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ABSTRACT
Usage patterns of mobile devices depend on a variety of fac-
tors such as time, location, and previous actions. Hence,
context-awareness can be the key to make mobile systems
to become personalized and situation dependent in manag-
ing their resources. We first reveal new findings from our
own Android user experiment: (i) the launching probabili-
ties of applications follow Zipf’s law, and (ii) inter-running
and running times of applications conform to log-normal dis-
tributions. We also find context-dependency in application
usage patterns, for which we classify contexts in a personal-
ized manner with unsupervised learning methods. Using the
knowledge acquired, we develop a novel context-aware appli-
cation scheduling framework, CAS that adaptively unloads
and preloads background applications in a timely manner.
Our trace-driven simulations with 96 user traces demonstrate
the benefits of CAS over existing algorithms. We also verify
the practicality of CAS by implementing it on the Android
platform.

ACM Classification Keywords
D.4.1 Operating Systems: Process Management—Schedul-
ing; D.4.8 Operating Systems: Performance—Modeling and
prediction

Author Keywords
Context-aware computing; Application
unloading/preloading; Start-up latency; Energy minimization

INTRODUCTION
As mobile devices have become an essential part of our lives,
people expect more capability from them such as longer bat-
tery life, ubiquitous access to Internet, immediate response
time, and fresh contents (e.g., messages, feeds, news, ads,
sync data, or software updates). The recent advancement
of cellular networks and cloud computing is partly fulfilling
these needs. However, certain performance features such
as long battery life and high quality-of-service (e.g., low la-
tency and fresh contents) have intrinsic tradeoffs that make it
difficult to optimize simultaneously.
⇤indicates corresponding author.
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Figure 1. Daily network usage of the Facebook app and its correspond-
ing state either being in the foreground or background.

A motivational example for the effect of unloading

screen off (background)(115mA)screen on (foreground) (750mA)

Pressing the home/power button

Figure 2. Measured power consumption of a popular game application
for foreground and background states in a Galaxy Note 2 smartphone.

In a large-scale measurement study of 2000 Galaxy S3 and
S4 devices by Chen et al. [9, 10], 45.9% of the total energy
drain occurs during screen off periods. This high energy
consumption mainly comes from background applications
that update contents, collect user activity information, or keep
components in active states [25, 28]. However, these back-
ground activities may not be always beneficial for users. For
example, if a social network application updates its contents
frequently (say every 20 minutes), but the user launches this
application once a day, then most updates unnecessarily waste
network energy.1 As a motivational example, we show the
measured daily network usage2 of a Facebook application
on a Galaxy S7 smartphone running Android 6.0.1 in Fig-
ure 1, where the update or collection intervals are less than
20 minutes.3 Also, gaming or map applications often keep
high power-consuming components such as CPU and GPS
in active states while being in background. This operation is
intended to provide immediate responses from those appli-
cations but wastes energy unless the user re-launches them
within a short time. This inefficient stand-by operation is

1It is well known that frequent network traffic incorporates large
ramp and tail energy overheads [11, 16].
2We log network usage by reading /proc/uid_stat/[uid]/.
3The authors in [28] revealed that the Facebook application uses
network data every 5 minutes or every 1 hour in their large scale
measurement between Dec 2012 to Nov 2014. They also revealed
that network traffic from background applications consumes 84% of
total network energy, mainly due to periodic contents updates and
their tail energy consumption.
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indeed observed in a popular game application, as shown in
Figure 2. To this end, we aim at managing mobile applica-
tions in a resource-efficient manner by exploiting per-user
application usage behaviors analyzed in the perspective of
contextual usage statistics.
To our knowledge, the most widely used application con-
troller in Android [3] and iOS [5] is called the low memory
killer (LMK) that commonly kills (i.e., unloads or terminates)
applications to secure more available memory. Popular mem-
ory kill algorithms that are often implemented with LMK
purge applications in the order of either LRU (least recently
used) or process priority [19]. As this mechanism is merely
inherited from computer systems with abundant resources
(e.g., energy), it never considers contextual information of
application usages. Thus, it naturally fails to manage mobile
applications in an efficient way.
There have been two complementary approaches to tackle
this problem. Several papers [22, 24, 26, 31] tried to identify
energy bugs/hogs, that mainly come from coding errors. This
may successfully kill all detected buggy activities, but benign
operations such as activity logging can also be stopped (false
positive) and unnecessary network activities may be mostly
intact (false negative). Another recent approach in [10] pro-
posed a metric called BFC (Background to Foreground Cor-
relation) to quantify the level of user engagement for each
application on the fly. If the BFC value is smaller than a
threshold, background activities are implemented to be sup-
pressed. [10] also developed HUSH that puts applications
that have not been recently used in foreground into inactive
states, and extends the duration of being in the inactive states
in an exponential manner. They showed that the screen-off en-
ergy saving of their algorithms is 15-17% in their large-scale
traces.
The second approach partly tackled the energy-inefficient ac-
tivities, but still this approach is myopic as it ignores the very
important statistics on when the user will relaunch an applica-
tion. As human behaviors have regular patterns in their daily
lives, it is clearly possible to design a more efficient applica-
tion controller that is far beyond the naive exponential mech-
anism. This is only possible when deeper understandings of
per-user and per-application usage behaviors are acquired.
To that end, we collect application usage of 100 Android users
for which we deployed a logger that was designed to period-
ically send detailed application, sensor, and memory usage
data to our server. The total data collected spans over 1057
days and reaches about 20GB. We find that the usage patterns
follow heavy tail distributions: (i) The launching probabilities
of applications follow the Zipf’s law, and (ii) inter-running
and running times of applications resemble log-normal distri-
butions. We also reveal detailed context-dependency in the
re-launching probabilities, which convey more personalized
control ideas over existing studies [7,27,29,30,33]. To realize
a control algorithm that exploits such personalized context-
dependency, we automate the procedure of per-user context
extraction by adopting unsupervised learning methods that
significantly improve prediction accuracy.
With the contextual knowledge, we propose a new application
control framework, CAS (Context-aware Application Sched-
uler) that works by predicting when a user will launch an

application and which application will be used. Trace-driven
simulations with consideration of system overhead show that
CAS outperforms the Android genuine resource scheduler,
LMK, and Android 6.0. We also verify the practicality of
CAS by implementing the system on Android.

