
A Data Hiding Approach for Sensitive Smartphone Data

Chu Luo1, Angelos Fylakis2, Juha Partala2, Simon Klakegg1, Jorge Goncalves1,

Kaitai Liang3, Tapio Seppänen2, Vassilis Kostakos1

1Center for Ubiquitous Computing, University of Oulu, Finland
2Center for Machine Vision and Signal Analysis, University of Oulu, Finland

3Department of Computer Science, Aalto University, Finland
1,2firstname.lastname@ee.oulu.fi, 3kaitai.liang@aalto.fi

ABSTRACT

We develop and evaluate a data hiding method that enables

smartphones to encrypt and embed sensitive information

into carrier streams of sensor data. Our evaluation considers

multiple handsets and a variety of data types, and we

demonstrate that our method has a computational cost that

allows real-time data hiding on smartphones with negligible

distortion of the carrier stream. These characteristics make

it suitable for smartphone applications involving privacy-

sensitive data such as medical monitoring systems and

digital forensics tools.

Author Keywords

Smartphones; ubiquitous computing; privacy protections;

digital signal processing; mobile and wireless security.

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

INTRODUCTION
We present and evaluate a data hiding method for

smartphone sensing, which enables sensing applications to

encrypt and embed sensitive data or identification codes

within other data streams of a smartphone. Our method is

motivated by the increasing diversity of sensor data that

mobile devices generate, and the growing ecosystems of

services that store, process, and share this data.

The constellation of personal devices that we regularly use

now includes smartphones, smartwatches, tablets, fitness

sensors, and a variety of domestic appliances. These

devices contain a growing set of increasingly sophisticated

sensors which improve interaction and provide new

services. The richness and volume of this data has given

rise to research opportunities for the UbiComp community

and beyond. For instance, research often demonstrates how

smartphone data that we previously discarded as noise can

actually contain valuable information [1]. Furthermore,

research on quantified self, self-monitoring, and e-health

aims to harness the data that our devices generate.

This trend has motivated scientists across academia and

industry to build platforms that collect, analyse, visualise,

and share increasing amounts of end-user data generated

from personal devices. It has become a norm for studies to

instrument personal devices of volunteer participants

(recruited both in-person or via app-stores), and much of

this data may eventually become available for other

scientists or the public in general. Initiatives such as

Crawdad, Crowdsignals, and Nokia's Lausanne Data

Collection Campaign are examples of how smartphone

“traces” may be shared after the completion of an

experiment. Similarly, the quantified-self movement has

given rise to a large number of platforms where users may

upload their health-related sensor data. While certain

platforms may be free or come with associated costs, users

typically share their data in exchange for a service.

Often, multi-stream data from a user’s device is treated as a

coherent data unit. For instance, a typical experiment may

simultaneously collect accelerometer, heart rate, and GPS

data. This set of sensor streams may then be uploaded to a

server for analysis, visualisation and sharing. This approach

to “bundling” sensor streams has two important downsides.

Firstly, it treats all sensor streams unilaterally, overlooking

the unique privacy aspects of each individual sensor stream.

For instance, accelerometer data may not be as sensitive as

GPS data. Secondly, users practically relent control of their

data once it leaves their devices.

Our work proposes a data hiding approach to address the

privacy needs that arise when users share smartphone

sensor data with scientists and platforms. Crucially, our

technique is transparent, meaning that it is compatible with

existing platforms and tools. As a result, users can maintain

control of their sensitive data even after sharing it through

online platforms, without having to give up those services.

Additionally, the technique allows us to verify the integrity

of embedded sensitive data, for example to confirm that no

tampering has taken place in the form of record removal,

decimal rounding, or filtering. Finally, our technique allows

users to prove ownership of sensor or healthcare data that

they have shared, and as such provides spoof resistance

against tampered medical sensor data [31].

BACKGROUND

Data hiding is an application domain of digital

watermarking techniques [7]. Traditionally, watermarks are

found in official documents, and carry information about

the object in which they are found. Watermarks are

designed in way so that they are difficult to reproduce or

counterfeit [12]. For example, banknotes have watermarks

in the form of figures that become visible only under certain

conditions.

The practice of watermarking can be defined as

imperceptibly altering an object to embed a message about

it [12]. Embedding a watermark w into a host object C

produces a new object Cw, such that w can be reliably

located and extracted even after Cw has been subjected to

transformations [8].

In digital watermarking the host object C is a carrier signal

of information, and the watermark w is a digital marker.

The watermarking process is achieved through the

introduction of errors not detectable by human perception

[11]. Similar to traditional watermarking, digital

watermarks can only be perceptible under specific

conditions such as after using special extracting algorithms

[33]. Unlike traditional watermarking, in digital

watermarking when the carrier signal is copied or

transferred, the watermark is also carried with the copy.

Watermarking methods have been used in various

applications including digital audio, images or videos.

Typically, these are used for owner identification, content

authentication and copy control [12]. Similarly, data hiding

is particularly popular with biomedical data because of the

need to imperceptibly carry metadata or additional sensitive

data such as name, ID, or sensitive medical data [37]. In

biomedical research, data hiding techniques embed data

reversibly, since it is important to use it in its original state

in the analyses. In our case though, we can be flexible as

the host data is not sensitive. In this context, data hiding can

improve management efficiency, provides an additional

layer of security, and can ensure confidentiality, availability

and reliability [7]. As such, data hiding allows us to embed

a set of metadata or sensitive data, imperceptibly, within

another data set or digital file.

Finally, we observe that cryptographic techniques offer

orthogonal benefits regarding these concerns. For this

reason, data hiding techniques often encrypt the data before

it is hidden. However, the key advantage of data hiding is

the “physical” binding between carrier signal and digital

marker in a manner that is transparent to computational

infrastructure, can survive data migration, and does not give

rise to software compatibility issues.

