 200Hz, 300Hz, and 1000Hz).

Xd =
{
xdi | i ∈ [1,Md]

}
(2)

• Rd denotes the set of possible transmission data rates of
device Id. They depend on the input data rate xdi and
the computation offloading strategy of the IoT device.
Offloading determines how much input data is not pro-
cessed on the device (on-board processing), but instead
transmitted to the gateway (offloaded). An IoT device
offers Qd different offloading levels. The transmission data
rate rdij depends on the QoS level i (input data rate) and
the offloading level j. It corresponds to the share of input
data rate that is offloaded plus the (intermediate) results
from the on-board processed data.

Rd =
{
rdij | i ∈ [1,Md], j ∈ [1, Qd]

}
(3)

For instance, consider that the above-mentioned IoT-based
heart monitoring device had 3 off-loading levels. Level
1 could indicate ‘no off-loading’ and thus only transmits
a small amount of results (e.g. the features that were
extracted from the signal), independent of the input data
rate. Level 2 could be used to off-load a certain percentage
of the input sample rate. For instance, the device could
store a certain amount of input samples in a buffer, then
process the buffer and off-load all incoming samples during
this processing to the gateway. Level 3 could perform
some pre-processing on the data, e.g. applying a filter on
it, and then send the filter output to the gateway. As the
filter would not reduce the data rate, the transmission
rate would equal the input data rate, but some of the
processing is already done. The particular transmission
data rates depend on the device and how it is used, which
has to be determined by the user and thus is considered
as given in this problem formulation.

• Bd denotes the minimum required battery lifetime (i.e.
until the next recharge or battery replacement).

• ed is the remaining energy in the battery of device Id.
• Ud(xdi) is the utility function that quantifies the utility

or quality of service (QoS) provided to the user when the
device is capturing input data at rate xdi .

• Sd(xdi) is the power consumption of the device for sensing
and capturing data at rate xdi .

• Td(rdij ) is the power consumption for transmitting data
at rate rdij .

• Cd(i, j) is the power consumption for processing at input
data rate xdi under offloading level j.

The battery lifetime of IoT devices depends on 1) the
remaining energy and 2) the total power consumption rate:

bdij =
ed

Sd(xdi) + Cd(i, j) + Td(rdij )
(4)

where bdij denotes the expected battery lifetime when the
device captures input data at rate xdi , processes it, and then
transmits at rate rdij .

The gateway connects devices to the Internet. It receives
data from IoT devices, processes it and transmits the final
result to the Internet. The gateway is specified by triple:

G =
(
p(·), R, P

)
where:
• p(rdij ) shows the required processing capability of the
gateway to perform the necessary operations on the re-
ceived data at rate rdij and offloading level j.

• R is the total available bandwidth of the gateway to receive
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Figure 2: Problem model: IoT devices with differ-
ent QoS and offloading levels resulting in different
transmission data rates. The gateway receives and
processes the data.

data from IoT devices.
• P shows the total processing capability of the gateway.
The effect of environment and surrounding devices (e.g.

interference) on the transmission can be modelled in R and
Td(·).

The system is summarized in Figure 2. The problem that
is targeted in this paper can be solved by deciding the QoS
level i and the offloading level j for each IoT device Id at run-
time, such that the bandwidth, computation, and lifetime
constraints are fulfilled (Eq. (5) to (7)) and the overall benefit
(Eq. (8)) is maximized.

Bandwidth constraint:
∑

∀d rdij ≤ R (5)

Computation constraint:
∑

∀d p(rdij ) ≤ P (6)

Lifetime constraint: ∀ d : bdij ≥ Bd (7)

Optimization goal: maximize
∑

∀d Ud(xdi) (8)

3 Proposed Solution
3.1 Decomposing the Problem

The targeted problem (see Section 2) has two sets of con-
straints: one for IoT devices and one for the gateway. The
selected configurations for devices Id (i.e. xdi and rdij ) should
meet the lifetime constraint (Eq. (7)). Given the selected
configuration for IoT devices, the gateway’s constraints to
be met are bandwidth and computation (Eq. (5) and (6)).
The device’s constraint depends solely on device param-

eters. To reduce the search space, we can decompose the
optimization problem into 1) device’s problem and 2) net-
work (gateway) problem. In the device’s problem, each IoT
device excludes those configurations that violate its lifetime
constraint to reduce the search space. Then, the network
(gateway) problem is solved by considering the reduced search
space.