RELATED WORK
We classify previous work on mobile resource scheduling into
several categories from experimental studies to implementa-
tions and summarize their contributions.
Human behaviors on mobile application usage: To es-
tablish the foundation of context-awareness for mobile re-
source scheduling, several pioneering experimental stud-
ies [7,12,14,27,29,30,33] have been performed to analytically
understand how humans use applications given contexts such
as time/location information, and the last used application.
Falaki et al. [14] studied usage traces from 255 users and
found that the levels of activities are vastly different across
users. They also found that screen off times fit well with the
Weibull distribution.
Application preloading algorithms: Those early studies
on context-awareness led to the development of application
preloading/prefetching algorithms [6, 21, 23, 34, 35] applica-
tions that substantially reduce the perceivable start-up latency
(i.e., launch latency) by preparing required resources (includ-
ing computation such as rendering, and communication such
as feed updates) before they are requested by users. However,
most previous studies have focused on which application a
user will launch next, but not on when the user will launch
it. [23] is the only work that concerned the moment of launch-
ing, but the authors did not consider the cumulative penalty
of preloaded applications, hence their prefetching schedules
may suffer from large energy wastage until the predicted
application is actually accessed.
Application unloading algorithms: The default low mem-
ory killers (LMK) on Android [3] and iOS [5] unload or ter-
minate applications to secure more memory resource, when
the available memory goes below a pre-defined threshold.
Popular memory kill algorithms that are often implemented
with LMK purge applications in the order of either LRU
(least recently used) or process priority [19]. Android version
6.0 (Marshmallow), released in October 2015, adopts new
features called App standby and Doze mode [4] for energy
saving. App standby suppresses background activities of an
application that has not been used in foreground for 3 days.
The Doze mode is enabled when a user leaves the device for a
certain amount of time. Doze mode restricts background apps’
access to network and CPU for most of time, and lets back-
ground apps complete their activities for a short maintenance
window. Doze mode schedules this maintenance window less
frequently as the untouched period gets elongated.
A recent paper [10] proposed simple unloading algorithms
called BFC (Background to Foreground Correlation) and
HUSH for screen-off background activities. The BFC metric
quantifies the likelihood that a user will interact with an ap-
plication during a next screen-on interval after its background
activities. BFC updates the metrics using an exponential mov-
ing average at the end of each screen on period, and unloads
applications if their BFC metrics are less than a cutoff value
a . Another algorithm, HUSH increases the suppression in-
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Figure 3. The process states defined in Android [1] (left) and our
simplified three states (right).

Foreground 
(on screen) 

Background Empty 

Preload 
(for shorter start-up latency) 

Cold launch 
(incurs longer 

start-up latency) 

Stop 
(by home,  

power  
button) 

Warm launch 
(incurs shorter 

start-up latency) 

Unload 
(for lower power consumption) 

Stop 
(by manual 
termination) 

Figure 4. Our simplified states and transitions between a pair of states.

terval of an application if it has not been used in foreground
using exponential backoff (i.e., the interval is multiplied by a
given scaling factor s ). Once an application is used in fore-
ground, the interval is reset to an initial value. This simplistic
algorithm is shown to save about 15-17% of energy in their
large-scale usage traces.

PRELIMINARY
In this section, we explain basic concepts for application pro-
cesses. In Android OS, there are various application states
each of which has its corresponding “process importances”
ranging from 100 to 1000 [1]. An Android application4 in-
stalled on a device stays in one of the states at a time slot.
Figure 3 shows all the states defined in Android and our sim-
plified mapping of those states into three states: foreground,
background, and empty. We define a foreground process to
be a process in use and that is visible to users. By the def-
inition, there can be at most one application in foreground
at each time. An empty process5 is defined to be a process
unloaded from memory, and thus no resource is allocated to
that process. We denote a background process as a process
that is loaded but not running on foreground.
The rationale behind our simplification of states is that the pro-
cesses that are running with no foreground UI on the screen
show similar resource consumption characteristics (e.g., mem-
ory and power) as background processes of importance 400
rather than foreground processes running on the screen. Also,
these processes can be unloaded just like background pro-
cesses of importance 400 without disrupting on-going user
experience, except system processes6 that are designed to be
running all the time, and user-interactive applications7 that
are usable even without visible UIs.
4We interchangeably use process and application.
5The empty state corresponds to suspended in iOS [5].
6representatively phone caller and application launcher.
7applications such as music, radio and recorder.
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Figure 5. Our slotted time model of off and on periods (bottom) and an
example of corresponding sets of background applications at each slot
by LMK (top).

We depict the transitions between states in Figure 4. An empty
to foreground transition called cold launch occurs when a user
touches an empty (i.e., unloaded) application to launch. A
transition from background to foreground called warm launch
is mostly made when a user chooses to use the application by
re-launching an application that is still kept in the background,
and thus has shorter latency than cold launch but consumes
memory and battery for background activities. Therefore,
user experience on battery life and application launch latency
is highly dependent on the decision of putting an application
in either of background or empty state.
We further define the system state as either of off or on and
its period. The k-th off period, T off

k denotes a continuous
screen-off duration when all applications are either in back-
ground or empty, while the k-th on period, T on

k denotes a
continuous screen-on time duration for which an application
is being used in the foreground. Figure 5 depicts how the
number of background applications (|B(t)|) changes as the
screen state and foreground application Xk change over time,
under the Android default scheduler LMK, where B(t) and
Xk denote the list of background applications at time t and
the foreground application at k-th screen on period. Under
LMK, a foreground process goes to background when the
user switches to a different foreground application or turns
off the screen. LMK kills applications in background in the
descending order of importance values when the available
memory goes below multiple levels of preset memory thresh-
olds. This is surely done with no consideration on when the
killed application is going to be relaunched. Thus, LMK re-
sults in higher cold launch probability, even though it keeps a
number of applications in background and brings high energy
wastes.