Properties of Data Hiding Techniques

Multiple data hiding techniques exist, and they can be

classified in terms of three key properties [18].

• Robustness: Robust techniques are those where data can

be extracted successfully even after the carrier signal has

undergone malicious attacks, modifications or

transformations. This feature is particularly desirable in

cases where the host is prone to modifications, either

intentional, or unintentional. An example would be lossy

compression. Fragile techniques are those where minor

distortions affect the hidden data. This can serve useful

tamper-proofing purposes (e.g., loss of hidden data can

reveal and localise modification of data).

• Imperceptibility: Data hiding techniques are considered

as imperceptible when data is imperceptible to human

under typical use. Hidden data can only be extracted

algorithmically by an authorized user. Good

imperceptibility also suggests high fidelity between the

original work and the one containing data.

• Capacity: Refers to the size of the payload that can be

encoded within a unit of a host object.

Traditionally in data hiding literature, there is a tradeoff

between these three properties. Depending on the

application domain, the priority of these properties varies.

An additional constraint in the case of smartphones and

mobile sensors is energy consumption and computational

complexity. Previous work has highlighted that data hiding

is more efficient than cryptography in terms of complexity

and energy usage, and therefore more appropriate for

resource-constrained hardware [18].

Data Hiding and Smartphone Sensor Data

Smartphone sensing techniques introduce a variety of

applications and opportunities, such as activity recognition,

health monitoring and intelligent transportation. However,

smartphone sensor data may contain sensitive information,

including GPS location, medical states (e.g., heart rate and

travelled steps) and user profiles (e.g., identity, age, gender

and calendar reminders). This challenges researchers in the

design of smartphone sensing systems [20].

Although researchers can alleviate these problems using

cryptography and privacy-preserving data mining

techniques, existing approaches are still insufficient to keep

information imperceptible or to prove the authenticity of

sensor data [19, 22]. For this reason, data hiding techniques

can benefit users, for example by hiding sensitive data

within non-sensitive data. Furthermore, data hiding

techniques can be used to prove ownership of smartphone

sensor data without compromising anonymity. By

embedding identification information into sensor data,

sensing systems that collect data from multiple users (e.g.

in crowdsensing) can easily verify the source of data and

filter untrusted sources without establishing secure access

APIs or explicit authentication mechanisms.

Many projects have considered data hiding techniques,

especially watermark-based methods, in smartphone-driven

scenarios. Miao et al. [27] developed an Android

application that uses digital watermarks to protect the

ownership and integrity of digital photographs. They

showed that the proposed approach can resist some

common attacks, such as contrast change and compression.

Zhou et al. [40] developed a system named AppInk that

generates watermarked apps from the source code of

original apps, to detect unauthorised apps which are

repackaged by attackers. Suzuki et al. [35] developed a

video annotation system which embeds real-time high-

frequency audio watermarks into video data of a

smartphone camera. Because high-frequency audio is

inaudible to humans, the audio quality of watermarked

video data is not compromised. Hence, users can add

annotations into video in the form of audio watermarks.

Furthermore, data hiding has been used as a barcode-like

mechanism. For example, previous work embeds hyperlinks

within posters or videos [9], such that a mobile device can

decode this information but it is not perceptible to humans.

Similarly, researchers have shown how to embed

information within an audio channel transmitted over

loudspeakers [26] or the phone [30], a technique that can be

used for ad-hoc secure pairing, verification, and

synchronisation.

In the context of sensor networks that may have to operate

in untrusted environments, data hiding can meet the

requirements of data integrity and authentication in

communication. For example, Wang et al. [38] proposed an

adaptive watermarking approach to achieve secure image

transmission with low distortion and energy cost. Similarly,

Zhang et al. [39] presented an end-to-end authentication

scheme that employs watermarking for secure data

aggregation. In these cases, watermarks are embedded by

each sensor node, and the server can verify the sources of

the incoming data despite an untrusted communication

network.

Our work builds on previous research in many ways. The

recent proliferation of scientific and commercial platforms

for sensor data has given rise to the need to consider

“sensing” as the application itself. Therefore, we aim to

provide users a transparent way to embed one set of

smartphone sensor data within another. This will allow

users to adopt services on a variety of platforms without

necessarily trusting them with their sensitive data. Much

like sensor nodes operating in an untrusted network [38,

39], we can enable users’ personal devices to share sensor

data with each other via untrusted platforms. Additionally,

our approach establishes a physical binding between a

sensor stream and annotation data, either to prove

ownership of the sensor data (as demonstrated with photos

[27]), to provide additional context (as has been shown for

videos [35]), or for ad-hoc communication purposes (as has

been used in ad-hoc pairing [26, 30]).

STUDY

Our objective is to investigate the feasibility of hiding one

sensor stream within another on a smartphone. Due to the

plethora of sensors, it is important to identify their main

types for our purposes. Modern smartphones can provide

sensor data across the following broad categories [21]:

• hardware sensors that include motion sensors (e.g.,

accelerometer and gyroscope), position sensors (e.g.,

GPS and magnetometer), environmental sensors (e.g.,

light sensor and barometer), and multimedia hardware

(e.g., microphone and dual-cameras).

• software sensors that include operating system data (e.g.

CPU load, network connections, app usage) and

application data (e.g. calendar data, browsing history,

music listening data).

• human input, which captures phenomena that are

imperceptible for hardware or software sensor, mainly

using smartphone-based surveys and the Experience

Sampling Method [23].

Given the diversity of data sources, there are two important

characteristics that we consider for data hiding purposes:

• frequency: some sensor data may be collected at high

frequency, such as accelerometer and magnetometer data.

Other sensors may provide data with much lower

frequency, such as heart rate sensors, GPS, or human

input text. Furthermore, some data may be constant, such

as user identifier, names and date of birth.