3.2 Device Problem
3.2.1 CoD Matrix

We use a matrix for each IoT device that shows the possible
Configurations of that Device (CoD matrix). Each element
κd[i, j] at the intersection of the QoS level i (corresponding to
the input data rate xdi) and the offloading level j contains a
pair of the battery lifetime (see Eq. (4)) and the transmission
data rate, i.e. (bdij , rdij ), i ∈ [1,Md], j ∈ [1, Qd], as shown
in Figure 3.

Since the available energy of IoT devices changes over time
(due to consumption or re-charge), the expected battery
lifetime of each configuration (i.e. the first element of each
tuple in the matrix) changes over time, which means this
matrix needs to be updated periodically.

Example 1: Consider an IoT device Id with battery
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Figure 3: CoD matrix for an IoT device Id; omitting
subscripts d for brevity

lifetime constraint of Bd = 40 that has 5 different QoS levels
Xd = {100, 200, 300, 400, 1000} and 4 different offloading
levels per QoS level. In this example, lets say that each
offloading level transmits 20% more data than the previous
offloading level, i.e. ri(j+1) = rij + 0.2 ∗ xi.

(49, 20) (57, 40) (63, 60) (74, 80)

(44, 40) (46, 80) (54, 120) (61, 160)

(31, 60) (43, 120) (46, 180) (52, 240)

(24, 80) (28, 160) (33, 240) (40, 320)

(18, 200) (22, 400) (27, 600) (31, 800)
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(31, 60)

(24, 80) (28, 160) (33, 240)

(18, 200) (22, 400) (27, 600) (31, 800)

Figure 4: CoD matrix for Example 1

Figure 4 shows the CoD matrix associated with Example 1.
The configurations whose expected battery lifetime is less
than the constraint (i.e. bdij < Bd) are not feasible and
should be excluded from the search space. The infeasible
configurations (those with expected battery lifetime less than
40) are shown in shaded area. All other configurations are
feasible as they meet the battery constraint.

3.2.2 Properties of CoD Matrix
The CoD matrix of most applications may have the follow-

ing property. However, we should emphasize that neither the
formulated problem nor our presented solution is restricted
to this property.

Property 1: For each column of the CoD matrix, the
elements are in an increasing order in terms of transmission
data rate, but in an decreasing order in terms of estimated
battery lifetime.

The nature of this property can be understood intuitively.
For a given offloading level (i.e. column), an increased input
data rate leads to increased transmission data rate and in-
creased on-board processing requirements. This has negative
effects on the power consumption for sensing data Sd, trans-
mitting data Td, and processing data Cd, all of which have a
negative effect on the battery lifetime (see Eq. (4)).

3.2.3 Reducing Problem Size
Although all the elements outside the shaded area meet

the battery lifetime constraint and are feasible configurations
for the problem, some of them are intuitively inefficient. For
instance, all the elements in the first row of the above matrix
(Figure 4) provide the same QoS to the user. They are
just different in the the amount of computation offloading.
Selecting the element with the smallest transmission data
rate (marked with a green circle in Figure 4) would result to
the optimal solution as is proved in the following.



Theorem 1. If two elements from the same row i are
feasible, κ(i, j1) and κ(i, j2) where j1 < j2, then κ(i, j2)
never outperforms κ(j, j1) in the optimal solution.

Proof. The theorem is intuitively obvious. Since κ(i, j1)
and κ(i, j2) offer the same QoS level i and utility U(xi) their
direct contribution to the objective goal (see Eq. (8)) does not
differ. However, imposing less computation to the gateway
(i.e. less transmitted data) may leave more room for other
IoT devices, so that the gateway can possibly choose another
feasible configuration with higher utility and correspondingly
more computation and off-loading.

Inspired by theorem 1, for each IoT device, we only consider
the leftmost feasible element of each row (i.e. the one with
the least data transmission rate):

∀ 1 ≤ i ≤Md rdi = min
bdij

≥Bd

(rdij ) (9)

After building/updating the CoD matrix, each device finds
the efficient feasible configurations (EFC), from Eq. (9), and
forms a set of pairs containing 1) utility of each EFC, and 2)
the transmission data rate rdi of each EFC. In the previous
example shown in Figure 4, let us assume the utility of
QoS levels is as U(100) = 50, U(200) = 90, U(300) = 110,
U(400)=150, and U(1000)=310. Then the EFC set of this
device is shown in Figure 5.