MEASUREMENT STUDY

Data collection
To capture application usage behaviors of smartphones in
the wild, we performed our own data collection with 96 An-
droid users selected from a few popular Internet communities
of South Korea during two weeks in Feb. 5-18, 2015. We
provided a data logger programmed to periodically record ap-
plication usage and device characteristics summarized in Ta-
ble 1, and upload the data to our server daily. We anonymized
all user information and IDs at the level of user devices. The
valid data spans 1057 days, and the total data size is about
20GB. We also asked the participants to fill an anonymized
survey involving occupation, age band, gender, and personal
statement on their dissatisfaction of the smartphone (e.g.,
latency, freeze), summarized in our technical report [20].
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Table 1. Logged Events and Associated Fields.
Event Name Associated Fields Periods

Applist List of all installed applications -
Running apps List, Importance, Memory usage 10 secs
Battery status [Full, Charging, Not Charging], 0-100% "
Screen status [On, Off], Brightness (0-255) "

Available memory Memory in MB "
Location Longitude, Latitude, Accuracy 5 mins

off period (inter-running time)
1 sec 10 sec 1 min 1 hr 6 hr
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Figure 7. The CCDF (complementary cumulative distribution func-
tions) of off (left) and on (right) periods of one user and the correspond-
ing log-normal fittings.

Participants come from diverse occupations, genders, ages,
and devices (e.g., Samsung Note2, Note3, Note4, S3, S4, S5,
LG G2, G3). Most of participants use Android KitKat (4.4.2)
(75%), where a small number of them use Jelly Bean (4.2.2
and 4.3) and Lollipop (5.0.1). From our survey, short lifetime,
frequent freezes, and long start-up latency were still the ma-
jor problems for participants, even though their smartphones
were mostly state-of-the-art.

Key observations from the measurements
We summarize key observations in this subsection. More
details are in the report [20].
Application usage statistics of users and states: In Fig-
ure 6, we plot the fraction of time spent in different process
importance evaluated from our experimental logs, the number
of running processes at a moment, and the number of unique
processes that have ever been used during the experiment.
We treat system and user-interactive (e.g., music) processes
separately in the figure. We find that the number of running
(foreground+background) processes per user is 5.2 on aver-
age, and the number of unique processes ever used per user
is 55.1 on average, excluding system and user-interactive
processes. The fraction of time a process spends in the
foreground state is about 6% on average, while the fraction of
time in background is about 16 times of being in foreground.
The fraction of time that the screen is on is 21% on average
(i.e., 5 hours per day).
Off/on period distribution: In Figure 7, we plot the typical
off/on period distributions of a randomly chosen participant
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and show that the distributions are heavy-tailed. We verify
by Cramer-Smirnov-Von-Mises (CSVM) [13] and Akaike [8]
tests that off/on periods of all users have the best fit with
log-normal distributions8 rather than exponential, Weibull,
truncated Pareto, gamma and Rayleigh distributions. We use
the best fitting log-normal distributions as representative of
off/on periods in the following sections for tractability. We
also depict the CDFs of average individual off/on period of
users in Figure 8. The average individual off period in total
is 15.5 mins for a whole day, 13.5 mins for the active hours
(9:00 to 24:00) and 33.8 mins for the inactive hours (24:00 to
9:00). Not surprisingly, the off period in the inactive hours is
much longer than in the active hours, as users tend to leave
the device unattended during the inactive hours. The average
individual on period is about 1.4 mins.

Off/on failure rates: In order to deeply understand the appli-
cation usage behavior, we quantify the frequency of altering
its state from “off to on” (launching) or from “on to off” dur-
ing off/on periods at the elapsed time t, which is commonly
called as the failure rate. Formally, the failure rate of T is
rT (t) ,

fT (t)
1�FT (t)

, for t such that FT (t) < 1, where fT (t) and
FT (t) = P[T  t] are the probability mass function and cumu-
lative distribution function (CDF) of T, respectively. T can
be either T off or T on. We call off failure rate (from off to on)
for T off and on failure rate (from on to off) for T on.

8The probability density function (PDF) of the log-
normal distribution with parameters µ and s is
(xs
p

2p)�1exp(�(ln(x)�µ)2/2s2).
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Table 2. The portion of user-triggered launches, average running times
of 12 most popular applications and their top-1 to top-3 probabilities
across all users.

category process name launches time top-1 top-2 top-3
Messaging com.kakao.talk 27% 47s 44% 25% 7.3%
Browsing] com.android.browser 6% 161s 9.4% 9.4% 10%

Portal com.nhn.android.search 4.4% 123s 2.1% 5.2% 9.4%
Browsing] com.sec.android.app.sbrowser 3.8% 129s 5.2% 5.2% 5.2%

Social com.facebook.katana 3.3% 126s - 6.3% 6.3%
Contacts] com.android.contacts 2.7% 20s 4.2% 1% 5.2%

Social com.nhn.android.band 2.2% 49s - 5.2% 1%
Browsing com.android.chrome 2.2% 119s 3.1% 4.2% 4.2%
Setting] com.android.settings 1.8% 29s - 1% -
Social com.nhn.android.navercafe 1.5% 82s - 1% 2.1%
Game com.supercell.clashofclans 1.5% 281s - 2.1% 2.1%

Messaging jp.naver.line.android 1.2% 29s 2.1% - 2.1%
] Android default applications.
Messaging: 31.2%, Browsing: 14.5%, Portal: 11.7%, Social: 8.5%, Game: 4.9% (for