• privacy sensitivity: some data may be highly sensitive if

exposed, such as date of birth, user identifier, or heart

rate data. Other data may be less sensitive, for example

accelerometer and gyroscope values.

In the diagram below we map out many of the possible

smartphone sensors in terms of their frequency and

sensitivity. Data hiding is ideal for hiding low-frequency

sensitive data into high-frequency non-sensitive data. It is

challenging to objectively map the privacy concerns that

may be associated with any particular sensor, since they can

vary across users and strongly depend on what other data is

available. For instance, gyroscope is typically used together

with accelerometer to detect activities such as walking,

standing, sitting and lying can be recognised with high

accuracy 96% [3], while on the other hand complex

activities (e.g., cooking, cleaning and sweeping) are still

considered challenging to recognise [13]. Therefore, we

rely on subjective assessment, heuristics, and our review of

literature [19, 22, 28] to rate the privacy concerns for each

sensor. We summarise the different types of sensor data in

terms of frequency and sensitivity in Figure 1.

DATA HIDING METHODOLOGY

In data hiding techniques the payload can be hidden either

in the time or frequency domain of the carrier. We adopt a

time domain technique, and specifically a substitutive

insertion method: parts of the carrier signal are replaced by

the payload signal. Specifically, we apply the Least

Significant Bit (LSB) substitution scheme, replacing the

carrier signal’s least significant bits with bits of the

payload. This approach enables embedding data of high rate

and size, while causing relatively insignificant

modifications to the original values [15, 29].

More importantly, our method is appropriate for real-time

data hiding on limited-resource platforms such as

smartphones, due to its low time complexity, and can

therefore guarantee that the embedded data is synchronised

with the carrier data. For example, let us assume that we

need to embed a heart rate value into a stream of

accelerometer values. We first obtain the binary

representation of the heart rate value, which for instance

can be a 32-bit integer. The next step is to embed each bit in

the oncoming accelerometer stream, by replacing the LSBs

of consecutive accelerometer values that have also been

converted to binary form (see Figure 2). One bit is used for

a flag to denote the existence of embedded data, and

additional bits are used for the payload. Depending on how

much we can afford to distort the carrier values, we can opt

to replace two or more LSBs.

Figure 1. Sensitivity and frequency of different sensor data.

Authenticated encryption prior to embedding enables us to

detect errors or tampering of the hidden data. Therefore, we

apply the Advanced Encryption Standard (AES) in

Galois/Counter Mode (GCM) [14, 32] to encrypt and

authenticate the embedded data. GCM is a mode of

operation that supports simultaneous encryption and

authentication of a data stream in an efficient, parallelisable

manner. To ensure the integrity of the data, an

authentication tag is generated at the end of the input

stream. The GCM mode is nonce-based which means that a

unique public identifier called nonce or initialisation vector

needs to be used for each set of data. Both the nonce and

the secret encryption key are needed for decryption and to

check the integrity of the data. Any tampering of the

encrypted hidden data will be detected during the

decrypting phase.

For our evaluation we implemented our method on Android

smartphones. We developed a pair of applications that run

simultaneously and communicate via Intent messages

within Android. The sensing application collects the

sensitive data to be hidden and passes it to the data hiding

application. The latter encrypts the received data, hides it

into the carrier signal, and potentially stores it or transmits

it to a third party. The two-application architecture was

chosen to allow flexibility in practical scenarios, and to

conduct a realistic assessment of performance. To extract

the hidden data, the receiving party needs access to the

carrier signal (sorted by timestamp), knowledge of the data

types, how many LSBs are used, the pre-shared nonce, the

authentication tag and encryption key.

Figure 2. The Least Significant Bit (LSB) method replaces the

least significant bits of the carrier signal with data to be

embedded.

Distortion of the Carrier Signal

The distortion produced by hiding data into the carrier

signal depends on the data type of the carrier signal and the

number of LSBs. For example, given 32-bit integer types as

the carrier signal, using n (0<n<32) LSBs for data hiding

will produce an error from –(2n-1) to 2n-1. The cases where

floating-point numbers serve as carrier signals are more

complex. Suppose the carrier signal is a 32-bit single

precision floating number f [17] defined as

𝑓 = (−1)𝑠 × 𝑐 × 2𝑞 , (1)

where s stands for the sign bit; c for the significand; and q

for the exponent.

If we use n (0<n<23) LSBs (which determine the

significand c) for data hiding, we must know the exponent

value q (which depends on the magnitude of the floating

number) to quantify the maximal amount of error |Emax|. It

can be calculated as

|𝐸𝑚𝑎𝑥| = ∑ 2𝑖−24+𝑞𝑛
𝑖=1 (2)

This formula reveals that a small number of LSBs will

produce negligible errors with floating-point numbers.

However, the absolute amount of error can be very high for

large q. Although q can be up to 127 to represent a valid

real number [17], smartphone sensors generally output

much smaller readings in practice, such as accelerometer

[25]. Thus, floating-point numbers are ideal carrier signals,

since data hiding can have a negligible distortion on them.

EXPERIMENTAL DESIGN

We evaluated the performance of our approach by running

experiments with off-the-shelf smartphones. Considering

the availability of AES/GCM encryption, we selected 6

smartphones with Android OS version 5.0 or above:

Samsung Galaxy S6 edge (5.1.1); two samples of Motorola

Moto G X1032 (5.1); LG Nexus 5 (5.1.1); Motorola Moto

G2 (5.0.2); Yota YotaPhone 2 (5.0).