CoD elements:

xd1 : (49, 20) xd2 : (44, 40) xd3 : (43, 120) xd4 : 40, 320)

EFCd =
{
(50, 20), (90, 40), (110, 120), (150, 320)

}
Ud(xd1) Ud(xd2) Ud(xd3) Ud(xd4)

Figure 5: An example of EFC set

Each IoT device periodically checks its remaining energy
(i.e. ed), updates the CoD matrix, and updates the EFC set.
In case that EFC set changes, the device sends the new set
to the gateway, where it is used to solve the Network problem.
Note that the EFC set only contains feasible solutions, i.e.
the number of entries in the EFC set of a particular device
may change over time.

3.3 Network (Gateway) Problem
3.3.1 Integer Linear Programming (ILP) Formulation

For each IoT device, there is a set of efficient feasible config-
urations (EFC), showing the offered utility and transmission
rate to the gateway. Given all EFC sets of all IoT devices, the
gateway needs to solve the QoS management problem. The
gateway extends each EFC set by including the processing
requirement of the associated transmitted data (i.e. p(rd)).
The resulting EFC′

d set is shown in Eq. (10).

EFC′
d =

{ (
Udf , rdf , pdf

)
1≤f≤

∣∣EFCd

∣∣
}

Udf = Ud(xdf ) // Utility of device Id for f-th EFC entry

rdf = rdf // Corresponding transmission rate (see Eq. (9))

pdf = p(rdf ) // Corresp. gateway processing requirement

(10)

The gateway problem is to select one and only one item
from each set such that the overall utility is maximized and
the gateway’s constraints are met. This can be formulated

as an Integer Linear Programming (ILP):

max
∑
d

∑
f

(Udf × wdf ) (11)

subject to ∀d :
∑
f

wdf = 1 (12)

∑
d

∑
f

rdf × wdf ≤ R (13)

∑
d

∑
f

pdf × wdf ≤ P (14)

where

wdf =

{
1 if f -th EFC element from d-th device is chosen
0 otherwise

This optimization problem corresponds to the Multidimen-
sional Multiple-Choice Knapsack Problem (MMKP) and is
NP-hard, thus computationally intractable [16]. Since the
constraints in Eq. (13) and (14) are inequalities, the pro-
posed technique in [17] for merging multiple constraints does
not apply to our problem. In the following, we present a
pseudo-polynomial time solution to our problem based on a
dynamic programming (DP) approach.

Definition 1: We use the term “instance of problem”
to refer to the configurations of the gateway problem (i.e.
the input data for Eq. (11) to (14)). Any change in the EFC
sets makes it another instance of the problem.

3.4 Dynamic Programming Solution
3.4.1 Intuition

Although we can design and introduce heuristic approaches,
a dynamic programming solution seems more appropriate
for our problems because:

• We need to solve different instances of the problem where
subsequent instances do not differ substantially. This gives
the dynamic programming approach the opportunity to
possibly reuse some computations that are performed in
the previous instance of the problem.

• It provides a quick and optimal solution to the problem.

Since our problem has two dimensions (i.e. two constraints
including data rate and processing power), the table to form
the basis for the dynamic programming approach has 3 di-
mensions: one for the number of devices, and two others for
the constraints.

3.4.2 Formulation & Example
Let Z(d,R, P ) denote the maximum overall utility that we

can get from the first d devices while the constraints on the
data rate and processing capability of gateway are R and P ,
respectively.
For the dth device, we need to choose one of its configu-

rations from its EFC set whose size is
∣∣EFCd

∣∣. Considering
the f th element of the EFC set, its utility, data rate, and
processing requirements are Udf , rdf and pdf , respectively.
For the f th configuration, we first find the overall utility of a
solution with d− 1 devices whose overall required bandwidth
and processing resources are R−rdf and P −pdf , respectively.
Then, we add it to the provided utility by f th configuration
(i.e. Udf ). We investigate all the possible configurations of
device d and select the one that maximizes the overall utility.
Therefore, this algorithm leads to the global optimum solu-
tion. It should be noted that the order of devices does not
matter. Equation (15) shows the recurrence relation which
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Figure 6: The dynamic programming table (left), and an example solved using our approach (right).