100 most popular applications).
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Figure 10. The CDF of the launching probability of m most frequently
used applications (left) and Zipf distribution fitting for the average
launching probability (right). The frequently used applications of each
user are not identical. The dotted lines are for each individual user.
In Figure 9, we plot off failure rates, for each user (dotted
lines) and on average (solid line). See [20] for graphs of
on failure rates (omitted for brevity). For most of users, the
off and on failure rates increase at first but soon decrease
right after 10 seconds. The pattern of having decreasing
failure rate over time is called negative aging [17]. This
indicates that users are less likely to launch an app as the
off or on period increases. Thus, an energy-efficient control
needs to reduce background activities as as the failure rate
starts to get reduced. This also suggests that the increasing
backoff mechanisms of HUSH [10] and Doze [4] can be
effective although their schedules are neither optimized nor
personalized given that the individual failure rates (dotted
lines in Figure 9) show distinct characteristics for different
users.

Frequently used applications: In Table 2, we summarize
the 12 most popular applications across all participants from
the perspective of the launching probabilities, average running
times and top-1 to top-3 probabilities. Top-n probability of an
application is defined as the probability that the application
is the n-th most frequently used application of a user. The
most popular application in our experiment is shown to be
KakaoTalk (com.kakao.talk), a messaging application known
as used by 93% of smartphone users in South Korea as of
May 2014. 95% of our participants use KakaoTalk.
In Figure 10, we depict the launching probability of frequently
used applications of users. Note that the applications are indi-
vidually sorted. We find that the launching probability follows
Zipf’s law9 with exponent s= 1.4, and the aggregated launch-
ing probability of the 10 most frequently used applications of

9The frequency of elements of rank k, f (k;s,N) of a population of
N applications is proportional to k�s.

a user is more than 80% on average. Recall that the average
number of unique applications ever used for a user is 55.1.
Therefore, users tend to use a small fraction of the applica-
tions most of the time, and there is little gain in the start-up
latency and related user experience when infrequently used
applications are kept in background.
Warm and cold launch latency: We quantify the applica-
tion launch latency by measuring the maximum of the time
durations until (1) screen rendering is finished, and (2) load-
ing application data in memory is completed, by filtering and
monitoring Android logcat debugging outputs [2]. For the
25 most popular applications tested (see [20]), the average
warm and cold launch latencies are 0.9s (rendering: 0.7s,
memory loading: 0.4s) and 4.5s (rendering: 3.61s, memory
loading: 3.58s), respectively.10 Thus, application preloading
that transforms a cold launch into a warm launch can decrease
the start-up latency by about 80%.
Context dependency: We also analyze app usage patterns in-
corporated under various contexts. Here, contexts correspond
to any information that characterizes the situation of users,
which enables us to predict future app/component invocations
more accurately. In Figure 8, the average inter-launching time
at inactive hours (24:00 to 9:00) is about 3.6 times longer
than the average inter-launching time at active hours. In Ta-
ble 2, we find that the average on periods are vastly different
across applications (e.g., long running time for games and
browsers, and short running time for messengers). We also
observe other context dependencies such as previously used
app (Xk�1) and the duration of the previous intervals (T off

k�1,
T on

k�1), but they are omitted for brevity. For example, after
using a messaging app, the next inter-launching times are typ-
ically shorter than the average, as the recipient of a message
may respond quickly.

SYSTEM ARCHITECTURE
In this section, we propose our system design of CAS as de-
picted in Figure 11. Our framework consists of three major
components: 1) context monitor, 2) user profiler, and 3) back-
ground application controller. Over these system components,
CAS runs in three phases: collection, pre-computation, and
control, each of which is operated as follows.
Collection phase and context classification: In the collec-
tion phase, context monitor collects various contextual infor-
mation in background, to build information base on applica-
tion usage pattern. Contexts we collect are screen state, time
and location information, memory and CPU/network usage,
application launch sequence, and battery level. Using the
information base, the user profiler analyzes per-application
usage behavior, cross-correlations of application usage be-
haviors, and resource (power/memory) consumption of back-
ground applications according to component-wise power mod-
els in [18,36], with diverse statistical measures such as failure
rates and launching probabilities. Collection of data for learn-
ing may take some time (e.g., one week) in order to prepare a
reasonable amount of statistics at first (e.g., when a user buys
a new phone).

10 The average of rendering or memory loading is shorter than launch
latency, as the maximum of both is taken.
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of users.

To better exploit contexts, the collected context information
of traces will be classified into several categories (e.g., Ac-
tive/Inactive for time information), where the context informa-
tion at a moment is defined as a tuple of several contexts (e.g.,
(time=Active, last app=Facebook)). People have different
lifecycles and habits, so that contexts should be classified in-
dividually. Given that obtaining the labels for some contexts
such as active hours from user input is intrusive to the user
experience, automatic labeling is challenging. This challenge
brings an unsupervised learning framework to our system,
where we want to cluster (i.e., label) a set of samples with
similar characteristics in the same category. Here, similarity
can be quantified by a square error metric, which is widely
used in literature. For instance, to simply classify “time of
a day” information into several continuous time blocks, we
solve the following problem to minimize the residual sum of
square errors, by using a k-means algorithm [15].11

min
HA

Â
k:Sk2HA

(Tk�E[Tk|Sk 2 HA])
2 + Â

k:Sk<HA

(Tk�E[Tk|Sk < HA])
2,

where Sk is time of a day of k-th sample (at the beginning), and
HA is the active timezone that is continuous (e.g., HA = [a,b],

11We similarly formulate and solve this problem for other contexts
such as previous off and on periods.