Experiment Device Marker Carrier LSBs

E1 All

Magnetometer

(3 x 32-bit float)

(normal, UI, game, fastest)

Accelerometer

(3 x 32-bit float)

(normal, UI, game, fastest)

2

E2 S6

Magnetometer

(3 x 32-bit float)

(normal, UI, game, fastest)

Accelerometer

(3 x 32-bit float)

(normal, UI, game, fastest)

3

E3 S6

Heart rate sensor

(32-bit int)

(normal, UI, game, fastest)

Accelerometer

(1 x 32-bit float)

(normal, UI, game, fastest)

2

E4 S6

GPS

(3 x 64-bit double)

(0.1, 0.2, 1, 10 Hz)

Accelerometer

(3 x 32-bit float)

(normal, UI, game, fastest)

2

E5 S6

Human input

(8-bit char)

(1, 10, 100, 200 Hz)

Accelerometer

(1 x 32-bit float)

(normal, UI, game, fastest)

2

E6 S6
Device ID

(16 x 8-bit char)

Accelerometer

(1 x 32-bit float)

(normal, UI, game, fastest)

2

Table 1. Experimental parameters. The frequencies “normal, UI, game, fastest” are Android standards, and may perform

differently across different handsets. The Least Significant Bit includes a 1-bit flag field.

We installed our pair of Android applications on each

handset. We first launched the data hiding application to

initialise the encryption and carrier signal. Then, we

launched the sensing application to collect the data to be

hidden, and pass it along for hiding. Because it is

impractical to exhaust all the combinations of multiple

variables, we designed 6 experiments to examine a range of

conditions as summarised in Table 1.

We use the accelerometer as the carrier signal in all the

experiments, and we consider 4 different sampling rates for

it, as defined by Android. In E1 and E2 we hid

magnetometer data at 4 different sampling rates. In E3 we

hid heart rate data at 4 different sensing rates. In E4 we hid

simulated streaming GPS data (64-bit double type in 3

dimensions: latitude, longitude and altitude) generated at 4

different frequencies. In E5, we hid simulated human input

text at varying frequencies. In E6 we hid a device ID (an

Android device ID has 16 characters).

For experiments E1, E2 and E4, we used 3 axes of the

accelerometer as the carrier, since in those experiments we

effectively had 3 streams of data to hide. In the other

experiments only the x axis was used as a carrier. In

experiments 5 and 6, the data hiding application used the 8-

bit ASCII format. The experiments had a combination of

sampling frequencies of the data to hide, and 4 frequencies

of the carrier signal. Orthogonally, E1 had 6 different

phones. Each condition ran for a period of 5 minutes,

during which the performance of the system was monitored.

EXPERIMENTAL RESULTS

Figure 3 summarises the results in E1, where magnetometer

data was encrypted and embedded into the accelerometer

data using 4 different sampling rates on 6 handsets. The

dark red shades represent the magnetometer records that

were hidden, and the light blue shades above red shades

represent the number of magnetometer records that could

not be processed due to the too high bit rate of the payload,

and therefore had to be dropped.

E1 primarily acted as a “stress test” to highlight

performance differences across handsets. As such, we

induced record dropping due to the relatively high volume

of magnetometer data that we attempted to hide, as well as

variances in the capabilities of the handsets. The results

show that the sampling rate at “normal” and “UI” was

consistent across handsets. However, the handsets

performed substantially differently at the “Game” and

“Fastest” sampling rates, for instance with the S6

outperforming G1 handsets by a factor of 2.

We further investigate the variation in the carrier frequency

across handsets in E1. Figure 4 shows the average

accelerometer delay, which denotes the time gap between

two adjacent samples. Sensing delay is an indirect measure

of the ability to execute data hiding.

Figure 3. Results of E1. The number of magnetometer readings which are successfully hidden is shown in red, and those dropped is

shown in blue. The y axis is on a base-2 logarithmic scale.

Based on the sensing delay, we can estimate the capacity of

accelerometer as a carrier signal on each device. Figure 5

presents the capacity of one axis of the accelerometer for 2

LSBs (1 bit flag & 1 bit payload). We observe that at the

fastest sampling rate, all handsets can provide a capacity of

more than 10B/s, with the highest being 26.8B/s for the S6.

If 3 axes are used, then the capacity increases by a factor of

3. In addition, the capacity increases proportionally for each

additional payload bit we use. Therefore, we expect the S6

with 3 axes and 3 LSBs (1-bit flag & 2-bit payload) to

provide 26.8 × 3 × 2 = 160B/s capacity.

Once our data hiding application received a new

magnetometer data reading, it executed AES/GCM

encryption and hid the ciphertext bits into the incoming

accelerometer records. When the ciphertext bits are more

than the payload of one accelerometer record, phones have

to embed the rest cipher bits into more incoming

accelerometer records.

Figure 4. Average sensing delay of accelerometer for different

handsets in E1.

In Figure 6 we show the computational overhead that

encryption induced in E1. Results show that, on average,

all the handsets were able to finish the task of encryption

plus data hiding for one sample within 0.6 ~ 6.2ms for any

condition (max: 302.13ms due to CPU scheduling). Of this

time, less than 0.2 ~ 0.8ms on average (max: 428.95) was

spent on just data hiding.

Figure 7 shows the performance of the S6 handset across all

experiments, and therefore for multiple data types. As

expected, using an additional LSB in E2 doubled its

capacity. In E3 we noted that the heart rate sensor hardware

did not alter its sampling rate, contrary to Android API

specifications. In E4, as expected, the results show that the

number of GPS records we could hide was approximately

half of the magnetometer in E1. In E5 the hidden data was

simulated human entry text, which was on average 3 times

faster than E1. In E6 we hid a Device Identification code,

and therefore the sampling rate did not vary.

Figure 5. Average capacity using one-axis accelerometer

carrier on 6 phones, using 2 LSBs (1 bit flag & 1 bit payload).

Figure 6. Average processing time for encryption & hiding (blue), or just hiding (red) in E1. This is the time needed for one

magnetometer record. The y axis is in base-2 logarithmic scale.

Figure 7. Performance of the S6 handset across all experiments. Number of readings which are successfully hidden is shown in red,

and those dropped is shown in blue. The y axis is on a base-2 logarithmic scale.