Algorithm 1:Our proposed approach based on top-down
DP

1 Inputs :M EFC sets, and constraints P and R
2 Function Z(d,R, P )
3 if R ≤ 0 or P ≤ 0 then
4 return −∞;

else if d == 0 then
5 return 0;

end
6 for f ← 1 to |EFCd| do
7 if rdf ≤ R and pdf ) ≤ P then
8 if Tb[d− 1][R− rdf ][P − pdf ] == −∞ then

Tb[d− 1][R− rdf ][P − pdf ] ←
Z(d− 1, R− rdf , P − pdf ));

end
9 if Tb[d− 1][R− rdf ][P − pdf ] + Udf > Tb[d][R][P ]

then
10 Tb[d][R][P ]← Tb[d−1][P −rdf ][P −pdf ]+Udf ;

end
end

end

11 call Z(N,R, P )

is proposed to calculate Z(d,R, P ) (as explained above):

Z(d,R, P ) =

max
1≤f≤|EFCd|

{
Z
(
d−1, R−rdf , P−pdf

)
+ Udf

} (15)

Example 2: Figure 6 shows an example with 3 devices
whose extended EFC sets are EFC′

1 = {(7, 1, 1), (8, 2, 2),
(10, 3, 3)}, EFC′

2={(6, 1, 2), (7, 2, 3)}, and EFC′
3 = {(5, 1, 1),

(8, 2, 2)}, respectively. The constraints of the gateway are
R= 6 and P = 6. The optimal solution is Z∗ = Z(3, 6, 6).
Based on Eq. (15):

Z(3, 6, 6)= max{5+Z(2, 6−1, 6−1), 8+Z(2, 6−2, 6−2)}
=max{5 + 16, 8 + 14} = 22

Z(2, 5, 5) =max{6 + Z(1, 4, 3), 7 + Z(1, 3, 2)} = 16

Z(2, 4, 4) =max{6 + Z(1, 3, 2), 7 + Z(1, 2, 1))} = 14

In this example, the cell Z(1, 3, 2) is referred twice, which
simply shows the benefit of using dynamic programming to
avoid recomputing the same sub-problem repeatedly. A top-
down dynamic programming is preferred for our approach as
some of the sub-problems never get examined at all (see Fig-
ure 6). For instance, among all the elements corresponding
to device N (3 in the above example), we are just inter-
ested in computing Z(N,R, P ) (or Z(3, 6, 6) in our example).
Hence, to avoid computing unnecessary cells, we implement
a top-down DP that is based on the recursive relation and on
memoizing the computed sub-problems in a linked list struc-
ture, which reduces the memory usage as well as computation
run-time.
Algorithm 1 illustrates our top-down dynamic program-

ming approach to find the optimum solution to the QoS man-
agement problem based on the recursive relation in Eq. (15).

3.5 Reusing Sub-solutions
Definition 2: Mask the change: Any change in the

EFC set of device d that does not change the cells of the
table corresponding to device d+1 (i.e. [d+1, ∗, ∗]) is masked,
and hence does not propagate to other cells of the table. A
masked change does not affect the solution.

As mentioned earlier, the EFC set of each node may change
over time as its available energy changes due to consumption
or battery re-charge. Some of those changes can be com-
pletely masked. However, the unmasked changes still benefit
from pre-computed cells of the solution table.
3.5.1 Classifying the Possible Changes
Possible changes in an EFC set can be categorized into

three different class:

1. ADD: A new item is added: It happens only when the
battery is re-charging and the available energy (i.e. ed)
increases. Then, a QoS level that was not present in
the EFC set is added to it. For example in Figure 7(a),
the highest QoS level (last row) is included as one of its
configurations meets the battery lifetime constraint.

2. REM: An existing item is removed: It happens when the
battery depletes and the available energy decreases. Then,
a QoS level that can no longer fulfill the battery lifetime
constraint (under the new circumstances) is completely
excluded and its corresponding items are removed from
the EFC set as shown in the example of Figure 7(b).

3. CHANGE: An existing item changes its second entry
(i.e. r). It means that the item still offers the same QoS
level (the same utility value U), but with a different data
transmission rate. In other words, the item is replaced
with another item from the same row in the CoD matrix
but from a different column as shown in Figure 7(c) and
Figure 7(d). It happens under two different circumstances:
• DEC: Due to battery recharge, a new element in the

CoD matrix is added to the feasible region of a row (see
Figure 7(c)). Therefore, the corresponding item in the
EFC set is replaced with a new one which has the same
utility (they are both in the same row of CoD) but with
less data to transmit (i.e. more on-board processing):
(U, r∗) → (U, r̂) : r∗ > r̂.