where a is 10:00 and b is 21:00). Sk 2 HA if Sk is within the
time interval of HA. We depict an example of “time of a day”
classification for off periods in Figure 12. The diurnal pattern
of this user is clearly identified by our classification. We find
that most of the users need only 2 continuous time blocks
to explain their temporal activities and show very little gain
from further separation.
In Figure 13, we depict the residual sum of squares of users
for off and on periods in the test set (i.e., the second week
of the trace), where the contexts (time of a day, previous
off and on periods, last used application) are trained from
the first week of the trace. We note that these dependencies
including diurnal patterns are vastly different among users
depending on their usage patterns and lifestyles. The residual
sum of squares is decreased by 29.8% and 40.3% for off and
on periods on average, respectively. Thus, it is clear that our
automatic context classification results in more accurate pre-
diction. We also find that the entropy12 of the next launching
app, Xk, is substantially reduced as well, omitted for brevity.
Intuitively, lower entropy means reduced uncertainty and bet-
ter predictability.
Pre-computation and control phases: Based on this analy-
sis, the background application controller computes sets of
background applications for possible combinations of con-
texts in both off and on periods, in the pre-computation phase.
For each cluster C (i.e., a tuple of several contexts), we use
the conditional distribution Tk|C and conditional probabil-
ity of Xk|C where these conditional values are trained under
the cluster C. In other words, our algorithm (which will be
explained in the next section) will run for each cluster C.
Therefore, we exclude the conditional information C in the
rest of the paper, i.e., Tk = Tk|C and Xk = Xk|C, for simplicity.
This pre-computation happens once in a while (e.g., one time
per week) to adapt for the change of the application usage
behavior. Pre-computation also runs during the inactive hours
with the device connected to its charger, to avoid any inconve-
nience to users. During the control phase, at the start of each
off or on period, the controller calls the context monitor and
acquires the contextual information at the moment as its input.
Based on the pre-computed list of background applications
at each moment for the given contextual information, back-
ground application controller executes pre/unloading during
the on or off period. As the recommended list of background
applications at each moment are pre-computed, these execu-
tions do not bring any computational burden.

ALGORITHM DESIGN
In this section, we formulate a submodular optimization prob-
lem that selects the best set of background applications to
minimize the total penalty in energy and start-up latency.
Then, we develop a practical scheduling algorithm for CAS.

System model
System states: We let W (|W| = N) denote the set of con-
trollable applications of a user, which does not include any
system and user-interactive processes. We define B(t) ✓ W
and B̄(t)✓W to be the sets of applications in the background
and empty states, respectively, which are our control knobs.

12The entropy for the application is �Âi2WP[Xk = i] log2P[Xk = i].
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We define the system state as an off/on period as in Figure 5,
where the off period denotes a continuous duration when all
applications are either in background or empty, while the
on period denotes a continuous time duration for which an
application is being used in the foreground. We denote T off

k
and T on

k as random variables of the k-th off and on period,
respectively. We denote Xk as the foreground application
that runs during the time duration of T on

k .13 We recall that
the failure rate is defined as rT (t) ,

fT (t)
1�FT (t)

, for t such that
FT (t) < 1. T can be either T off or T on. We also define the
partial failure rates for a set of empty applications B̄(t) as
rT (B̄(t), t) = rT (t) ·P[X 2 B̄(t)], which quantifies the rate that
one of empty applications B̄(t) is launched at t.
Power consumption and memory model: For applications
included in W, we define a power function, P : 2W! R+ and
a memory function M : 2W! R+ that respectively represent
the amount of the average power and memory consumption of
a set of background applications. Based on the observations
made in [36], we model P as a submodular function14 for
any B(t), as applications share hardware components, and
they become more power-efficient as the utilization becomes
higher. A memory function M is a linear additive function15

for any B(t). Note that we use average power and memory
consumption for long-term optimization. For simplicity, we
assume that the energy consumption for preloading and un-
loading is virtually negligible and that the transition delay
is much shorter than one time slot. These assumptions prac-
tically make sense as the preloading/unloading consume its
power less than a few seconds and happen only a few times
an hour. More detailed discussion on the consumption of the
transition energy will be provided in our simulation results.

Problem formulation
We aim to develop a scheduling algorithm for CAS that re-
duces and balances energy consumption and user disutility
from application launch latency, under a given memory bud-
get Mth. Since there is a trade-off between the energy con-
sumption and the user disutility (i.e., cold launch probability),
we adopt a parameter g to treat both metrics as a unified mea-
sure. We let a user who is less sensitive to latency but is keen
to extend battery lifetime choose a smaller g value, and vice
versa. The optimal scheduling algorithm for CAS can be ob-
tained from the optimization problem that minimizes both the
energy consumption and the user disutility over the infinite
time horizon. The optimization problem can be disjointly
split into off-period optimization and on-period optimization.
We present the formal formulation of the off-period optimiza-
tion as follows and omit the on-period formulation for brevity.

min
Boff(t),8t:

M(Boff(t))<Mth

•

Â
t=1
P[T off = t]

⇣ t

Â
t=1

P(Boff(t))+ g ·P[X < Boff(t)]
⌘

= min
Boff(t),8t:

M(Boff(t))<Mth

•

Â
t=1
P[T off � t]

⇣
P(Boff(t))+ g · rT off(B̄off(t), t)

⌘
.

The summation of P(Boff(t)) from t = 1 to t indicates the
energy consumption when the length of an off period is t and

13We omit the subscript k unless confusion arises.
14P(A[B) P(A)+P(B)�P(A\B) for A,B⇢W.
15For any disjoint sets A,B⇢W, M(A[B) = M(A)+M(B).

the second term quantifies the expected disutility from the
cold launch of an application weighted by g . By restating
energy and disutility terms using P[T off � t], we have the
second line. Since we have assumed that the latency and en-
ergy overhead for preload and unload are negligible, the sets
of optimal background applications for time slots and their
resulting snapshot objectives become uncorrelated. Hence,
in this formulation achieving the optimality in each snapshot
(i.e., time slot) warrants the global optimality. In the rest of
the paper, we omit the superscript off in T off, Boff(t), and
rT off(Boff(t), t) unless we need to emphasize them.