Also, in E3 we observed that the accelerometer sampling

rate was unexpectedly doubled compared to all other

experiments (for UI speed: 30ms in E3 vs 60ms in other

experiments). This is a phenomenon that we were able to

reliably reproduce. Given the lack of official documentation

we believe that on this particular handset, using the heart

rate sensor triggers additional mechanisms that increase the

sampling rate of the accelerometer. Figure 8 shows the

average processing time of encryption and data hiding on

S6 across all experiments. Considering encryption plus data

hiding (blue), the average processing time follows the

complexity of payload types and the number of LSBs: E1

(32-bit float on 3 axes, 2 LSBs): 2.49ms; E2 (32-bit float on

3 axes, 3 LSBs): 2.56ms; E3 (32-bit int, 2 LSBs): 1.14ms;

E4 (64-bit double on 3 axes, 2 LSBs): 2.92ms; E5 (8-bit

ASCII, 2 LSBs): 0.74ms; E6 (8-bit ASCII, 2 LSBs):

0.52ms. Similar to the worst case (among all handsets) in

E1, the worst cases in E2-E6 ranged from 40.76ms to

380.67ms. When considering only data hiding (red), the S6

handset was able to finish within 0.9ms on average across

all 6 experiments. The worst cases in E2-E6 ranged from

57.29ms to 593.36ms.

Figure 8. Average processing time (S6 handset across all experiments) for encryption & hiding (blue), or just hiding (red) in E1.

The y axis is in base-2 logarithmic scale.

CPU Utilisation

We also considered the impact of our data hiding method

on CPU utilisation. We logged CPU utilization data for the

S6 handset in E1 using the Android Device Monitor. We

consider encryption and data hiding as two independent

processes, since they are separate functions in our source

code and can be monitored independently in CPU

utilisation analysis.

Figure 9. Inclusive time of CPU utilization (%) on S6 handset

in E1. Separate utilisation is shown for encryption (red) and

hiding (green).

Figure 9 presents the results of encryption vs. hiding at

different accelerometer sampling rates. Note that 100% of

inclusive CPU time would indicate that the whole period

when the data hiding application is running its thread uses a

CPU. These results show that our software does not occupy

the CPU all the time, meaning that the CPU may set the

application thread into the wait state to save energy. We

also observe that the CPU was occupied more often with

data hiding rather than encryption, even though one call to

the data hiding function takes much less time than one call

to the encryption function (Figure 6). This disparity is due

to the fact that each record of data to be hidden is encrypted

once, but requires many calls to the data hiding function,

since only 1 or 2 bits can be hidden at a time. For instance,

a 32-bit payload is encrypted once but requires 32 calls to

the data hiding function when using 2 LSBs (1-bit payload

& 1-bit flag).

Figure 10. Maximal distortion of acceleration for different

LSBs and floating-point exponents. The y axis is in base-2

logarithmic scale.

Distortion

According to standards [17], to represent a floating-point

number v, the exponent value q in equation (1) must be

maximised with the constraint that 2q is not greater than |v|.

This means that the amount of error increases as the

maximal possible value of |v| is greater. According to the

measurement range of common smartphone accelerometer

[25], q is at most 8. Figure 10 depicts the maximal

distortion that we theoretically induce for different LSBs

and exponents. The number of LSBs (i.e., n) depends on the

experiment settings.

We contrast the theoretical prediction with empirical data of

the distortion in the carrier signal in E1 and E2 on the S6

handset. The handset was placed on the flat table so that the

z axis of accelerometer showed the gravity which was about

10m/s2, as meaning that a floating point number needs q=3

to represent this value.

In E1 (where 2 LSBs are used) we recorded 2.861×10-6m/s2

as the maximal absolute value of error in the carrier signal.

This result exactly matches our theoretical estimation which

is given by equation (2) when n=2 and q=3. Similarly, in E2

(when the number of LSBs was 3), we logged the maximal

absolute error 6.676×10-6m/s2. This also exactly matches

our theoretical estimation where equation (2) has n=3 and

q=3.

DISCUSSION

Performance

Our results show that smartphone sensor streams can

provide sufficiently high capacity for common data hiding

scenarios, especially when used with high frequency carrier

signals. Depending on the security concerns of smartphone

sensing systems, a variety of smartphone data types, such as

floating numbers (e.g., magnetometer and GPS), integers

(e.g., heart rate) and characters (e.g., human input text and

device ID code) can be a suitable payload hosted in the

carrier signal.

Indicatively, we measured on the S6 handset a maximum

capacity of 26.8B/s with a 1-axis accelerometer carrier

signal. Give the expected distortion shown in Figure 10, the

capacity for 7 LSBs on a 3-axis carrier signal is 526B/s,

with expected distortion between 10-5m/s2 and 4×10-3m/s2.

To extract this hidden data, a recipient requires knowledge

of:

• the data type of the host signal;

• the data type of hidden data;

• the number of LSBs used in the host signal;

• the host signal sorted by timestamp;

• the information for decryption (in the case of

AES/GCM, they are the nonce, the authentication

tag and the decryption key).

Beyond the confidentiality and integrity provided by

AES/GCM encryption, hiding data into another sensor

stream obscures the existence of sensitive and private data

secret by making it imperceptible. Thus, as Lane et al. [22]

have called for, using our approach the type and value of

sensitive data streams are not accessible or noticeable to a

third party, taking one step closer towards the preservation

of privacy. For example, an attacker may find it useful to

know that a user is uploading location data, even if they

cannot see the actual data. Our method alleviates this

concern by obscuring the existence of such sensitive data.

In practice, this means that sensitive data is not stored in a

separate database field (thus making it perceivable to third

parties). In addition, if the payload is an encrypted identity

code such as a device ID, it can be used to verify the

authenticity of the carrier signal source.