• INC: Due to the energy consumption, the previous
EFC item is not feasible anymore and another element
in the CoD matrix from the same row is selected to be
in the EFC set (see Figure 7(d)). The first entry (i.e.
utility) is the same, but the data rate is increased (i.e.
more computation offloading): (U, r∗)→(U, r̂) : r∗<r̂.

Any change in the EFC set falls into one of the above cate-
gories. It should be noted that multiple changes can happen
at the same round of updating the CoD matrix.
3.5.2 When and How to Reuse?
We investigate different classes of changes, and try to

propose efficient solutions to reuse the sub-solutions that
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Figure 7: Different possible changes in EFC set of
an IoT device

were computed before the changes. Among all the possible
changes, some do not change the optimal solution. Hence, the
previous solutions remain the same with no need to solve the
problem again. Some cases can reuse the previous solution
partially, and others need to rerun the algorithm.

� ADD: In case that the change is an ‘ADD’, the previously
computed cells of table are completely reused, but some
new cells need to be computed. For instance, assume
that in Example 2, a new item is added to the EFC set
of device 2, i.e. EFC′

2 = EFC′
2 ∪ {(8, 3, 4)}. It affects

computing of Z(2, 5, 5) and Z(2, 4, 4) as following:

Z(2, 5, 5)=max{6+Z(1, 4, 3), 7+Z(1, 3, 2), 8+Z(1, 2, 1)}
=16

Z(2, 4, 4)=max{6+Z(1, 3, 2), 7+Z(1, 2, 1), 8+ Z(1, 1, 0) }
=14

As it is shown, only one new table cell is needed to be
computed (i.e. Z(1, 1, 0)) and all the other required cells
are reused from previously computed cells.

� REM:
1. If the removed item was not the item that was selected

as the solution in the previous setup, then the optimal
solution does not change and there is no need to re-run
the algorithm. This case can be checked and masked at
the IoT device without the need to inform the gateway.

2. Based on Property 1, the removed item had the highest
utility and data rate. In this case, the solution to the
new setup is already in the computed table, as the
new instance of the problem is a subset of the previous
instance.

� INC: The updated item in the EFC set is either the
selected item in previous instance or a non-selected item.
1. In the former case, if the amount of increase in band-

width (i.e. Δr = r∗ − r̂) and processing (i.e. Δp =
p(r∗)− p(r̂)) are less than available resources that are
left (i.e. R−∑

r∗d and P −∑
p(r∗d)), then the solution

does not change.
2. In the latter case, the optimal solution does not change,
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Figure 8: Simplified flow of QoS management

hence there is not need to re-run the algorithm to find
it.

� DEC: If this change happens for device d1 (1 ≤ d1 ≤
N), only the precomputed cells of devices 1 ≤ d2 < d1
can be reused, and the other referred cells need to be
updated. Let us assume that in Example 2, the EFC set
of device 2 witnesses a ‘DEC’ change as the second item
becomes (7, 2, 2). All the cells containing Z(1, ∗, ∗) remain
unchanged, but the others are updated as following:

Z(2, 5, 5)= max{6+Z(1, 4, 3), 7+Z(1, 3, 3)} = 17

Z(2, 4, 4)= max{6+Z(1, 3, 2), 7+Z(1, 2, 2)} = 15

Z∗ = Z(3, 6, 6)= max{5 + 17, 8 + 15} = 23

This shows that in our proposed solution not only the sub-
problems of each instance can be reused to avoid re-compu-
tation (by means of dynamic programming), but different
instances of the problem (i.e. after changes in the setup) can
still benefit from previously computed sub-solutions.
Figure 8 shows a simplified flow of the solution including

the device flow and gateway solution flow.

4 Use case: IoT in Healthcare Monitoring
Healthcare has been recently emerged to a promising but

demanding IoT application paradigm [18, 19]. IoT-based
portable devices provide continuous personal health monitor-
ing, e.g. electrocardiography (ECG), electroencephalogram
(EEG), Electromyogram (EMG), blood pressure (BP), etc.,
aiming to reduce the costs of hospitalization and/or support
early disease detection, fitness and wellness. In this paper,
we focus on ECG arrhythmia detection, serving as our driver
application around which we formulate a realistic use case
for evaluating the efficiency of the proposed IoT resource
management solution.