Scheduling algorithm design
If P(B(t)) were additive, then this problem becomes a 0-
1 knapsack problem, which can be solved using dynamic
programming. However, P(B(t)) is submodular in general
because applications share power-consuming components.
Then, this problem becomes a submodular minimization with
a weighted cardinality constraint (i.e., memory constraint),
which has been proven to be NP-hard in [32]. Hence, we
propose a greedy-based algorithm with limited complexity
(e.g., up to quadratic time complexity), which makes locally
optimal choices in finding a set of background applications.
This may result in sub-optimal performance but works well in
practice due to the Zipfian distributed launching probability.
Intuitively, most dominant or frequently used application
with high launching probabilities are chosen as background
applications in the first few iterations.

CAS scheduling algorithm

input: P(·),M(·),rT (·),P[X = x],g,Mth
output: a1, ...,aN , c1, ...,cN , and B(1), ...B(tmax)
Step (A) Compute a local optimal sequence.
1: A0 /0.
2: for m = 1 to N do
3: am argmaxi2W\Am�1

P[X=i]
P(Am�1[{i})�P(Am�1)

.

4: cm maxi2W\Am�1
P[X=i]

P(Am�1[{i})�P(Am�1)
.

5: if M
�
Am�1[{am}

�
> Mth then

6: cm • and break
7: else Am Am�1[{am}.
Step (B) Assign controls at each time slot.
1: for t = 1 to tmax do
2: m max{ j|ci � 1

g·rT (t)
,8i j}.

3: B(t) Am.

Note that tmax is the maximum duration from all observable
off or on periods such that P[T > tmax] goes to zero and
B(t)= /0 for t > tmax. Our scheduling algorithm pre-computes
the entire sequence of locally optimal control actions in step
(A) and assign them in each slot in step (B). In step (A), if
more than one application becomes tied, it breaks the tie by
arbitrarily choosing one of them. The computational com-
plexity of our algorithm is O(N2 +NT ) where complexities
of step (A) and (B) are O(N2) and O(NT ), respectively.
We note that our scheduling algorithm does not change
its control decision if the environmental conditions (e.g.,
power/memory functions, failure rates, or launching prob-
abilities) are maintained. As those conditions are stationary
or slowly changing over time, re-computation of the algorithm
happens rarely in practice.
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Table 3. Summary of contextual information.

Info Last used app Time of a day Previous durations
(Xk�1) (Sk) (T off

k�1,T
on

k�1)
Class 1, · · · ,N Active, Inactive Short, Long

TRACE-DRIVEN SIMULATION
Setup: To evaluate power consumption and latency perfor-
mance of CAS for our measurement traces, we develop a
trace-driven simulator incorporating the average power and
memory functions, P(·) and M(·). We model P(·) by the
component-wise power model (e.g., CPU, screen, WiFi, cel-
lular, and GPS) in [36] and our measurement on utilization of
components for each application in our traces. M(·) is directly
computed from our measurement log. In the trace-driven sim-
ulation, we compute the performance of CAS in which the
control decisions are made by the proposed scheduling al-
gorithm. All statistics and classifications are obtained from
the first week of the trace (i.e., training set) and simulations
are conducted for the second week of the trace (i.e., test set).
We further compare a set of existing algorithms including the
default Android scheduler (LMK), App standby and Doze
mode [4] in Android 6.0, BFC and HUSH proposed in [10]
with CAS. The contextual information we used is summa-
rized in Table 3.16 As the gain from location information is
turned out to be negligible, we exclude the location informa-
tion. Authors in [23] also found that the benefit from location
information in prediction accuracy is minimal as it is already
partially captured by the application sequence and time in-
formation. The parameters of BFC (a = 0.1) and HUSH
(s = 1.2) are chosen as in [10]. The memory threshold for
CAS is set to be 30% of the total memory size for each user
leading to 840MB on average.17

Key Results
We depict the performance of different scheduling algorithms
in Figure 14, and summarize results as follows.
Inefficiency of LRU-based LMK: As a baseline, we evalu-
ate the performance of LMK from our experimental logs. The
average power consumption from background applications
is about 111mA, which is much higher than the typical idle
power consumption of 10mA in the most up-to-date smart-
phones. The average power consumption of a foreground ap-
plication during screen on periods is about 562.5mA. Given
that, our experimental traces show that the energy consump-
tion of background applications amounts to 48.5% of the
total battery capacity under LMK. These measurements lead
to 12.2 hours of average battery life for the devices in our
experimental logs whose average battery capacity is about
2800mAh. The average cold launch probability with LMK
is measured to be 43% with average memory occupancy of
212MB from controllable background applications.18

Android 6.0, BFC and HUSH [10]: The new feature, App
standby [4], in Android 6.0 unloads applications that have
no foreground activity for more than 3 days. The portion of

16We used the k-means algorithm to classify “time of a day” and
“previous durations”.

17 Our measurement data indicates that on average about 60% of
total memory is occupied by the OS and system processes.

18 Note that 212MB is only for the background applications. In
general, the memory utilization of a device is much higher as it
further involves foreground and system processes.
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Figure 14. Comparison of scheduling algorithms. The error bars indi-
cate 25th and 75th percentiles.