Implementation Issues

Our approach has a manageable computational cost (Figure

9), making it practical for smartphones [18] and allowing

power-efficiency OS techniques to reduce its energy

footprint, for example setting threads to sleep mode. In

addition, the theoretical predictions regarding the distortion

caused by our technique (Figure 10) have been empirically

confirmed, thus guaranteeing the level of fidelity between

the original carrier signal and the signal containing hidden

information.

This is important for a range of applications. Certain

applications that use accelerometer data require high

precision, such as gesture recognition [34], while other

applications like scrolling via tilting [5] require crude

precision since smartphone accelerometers and gyroscopes

produce measurement errors anyway [10]. Our method is

flexible enough to account for varying needs regarding the

fidelity of processed data, by trading off fidelity and

capacity.

Our approach can be adopted by existing sensing systems

that already support smartphone sensor data. In particular,

we envision that a user with multiple devices (e.g. phone,

tablet, smartwatch) would be able to transparently share

sensitive between those devices via existing platforms. As

long as each device has access to the sensor data, it is

possible to extract and decrypt hidden data on the client,

without allowing the platform to gain access, or even know

that the hidden data exists. This is possible without

modifying the platform itself, and not requiring additional

“encrypted” fields to be supported.

Medical Sensor Data

Due to its technical characteristics, our proposed data

hiding technique can help to address the legislation that

many countries have to protect sensitive data, especially

medical sensor data [4, 36]. In general, the development of

medical information systems has been a challenging and

costly affair for many countries [16] due to the complex

privacy requirements.

For instance, it is challenging to enable users to retain

control of their own data after it has been entered in the

system, and giving them access to this data is often a thorny

issue [2]. Our method enables users to retain control of their

sensitive data even after it has been uploaded on a

healthcare information system. For example, during

consultation a user could decrypt sensitive information

using the secrets stored in their personal device, and show it

to the doctor.

Crowdsensing

Additionally, our technique enables the verification of the

authenticity or owner of smartphone sensor data. This is

particularly relevant to mobile crowdsensing scenarios,

either user-driven [6] or agent-driven [24], with diverse

application including environmental monitoring and

intelligent transportation. In such settings, malicious users

or faulty systems can upload tampered or faked data to

damage the systems or to defraud benefits if the systems

offer rewards for uploading certain data. In this scenario,

our technique can offer crucial digital evidence for

forensics [28] to ensure the authenticity of smartphone

sensor data. For example, this can be achieved by

smartphone applications embedding an encrypted unique

identification number into every uploaded sensor data

stream. When the streams are received, their authenticity

can be established by inspecting the identification number.

If the received data stream does not contain the ID assigned

to a particular client, the systems can consider the data

invalid and ignore it.

Along the same lines, initiatives such as Crawdad and

Crowdsignals are building up large archives of sensor data.

Using our technique, it is possible for users to “physically”

embed in this data a unique signature that serves as proof of

ownership of the data, and can be used to confirm that no

tampering has taken place. The “physical” binding means

that even if this sensor data is shared between scientists via

email, database services, physical media, and across a

variety of file formats, the hidden data persists. This

property also ensures that it is “future proof”, in the sense

that if in the future new ways of sharing data is established,

the hidden data will remain available as proof of who owns

or generated this sensor stream.

LIMITATIONS AND FUTURE WORK

We have only verified our approach on 6 phones with

Android OS 5.0 or above, and we are aware that

approximately 65% of Android smartphones run a lower

version that 5.0 at time of writing. We expect our method’s

performance to vary across different handsets, but only in

terms of capacity and CPU load. The other features of our

method should remain invariant.

Clearly, our method has not been tested on other operating

systems, such as Symbian, iOS and Windows, and this

would be a crucial next step for our work. A key challenge

may be that the implementation of AES/GCM may be

unavailable on other handsets, meaning that an ad-hoc

algorithm may be needed. Although developers can employ

other encryption algorithms, this may downgrade the

performance and security level. Another technical issue is

that the computational efficiency in other handsets

environments can be significantly lower than Android 5.0,

meaning that they cannot use high-frequency sensor data as

the carrier signal.

In addition, we have not tested our method with a broad

range of external sensors or devices (such as smartwatches).

Platforms with higher constraints (such as smartwatches)

may find it challenging to attain high capacity data hiding.

During the selection of carrier signals, objectively

quantifying the sensitivity of each sensor can provide

greater robustness to the data hiding mechanism. This

requires a substantial body of future work. The positions of

sensors (i.e., their sensitivity) in Figure 1 may depend on

various factors, such as social context, network

environments and capabilities of attackers.

Our future work will also include a mechanism to balance

the tradeoff between capacity and fidelity in carrier signals.

A large number of LSBs leads to high capacity and low

fidelity in the carrier signals. Therefore, this mechanism

should adaptively identify a suitable upper bound of LSBs

in different types of data hiding scenarios.

CONCLUSION

We propose a data hiding method to embed sensitive

information into smartphone sensor data streams. Our

method combines encryption with data hiding, and can be

adopted by smartphone sensing systems to secure sensitive

data or to prove the authenticity of data. Due to the

imperceptibility of data hiding techniques, an

unauthenticated party does not notice the type and value of

hidden sensitive data stream by interception, thus

alleviating some of the privacy problems of smartphone

sensing systems mentioned in literature [22].

We evaluated with a variety of handsets, data types, and

settings. Our experimental results show that it is feasible to

encrypt and embed common types of smartphone data (e.g.,

magnetometer readings, heart rate, GPS location, human

input text and device identification code) into high-

frequency sensor streams, such as accelerometer, in real

time. Moreover, we show that AES/GCM encryption and

data hiding operations have manageable impact on the CPU

utilisation of the sensing application thread, meaning that

our approach will not be bottlenecked by resource-

constrained environments of smartphones. We demonstrate

that our approach is able to maintain high fidelity after data

hiding, and can provide strong guarantees regarding fidelity

by adjusting the number of LSBs used for hiding. Our

findings make this data hiding method attractive for

smartphones sensing systems that collect sensitive data or

require high data authenticity, such as medical systems and

digital forensics applications.