4.1 ECG Analysis & Arrhythmia Detection
ECG provides essential information about the status of

the heart which is critical for prevention, early diagnosis, and
treatment of cardiovascular diseases [20] as well as wellness
applications [21]. In this work, ECG signals are used to
detect heart arrhythmia, i.e. irregularly fast or slow heart
beats which may lead to strokes or heart failure [22]. On the
IoT device, we implement the ECG analysis flow of Figure 9,
which receives raw ECG data and detects arrhythmia (if
any).



Figure 9: ECG analysis flow

1. Filtering: The initial step includes signal acquisition and
filtering. A band-pass FIR filter is used to remove baseline
wander (< 1Hz) and power line noise (50Hz).

2. Segmentation and heart beat detection: For seg-
mentation of the ECG signal, we first need to detect the
R peak (see the annotated ECG signal in Figure 9). The
periodicity of the heart beat is not constant and varies due
to different reasons such as physical activity, stress level,
etc. Hence, a window of samples are examined to locate
the peak. The window size depends on the sampling rate.
The detected R peak is used as the start of a new segment.

3. Feature extraction: Features extraction of the heart
beat is performed through Discrete Wavelet Transforma-
tion (DWT) which is very popular for ECG signal process-
ing due to the fact that it is lightweight and capable of
providing time and frequency information simultaneously
[23, 24]. This is essential when analyzing signals whose
frequency response varies in time, such as the ECG sig-
nal, and thus time localization of the frequency spectral
components is required.

4. Diagnosis: For the final stage, a Support Vectors Ma-
chine (SVM) classifier is used to capture non-linear re-
lationships of the feature space representing the target
classification problem [11]. The execution of the classifier
concludes whether the processed heart beat exhibits any
signs of arrhythmia. Figure 9 depicts an example ECG
signal exhibiting normal and arrhythmic heart-beats.

The examined IoT scenario is located at clinical ward
which welcomes a large number of patients that should all be
monitored simultaneously. Wearable ECG analysis devices
communicate with the gateway through low-power low prox-
imity wireless communication which in our deployed scenario
is Bluetooth Low Energy.

4.2 QoS and offloading levels
The presented design is pipelined in the sense that it

produces valid results at the end of every processing stage.
For example, if the device is instructed to execute up to the
feature extraction process then the output of the flow is the
Discrete Wavelet Decomposition of the input signal. This
result can be used in subsequent processing if transmitted
to other devices.
This property of the flow enables the system to support

offloading of processing to the gateway. All of the afore-
mentioned pipeline stages can be executed on the gateway.
Therefore, processing can be performed up to an arbitrary
pipeline stage on the IoT node, then transmit its output to
the gateway, and resume the execution of pipeline there. The
gateway decides the level of offloading for each IoT node of
the system by solving the QoS management problem.
As far as different QoS levels are concerned, they corre-

spond to different sampling frequencies of the ECG signals.
Signals sampled at a higher frequency offer more detailed

description of the monitored ECG. The increased signal res-
olution enhances further analysis and diagnosis by medical
experts thus leading to increased QoS for the patient. Com-
binations of QoS levels and offloading levels (i.e. after which
pipeline stage computation is offloaded to the gateway) result
in different data rates for input (xd in Eq. (2)) and output
(rd in Eq. (3)) of the device. Table 1 summarizes these values
for combinations of QoS Levels and offloading levels stages
for our ECG monitoring prototype.

Table 1: Input data rates and transmission data
rates for different QoS levels and offloading levels

Transmission rate rd [B/s] for off-
loading after a certain pipeline stage

QoS
level

Sampling
freq. [Hz]

Input data
rate xd [B/s]

Stage 1 Stage 2 Stage 3 Stage 4

1 180 720 720 360 104 1

2 360 1440 1440 720 192 1

3 720 2880 2880 1440 372 1

4 1440 5760 5760 2880 564 1

5 2000 8000 8000 4000 1024 1

Due to the increased sampling frequency of higher QoS
levels we observe an increase in input and output data rate
of each stage. For example, if our window of data analysis W
is 256 points wide at sampling frequency of 360Hz, then the
corresponding window rises to 512 data points at double the
sampling frequency. Inevitably, this affects all other pipeline
stages given that they operate on greater amount of data.
The only exception is the result of the analysis flow (Stage 4),
which is always one value that corresponds to the diagnosis
label of the processed heart beat.