unique applications that can be affected by App standby op-
tion is observed to be 73% of total installed applications, but
only 39% of background activities under LMK are affected
(See Figure 14(a)). This is due to active killing of applications
under memory pressure in LMK. Therefore, energy saving
for background applications over LMK is limited to 19.4%
(total energy saving is 9.4%). Another feature, Doze mode [4]
in Android 6.0, restricts background activities is enabled after
a user leaves the device for an hour. Then, the suppression
time windows are increasing as 1, 2, 4, and 6 hours, where the
maintenance windows are scheduled in between suppression
windows for 5 minutes. Doze mode further reduces back-
ground energy by 33% over LMK, but its additional energy
saving is not significant as the time portion of off periods over
an hour is only about 28%. Note that only 3% of off periods
are longer than an hour.
BFC and HUSH algorithms unload background activities
more aggressively each of which suppresses 51% and 47%
more compared to LMK. The background (total) energy sav-
ings over LMK in BFC and HUSH are 31.2% (15.1%) and
32.7% (15.8%), respectively. One potential problem of BFC
and HUSH is that they update control decisions only by re-
lying on latest activities of applications. For example, in
HUSH, the suppression interval is reset to an initial value
(i.e., 1 min) every time an application gets a foreground ac-
tivity, which is not efficient for low active applications. In all
these schemes, their cold launch probabilities and staleness
are higher than LMK, since these algorithms only suppress
background activities.
CAS: CAS achieves diverse operating points depending on
the trade-off parameter g . Our scheduling loads more back-
ground applications as g increase as shown in Figure 15.
Also, according to our finding that the launching probability
decreases as the elapsed time passes by in each off/on period
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Figure 15. Background application schedules of CAS for one user in
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the launching probabilities. 1: Messaging, 2: Browsing, 3, 5: Social, 4:
Navigation, 6: Contacts, 7: Utility.

(i.e., negative aging), CAS unloads more and more back-
ground applications as time goes by. As the failure rate starts
to decrease after around 30 seconds, low priority applications
are unloaded sequentially. Eventually, all background appli-
cations are unloaded after 12, 40, and 90 minutes for different
operating points, g = 6e+4, 1.5e+5, and 3e+5, respectively.
CAS achieves a similar cold launch probability with only
0.7 background applications (14% of LMK) for g = 6e+4
in Figure 14. The background and the total energy savings
over LMK become as high as 51% and 25% on average for g
=6e+4. Also, CAS reduces the cold launch latency by 26%
over LMK for g =1e+6, with lower energy consumption.
Staleness: We define app staleness as the average elapsed
time since the last background or foreground activity of an
application as in [10]. This metric captures the user experi-
ence especially for applications that need to regularly update
their contents (e.g., social networking and messaging appli-
cations). The average app staleness under LMK is 1.5 hours.
In Android 6.0, BFC and HUSH, their app staleness values
are always higher than or equal to LMK because these al-
gorithms do not restore unloaded background activities as
shown in 14(a). Unlike other algorithms, CAS preloads back-
ground applications and reduces the average staleness by 33%
and 41% over LMK for g = 6e+4 and 3e+5, respectively.
To see how the app staleness varies with scheduling algo-
rithms, we compare app staleness of five popular social and
messaging applications from different scheduling algorithms
for one user in Figure 14(c). Because this user only infre-
quently uses the Facebook app and sometimes does not use it
for more than 3 days, the App standby of Android 6.0 unloads
it, which in turn leads to a very high app staleness. However,
CAS predicts the moment that an application is used next, so
that the average staleness becomes much shorter than other
algorithms across all applications including the social and
messaging applications.
Energy overheads of CAS: There are energy overheads
in CAS that are from logging information, processing
algorithms, preloading actions and wakeup alarms for
pre/unloading. Note that the application controller sleeps
during the time when the set of background applications
stays the same, and wakes up only when the control action
is needed to make changes. Our measurement reveals that
contextual information logging without location information
consumes only about 5mA. The pre-computation phase con-
sumes 30mAh to compute the control policies for all context
sets. This corresponds to power consumption of 1.25mA un-
der a daily update frequency. Wakeup alarming for a control
action and actual preloading of an application are turned out
to consume on average about 0.03mAh and 0.4mAh, respec-

Table 4. Comparison of scheduling algorithms.
Scheduler Power] Cold launch Memory] Lifetime† Latency‡

LMK-LRU 111mA 43% 212MB 12.2 hr 2.45sec
App Standby 89.5mA 54.8% 131MB 13.5 hr 2.87sec

Doze+Standby 74.4mA 55.9% 103MB 14.5 hr 2.91sec
BFC [10] 76.4mA 49.4% 93MB 14.4 hr 2.67sec

HUSH [10] 74.7mA 48.9% 91MB 14.5 hr 2.66sec
CAS (g =1e+6) 100.1mA 25.6% 142MB 12.8 hr 1.82sec
CAS (g =6e+4) 53.9mA 41.9% 31MB 16.3hr 2.41sec

Oracle 10mA 0% 0MB 21.9 hr 0.9sec
]: Power/memory consumption of background applications including energy
overhead. The voltage ranges from 3.7V to 3.8V. The idle background power
is 10mA.
†: Based on 21% of screen on periods and 2800mAh of battery.
‡: Based on 4.5sec of cold launch and 0.9sec of warm launch latencies.

tively. Note that unloading happens in a flash, and thus it
consumes nearly 0mAh. In CAS, the average frequencies of
wakeup alarms and preload actions are less than once in 2
mins for the chosen parameters. Overall, the energy overhead
required for running CAS does not exceed 23.3mAh per hour
at maximum, which is about 0.8% of the battery capacity and
is much smaller than the huge gain obtained from CAS. We
take into account these energy overheads in CAS.
Battery life and start-up latency: To quantify the gain in
the user-perceived metrics such as battery lifetime and ex-
pected start-up latency, we calculate them based on our mea-
surement over popular applications and summarize them in
Table 4. We include a simulation of the ideal yet infeasible
scheduler, Oracle, that exactly knows when and which appli-
cation the user will use next. The average battery lifetime of
a device is extended to 16.3 hours in CAS (g =6e+4) from
12.2 hours observed under LMK. Note that the upper bound
of battery lifetime simulated from Oracle is 21.9 hours. By
modifying the parameters, the expected start-up latency is
reduced from 2.8sec in LMK to 1.82sec in CAS (g =1e+6),
with a similar lifetime as LMK.