ACKNOWLEDGMENTS

This work is partially funded by Infotech Oulu, TEKES-

funded VitalSens project, the Academy of Finland (Grants

276786-AWARE, 285062-iCYCLE, 286386-CPDSS,

285459-iSCIENCE), and the European Commission

(Grants PCIG11-GA-2012-322138, 645706-GRAGE, and

6AIKA-A71143-AKAI).

REFERENCES

1. Gregory D. Abowd. 2012. What next, ubicomp?

Celebrating an intellectual disappearing act. In

Proceedings of the 2012 ACM Conference on

Ubiquitous Computing - UbiComp '12, 31-40.

http://dx.doi.org/10.1145/2370216.2370222.

2. Corey M. Angst and Ritu Agarwal. 2009. Adoption of

Electronic Health Records in the Presence of Privacy

Concerns: The Elaboration Likelihood Model and

Individual Persuasion. MIS Q. 33, 2: 339-370.

3. Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier

Parra and Jorge J. L. Reyes-Ortiz. 2013. A public

domain dataset for human activity recognition using

smartphones. In European Symposium on Artificial

Neural Networks, Computational Intelligence and

Machine Learning, ESANN.

4. David Blumenthal and Marilyn Tavenner. 2010. The

meaningful use regulation for electronic health records.

New England Journal of Medicine 363, 6: 501-504.

5. Sebastian Boring, Marko Jurmu and Andreas Butz.

2009. Scroll, Tilt or Move It: Using Mobile Phones to

Continuously Control Pointers on Large Public

Displays. In Proceedings of the 21st Annual

Conference of the Australian Computer-Human

Interaction Special Interest Group: Design: Open 24/7,

ACM, 161-168.

http://dx.doi.org/10.1145/1738826.1738853.

6. Yohan Chon, Nicholas D. Lane, Yunjong Kim, Feng

Zhao and Hojung Cha. 2013. Understanding the

Coverage and Scalability of Place-centric

Crowdsensing. In Proceedings of the 2013 ACM

International Joint Conference on Pervasive and

Ubiquitous Computing, ACM, 3-12.

http://dx.doi.org/10.1145/2493432.2493498.

7. G Coatrieux, L Lecornu, B Sankur and Ch Roux. 2006.

A Review of Image Watermarking Applications in

Healthcare. In Engineering in Medicine and Biology

Society, 2006. EMBS '06. 28th Annual International

Conference of the IEEE, IEEE, 4691-4694.

http://dx.doi.org/10.1109/IEMBS.2006.259305.

8. Christian Collberg and Jasvir Nagra. 2009.

Surreptitious Software: Obfuscation, Watermarking,

and Tamperproofing for Software Protection. Addison-

Wesley Professional.

9. John P. Collomosse and Tim Kindberg. 2008. Screen

Codes: Visual Hyperlinks for Displays. In Proceedings

of the 9th Workshop on Mobile Computing Systems and

Applications, ACM, 86-90.

http://dx.doi.org/10.1145/1411759.1411782.

10. Ionut Constandache, Xuan Bao, Martin Azizyan and

Romit R. R. Choudhury. 2010. Did You See Bob?:

Human Localization Using Mobile Phones. In

Proceedings of the Sixteenth Annual International

Conference on Mobile Computing and Networking,

ACM, 149-160.

http://dx.doi.org/10.1145/1859995.1860013.

11. Ingemar J. Cox, Joe Kilian, Tom Leighton and Talal

Shamoon. 1996. A secure, robust watermark for

multimedia. In Information Hiding (eds.). Springer

Berlin Heidelberg, 185-206.

12. Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica

Fridrich and Ton Kalker. 2008. Digital Watermarking

and Steganography. Morgan Kaufmann Publishers

Inc..

13. Stefan Dernbach, Barnan Das, Narayanan C. Krishnan,

Brian L. Thomas and Diane J. Cook. 2012. Simple and

Complex Activity Recognition through Smart Phones.

In International Conference on Intelligent

Environments, IEEE, 214-221.

http://dx.doi.org/10.1109/IE.2012.39.

14. Morris J. Dworkin. 2007. SP 800-38D.

Recommendation for Block Cipher Modes of

Operation: Galois/Counter Mode (GCM) and GMAC.

15. Frank Hartung and Martin Kutter. 1999. Multimedia

watermarking techniques. Proceedings of the IEEE 87,

7: 1079-1107. http://dx.doi.org/10.1109/5.771066.

16. Richard Heeks. 2006. Health information systems:

Failure, success and improvisation. International

Journal of Medical Informatics 75, 2: 125-137.

http://dx.doi.org/10.1016/j.ijmedinf.2005.07.024.

17. 2008. IEEE Standard for Floating-Point Arithmetic.

IEEE Std 754-2008: 1-70.

http://dx.doi.org/10.1109/IEEESTD.2008.4610935.

18. Hussam Juma, Ibrahim Kamel and Lami Kaya. 2008.

Watermarking sensor data for protecting the integrity.

In International Conference on Innovations in

Information Technology, IEEE, 598-602.

http://dx.doi.org/10.1109/INNOVATIONS.2008.47816

62.

19. Apu Kapadia, David Kotz and Nikos Triandopoulos.

2009. Opportunistic sensing: Security challenges for

the new paradigm. In Communication Systems and

Networks and Workshops, IEEE, 1-10.

http://dx.doi.org/10.1109/COMSNETS.2009.4808850.

20. Predrag Klasnja, Sunny Consolvo, Tanzeem

Choudhury, Richard Beckwith and Jeffrey Hightower.

2009. Exploring Privacy Concerns About Personal

Sensing. In Proceedings of the 7th International

Conference on Pervasive Computing, Springer-Verlag,

176-183. http://dx.doi.org/10.1007/978-3-642-01516-

8_13.