Stages 1 to 3 of the flow have been designed to operate on
a variable-sized input data window while a classifier model
(stage 4) was trained for each QoS level. Therefore, there
is an instance of the pipeline for each QoS Level, which
operates on different amount of data. To comprehend how
this fact affects the resources needed for the execution of
each combination of QoS level and pipeline stage, we profiled
the execution of the flow on the target IoT device. Figure 10
summarizes the percentage of execution of each processing
stage over one minute for increasing QoS levels.
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Figure 10: CPU utilization of ECG analysis stages

A expected, we observe that a higher QoS level comes at
the price of increased computational requirements. Figure 10
also shows the computational effort that is off-loaded to the
gateway for the different off-loading levels, as the breakdown
for the computational complexity of all pipeline stages is
shown. In all cases, the most computationally intensive
stage is the diagnosis part due to its complex structure in
an effort to provide accurate predictions. On the contrary,
beat segmentation and DWT do not occupy the CPU for



prolonged period. The rest of the time the CPU remains idle,
which is the major reason of power consumption variations
over different QoS levels.

5 Evaluation and Results
5.1 Experimental Setup

To construct our ECG analysis flow, we use actual patient
ECG data records from MIT-BIH Arrhythmia Database [25].
The annotated signals by medical experts are used for training
our machine learning tools. Original signals were sampled at
360Hz. Down- and up-sampling has been used to generate
ECG signals of differing sampling rates.
Experimental analysis has been performed by simulating

IoT network topologies of up to 10 nodes. To efficiently model
the characteristics of our case study for different QoS and
Offloading levels, we profile the real execution of the ECG
analysis flow on an Intel Quark SoC, already proposed and
used for wearable IoT devices [26, 27]. The outcome of this
profiling campaign summarizes the computational require-
ments, expressed in CPU utilization, of each combination of
QoS- and offloading-level.

To conduct the experiments, a combination of experimen-
tally derived data enhanced with nominal data from data-
sheets of commercial devices is used for the model parameters
values. Regarding the available energy of the IoT device (ed),
a battery consumption model of each IoT node is composed
based on the instrumented CPU utilization. More specifically,
energy consumption of ECG acquisition Sd(xdi) was calcu-
lated based on [28]. Bluetooth Low Energy (BLE) is used for
communication between IoT devices and gateway. Power con-
sumption value of data transmission (i.e. Td(rd)) is 0.153μW
based on [29] and transmission latency is 4μs/bit [30]. Since
BLE exploits an adaptive frequency hopping mechanisms,
the probability of interference is very low. To complete the
battery model of the IoT nodes, we choose a rechargeable
Lithium-Ion coin cell battery with a nominal capacity of up
to 420mAh [31]. We use a realistic discharge model for the
battery using [32] for various values of discharge currents to
evaluate the available energy for Eq. (4).
An ARM Cortex-M3 device is considered as the gate-

way [33]. The energy consumption values were acquired by
profiling the execution of the ECG analysis flow for all com-
binations of QoS levels and processing stages to measure the
values of our parameters, e.g. Cd(·), p(rdij ), etc.

The final key component of the system model is to deter-
mine the utility functions of each device. The QoS value of
each combination of QoS level and ECG processing stage
was set proportional to the ratio of the sampling frequency
of the ECG signal divided by the maximum available ECG
sampling frequency (2 kHz). We also enable the creation of
more complex profiles of IoT devices by allowing the user
to specify a factor of how important high QoS levels are for
this device.

5.2 Overhead Analysis
We implemented our DP approach on the ARM Cortex-

M3 microcontroller that is used as our gateway platform.
We measured the number of CPU cycles that our proposed
solution needs to calculate the optimal result and compare
it against the brute-force (BF) method in Figure 11. As the
number of devices increases, the algorithm execution time for
BF increases exponentially whereas the execution time of our
algorithm increases moderately (note the logarithmic scale of
the Z-axis). For instance, having ten IoT devices with each
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Figure 11: The execution time of our proposed
method compared to the BF method for different
number of devices and different sizes of EFC sets.

one having five feasible configurations, our algorithm finds the
optimal solution in 0.4 seconds when the gateway is running

at 100MHz (i.e. 39,480,530 [cycles]

108 [Hz]
	 0.4 s), while the BF meth-

ods takes around 56 seconds (i.e. 5,587,270,875 [cycles]

108 [Hz]
	 56 s).