ANDROID IMPLEMENTATION
We implement CAS on Galaxy Note 2 (the most popular de-
vice in our traces), which runs Android 4.4.2, KitKat. Three
major components (context monitor, user profiler, and back-
ground application controller) are implemented and packaged
as a system service. Our implementation of context monitor
uses methods defined under SensorEventListener interface of
Android such as onSensorChanged and onAccuracyChanged
to minimize the energy consumption and uses delayed write
for saving data in the SQL database (i.e., SQLite of Android)
in a highly energy efficient manner. To this end, the back-
ground application controller uses BroadcastReceiver and
AlarmManager to execute preloading and unloading at de-
sired moments with little use of CPU resource. In order to re-
alize preloading, we use getLaunchIntentForPackage method
together with startActivity included in PackageManager of
Android.
To unload processes, we implement the linux shell command
execution of am force-stop <Package Name>19 in Android
using the Android NDK (native development kit), where am
stands for activity manager. To make CAS work indepen-
dently from Android LMK or Linux OOM (out of memory)

19We gain the super user (su) access by rooting the device to perform
am, which will be unnecessary once our scheduling algorithm is
integrated with Android.
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Table 5. Experimental results of CAS and LMK over 1-day traces of
two users on Galaxy Note 2.

User index User 46 User 61
Number of installed apps 37 64

Portion of screen on periods 8.1% 22%
Daily screen on durations 1.9 hours 5.3 hours

Avg. off period 16.2 mins 16.9 mins
Avg. on period 0.85 min 0.9 min

Scheduling LMK CAS LMK CAS
Avg. # of background apps in run 6.0 0.2 4.5 0.99

Avg. screen-off power (mA) 72 26.7 100 44.7
Avg. screen-on power (mA) 388 378 526 460

Avg. power (mA) 97.5 55.8 194 136
Expected lifetime‡ (hour) 31.8 55.5 16.0 22.8

‡: Battery size is 3100mAh.

killer underneath Android platform without interfering with
them, we substantially relaxed all low-memory related pa-
rameters and virtually disabled such resource schedulers. In
order to let an application stay unloaded as per our decision,
we also intercept app invocations20 such as the synchronous
RPC (Remote Procedure Call) mechanism called Binder and
asynchronous IPC (Inter-Process Communication) message
passing mechanism called Intent, which can wake up an un-
loaded process. This may delay notifications or messages of
unloaded processes which we will discuss later.

Android Experiment
For the experiment of our platform, our service is designed to
precisely follow the application and screen behaviors precom-
puted over a collected trace as a time series for each schedul-
ing algorithm. Note that we choose to perform this replay
style emulation as it is better than a hand-carried experiment
from the perspective of ensuring a fair comparison between
the algorithms. Our replay service turns on and off screen by
using WakeLock method in PowerManager class and lockNow
method in DevicePolicyManager class, respectively. Because
our experiment rules out any human intervention, it is reason-
able to keep the system awakened using WakeLock while we
emulate a screen on period. Although our emulation method
is not perfect in mimicking user behaviors in foreground UI
such as touch actions, it is fair to say that this end-to-end eval-
uation capturing all possible system overheads sets a baseline
of the performance of CAS in reality.
We summarize the results of CAS (g =6e+4) and LMK and
the usage patterns for the two randomly chosen users in Ta-
ble 5. One of these users turned out to be a light user and the
other a mild to heavy user. We find that the energy savings
of CAS from LMK are 43% and 30% for each user, as the
numbers of background applications in run are significantly
reduced. The average power during screen on periods is also
reduced since CAS unloads background applications both in
screen off and on periods. The experimental results confirm
that energy saving from CAS can be indeed significant in
practice. As a future work, we plan to extend our experiment
toward user studies that involve evaluations of user-perceived
benefits with CAS installed in the actual user devices.

DISCUSSIONS AND CAVEATS
There are practical issues that need to be considered before
CAS can be widely used. The issues are mostly on the appli-
cation characteristics and semantics that can be affected by
controlling the application.

20This interception is similarly implemented as [10].

Discomfort from Unloading: Our application control may
delay notifications or messages for unloaded applications.
This can have both pros and cons, as deferring or neglecting
advertisement messages can relieve one’s stress and receiving
important messages later can be big losses. However, long
delay occurs only when these applications are not likely to be
launched for a long time, so that the actual inconvenience may
not be critical, as our result on staleness confirms. To avoid
such inconvenience, we can consider staleness of applications
in our objective directly, and allow background activities
intermittently to reduce or bound staleness, which we leave as
a future work. We can also whitelist some critical applications
from application controlling as follows.
Whitelisting: Some apps should not be unloaded from back-
ground even though they may be infrequently used. For
example, caller apps such as Skype should be able to receive
calls at anytime. Thus, application categories such as call, mu-
sic, radio, and recorder need to be excluded from application
control, which we already excluded them as user-interactive
processes. A more intelligent way is to ask users whether they
want to whitelist infrequently used apps as in [31]. We can
also use crowdsourced statistics21 of applications to minimize
the need for user inputs.
Privacy issue: Our context monitor and user profiler can
have privacy sensitive data (e.g., sleeping hours from time
of a day classification), which should be encrypted and only
accessible by CAS. We note that because CAS runs on a mo-
bile device and does not rely on cloud resources for analyzing
its application usage patterns, there is no privacy or security
concern for leaking personal data to Internet.

Dataset bias: Our trace data can be biased in the sense that
we collected traces of the participants from Internet user
communities in Korea, who may be more tech-savvy than
general populations. We will collect more diverse trace data
in the future work, and study the performance depending on
the level of user acitivity.

CONCLUDING REMARKS
CAS requires sufficient application usage history with context
information (i.e., long collection phase). For future work, we
are interested in training model parameters faster using a
learning framework, and crowdsourcing of statistics from the
devices of the same type or of similar attributes, which can
bootstrap the collection phase. We will study other energy-
efficient contexts and how to classify them to increase the
prediction accuracy. We are interested in designing a more
efficient algorithm using other optimization methods, which
can adapt the trade-off parameter g to provide the best user
experience as per the preference of the user.
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