21. Vassilis Kostakos and Denzil Ferreira. 2015. The Rise

Of Ubiquitous Instrumentation. Frontiers in ICT 2, 3:

1-2. http://dx.doi.org/10.3389/fict.2015.00003.

22. Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel

Peebles, Tanzeem Choudhury and Andrew T.

Campbell. 2010. A Survey of Mobile Phone Sensing.

Communications Magazine, IEEE 48, 9: 140-150.

http://dx.doi.org/10.1109/MCOM.2010.5560598.

23. Reed Larson and Mihaly Csikszentmihalyi. 2014. The

Experience Sampling Method. Springer Netherlands.

24. Teemu Leppänen, José A. Lacasia, Yoshito Tobe,

Kaoru Sezaki and Jukka Riekki. 2015. Mobile

crowdsensing with mobile agents. Autonomous Agents

and Multi-Agent Systems: 1-35.

http://dx.doi.org/10.1007/s10458-015-9311-7.

25. LIS3DH MEMS digital output motion sensor ultra low-

power high performance 3-axes "nano" accelerometer.

http://www.st.com/web/en/resource/technical/documen

t/datasheet/CD00274221.pdf.

26. Cristina V. Lopes and Pedro M. Q. Aguiar. 2003.

Acoustic Modems for Ubiquitous Computing. IEEE

Pervasive Computing 2, 3: 62-71.

http://dx.doi.org/10.1109/MPRV.2003.1228528.

27. Nai Miao, Yutao He and Jane Dong. 2012. hymnMark:

Towards Efficient Digital Watermarking on Android

Smartphones. In Proceedings of the International

Conference on Wireless Networks (ICWN), 1-8.

28. Alexios Mylonas, Vasilis Meletiadis, Lilian Mitrou and

Dimitris Gritzalis. 2013. Smartphone sensor data as

digital evidence. Computers & Security 38: 51-75.

http://dx.doi.org/10.1016/j.cose.2013.03.007.

29. W. Pan, G. Coatrieux, J. Montagner, N. Cuppens, F.

Cuppens and C. Roux. 2009. Comparison of some

reversible watermarking methods in application to

medical images. In Engineering in Medicine and

Biology Society, 2009. EMBC 2009. Annual

International Conference of the IEEE, IEEE, 2172-

2175. http://dx.doi.org/10.1109/IEMBS.2009.5332425.

30. Jennifer Pearson, Simon Robinson, Matt Jones, Amit

Nanavati and Nitendra Rajput. 2013. ACQR: Acoustic

Quick Response Codes for Content Sharing on Low

End Phones with No Internet Connectivity. In

Proceedings of the 15th International Conference on

Human-computer Interaction with Mobile Devices and

Services, ACM, 308-317.

http://dx.doi.org/10.1145/2493190.2493195.

31. Yanzhi Ren, Yingying Chen, Mooi C. Chuah and Jie

Yang. 2015. User Verification Leveraging Gait

Recognition for Smartphone Enabled Mobile

Healthcare Systems. Mobile Computing, IEEE

Transactions on 14, 9: 1961-1974.

http://dx.doi.org/10.1109/TMC.2014.2365185.

32. Amit Sahai. 2004. Secure Protocols for Complex Tasks

in Complex Environments. In Progress in Cryptology -

INDOCRYPT 2004, Springer Berlin Heidelberg, 14-16.

http://dx.doi.org/10.1007/978-3-540-30556-9_2.

33. Frank Y. Shih. 2007. Digital Watermarking and

Steganography Fundamentals and Techniques. CRC

Press.

34. Boris Smus and Vassilis Kostakos. 2010. Running

gestures: hands-free interaction during physical

activity. In International Conference on Ubiquitous

Computing Adjunct, ACM, 433-434.

http://dx.doi.org/10.1145/1864431.1864473.

 35. Ryohei Suzuki, Daisuke Sakamoto and Takeo Igarashi.

2015. AnnoTone: Record-time Audio Watermarking

for Context-aware Video Editing. In Proceedings of the

33rd Annual ACM Conference on Human Factors in

Computing Systems, ACM, 57-66.

http://dx.doi.org/10.1145/2702123.2702358.

36. Astrid M. van Ginneken. 2002. The computerized

patient record: balancing effort and benefit.

International Journal of Medical Informatics 65, 2: 97-

119. http://dx.doi.org/10.1016/s1386-5056(02)00007-2.

37. R. Velumani and V. Seenivasagam. 2010. A reversible

blind medical image watermarking scheme for patient

identification, improved telediagnosis and tamper

detection with a facial image watermark. In IEEE

International Conference on Computational

Intelligence and Computing Research, IEEE, 1-8.

http://dx.doi.org/10.1109/ICCIC.2010.5705832.

38. Honggang Wang, Dongming Peng, Wei Wang, Hamid

Sharif and Hsiao-Hwa Chen. 2008. Energy-Aware

Adaptive Watermarking for Real-Time Image Delivery

in Wireless Sensor Networks. In International

Conference on Communications, IEEE, 1479-1483.

http://dx.doi.org/10.1109/ICC.2008.286.

39. Wei Zhang, Yonghe Liu, Sajal K. Das and Pradip De.

2008. Secure data aggregation in wireless sensor

networks: A watermark based authentication

supportive approach. Pervasive and Mobile Computing

4, 5: 658-680.

http://dx.doi.org/10.1016/j.pmcj.2008.05.005.

40. Wu Zhou, Xinwen Zhang and Xuxian Jiang. 2013.

AppInk: Watermarking Android Apps for Repackaging

Deterrence. In Proceedings of the 8th ACM SIGSAC

Symposium on Information, Computer and

Communications Security, ACM, 1-12.

http://dx.doi.org/10.1145/2484313.2484315.