The generally short execution time of our proposed solution
and its good scalability show its suitability for online and
dynamic scenarios of IoT networks where the number of
active devices and their feasible configurations change over
time repeatedly.
As explained in Section 3.4.2, our proposed solution is

based on a recursive function and its sub-problems may
occur repeatedly. We achieve execution time reduction by
memoizing the answers of sub-problems to avoid recomputing
them over and over. In Figure 12, we show a detailed analysis
of our proposed algorithm with N = 7, · · · , 10 devices and
Q = 3, · · · , 5 QoS levels. It shows the average number of
recursive function calls if the sub-problems are not stored
(named ‘Total’), and the average number of recursive function
calls in our approach. Note that the values on the X-axis
are presented in logarithmic scale. The Y-axis shows the
recursion level where the function call happened. To make
it clear, see Figure 13 which shows the function calls as a
tree. The root is at the N th level, where N is the number
of IoT devices (see Section 2). For instance, in Figure 13
the number of function calls at level 9 is equal to 4. Now
consider the green node which is labeled with 1 . This node
is called four times, however, in our proposed solution it is
called only once and the result is stored in the table for later
references. The number of function calls at the N th level is
always 1 and is not shown in Figure 12.
In Figure 14, we show the time interval between two suc-

cessive re-executions of our algorithm (i.e. time between two
problem instances), which is triggered after a change in the
set of feasible configurations. As we increase the number
of devices in our case study, the average time between re-
executions decreases (i.e. it is needed more frequently).

5.3 Comparison to unsupervised devices
We also compare our solution to the system that operates

with no QoS management by the gateway (called ‘unsuper-
vised’). We conducted experiments with two scenarios for
the unsupervised system.
In the first scenario, devices operate at the highest QoS

level and with no offloading to the gateway. We consider a
battery lifetime constraint of 20 hours (1200 minutes) and
assume that designers can choose a battery out of three
ranges with small (260–320mAh), medium (320–380mAh)
and high (380–420mAh) capacity. For a varying number of
IoT devices in a range of 2 to 10, we compare the achieved
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Figure 12: Total number of recursive calls of function (see Section 3.4.2), and number of recursions in our
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Figure 13: function calls tree
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Figure 14: The time intervals between successive re-
execution of algorithm in the case study

battery lifetime of the unsupervised system and our solution.
Figure 15 shows the average achieved battery lifetime. The
unsupervised system fails to meet the constraint even when
the battery capacity is high, while ours always respects it.
In some cases, the battery lifetime of our system may exceed
the battery constraint (i.e. device operates a bit longer). The
reason is that as the number of devices increases, our solution
offloads more data and the constraints of the gateway force
the devices to decrease their QoS level such that all devices
can benefit from offloading. For instance, in Figure 4 instead
of x4=400 and r4,4=320, our solution has to select x3=300
and r3,2 = 120 in order to meet the gateway’s constraints.
This leads to lower energy consumption and longer battery
lifetime.
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pared to the unsupervised system for different num-
ber of devices

In the second scenario, the IoT devices in the unsupervised
system select a low QoS level to make sure that the battery
lifetime constraint is met. Figure 16 presents the average
achieved QoS with our proposed solution compared to the
unsupervised system. In a system with only a few devices (i.e.
2 or 3), the gateway resources are not scarce and therefore,
our solution selects a high QoS level for the IoT devices.
As the number of devices increases, the gateway’s resources



become saturated and thus our solution assigns a low QoS
level to IoT devices. By employing our solution, the overall
QoS of devices is at least 50% more than unsupervised system.

6 Conclusions
In this paper we studied the problem of QoS management

in IoT systems, where the IoT devices can provide different
QoS levels and can offload a share of their workload. The QoS
management has to fulfill constraints for the battery lifetime
of IoT devices, communication bandwidth to the gateway,
and processing capability of the gateway (for offloading). We
present an ILP formulation for this problem and decompose
it into separate device and gateway problems. This allows
to reduce the search space and to distribute a part of the
problem calculation to the IoT devices. The proposed solu-
tion benefits not only from reusing its sub-solutions (based
on dynamic programming), but also from previous instances
of the problem. We demonstrate the effectiveness of our
proposed approach by using a case study of ECG processing
in a personal healthcare monitoring application. The experi-
ments show that our solution improves the overall QoS by
50% compared to an unsupervised system while both meet
the constraints.
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