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ABSTRACT 

We develop and evaluate a data hiding method that enables 

smartphones to encrypt and embed sensitive information 

into carrier streams of sensor data. Our evaluation considers 

multiple handsets and a variety of data types, and we 

demonstrate that our method has a computational cost that 

allows real-time data hiding on smartphones with negligible 

distortion of the carrier stream. These characteristics make 

it suitable for smartphone applications involving privacy-

sensitive data such as medical monitoring systems and 

digital forensics tools. 
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INTRODUCTION 
We present and evaluate a data hiding method for 

smartphone sensing, which enables sensing applications to 

encrypt and embed sensitive data or identification codes 

within other data streams of a smartphone. Our method is 

motivated by the increasing diversity of sensor data that 

mobile devices generate, and the growing ecosystems of 

services that store, process, and share this data. 

The constellation of personal devices that we regularly use 

now includes smartphones, smartwatches, tablets, fitness 

sensors, and a variety of domestic appliances. These 

devices contain a growing set of increasingly sophisticated 

sensors which improve interaction and provide new 

services. The richness and volume of this data has given 

rise to research opportunities for the UbiComp community 

and beyond. For instance, research often demonstrates how 

smartphone data that we previously discarded as noise can 

actually contain valuable information [1]. Furthermore, 

research on quantified self, self-monitoring, and e-health 

aims to harness the data that our devices generate. 

This trend has motivated scientists across academia and 

industry to build platforms that collect, analyse, visualise, 

and share increasing amounts of end-user data generated 

from personal devices. It has become a norm for studies to 

instrument personal devices of volunteer participants 

(recruited both in-person or via app-stores), and much of 

this data may eventually become available for other 

scientists or the public in general. Initiatives such as 

Crawdad, Crowdsignals, and Nokia's Lausanne Data 

Collection Campaign are examples of how smartphone 

“traces” may be shared after the completion of an 

experiment. Similarly, the quantified-self movement has 

given rise to a large number of platforms where users may 

upload their health-related sensor data. While certain 

platforms may be free or come with associated costs, users 

typically share their data in exchange for a service.  

Often, multi-stream data from a user’s device is treated as a 

coherent data unit. For instance, a typical experiment may 

simultaneously collect accelerometer, heart rate, and GPS 

data. This set of sensor streams may then be uploaded to a 

server for analysis, visualisation and sharing. This approach 

to “bundling” sensor streams has two important downsides. 

Firstly, it treats all sensor streams unilaterally, overlooking 

the unique privacy aspects of each individual sensor stream. 

For instance, accelerometer data may not be as sensitive as 

GPS data. Secondly, users practically relent control of their 

data once it leaves their devices. 

Our work proposes a data hiding approach to address the 

privacy needs that arise when users share smartphone 

sensor data with scientists and platforms. Crucially, our 

technique is transparent, meaning that it is compatible with 

existing platforms and tools. As a result, users can maintain 

control of their sensitive data even after sharing it through 

online platforms, without having to give up those services. 

Additionally, the technique allows us to verify the integrity 

of embedded sensitive data, for example to confirm that no 

tampering has taken place in the form of record removal, 

decimal rounding, or filtering. Finally, our technique allows 

users to prove ownership of sensor or healthcare data that 

they have shared, and as such provides spoof resistance 

against tampered medical sensor data [31]. 

 



BACKGROUND 

Data hiding is an application domain of digital 

watermarking techniques [7]. Traditionally, watermarks are 

found in official documents, and carry information about 

the object in which they are found. Watermarks are 

designed in way so that they are difficult to reproduce or 

counterfeit [12]. For example, banknotes have watermarks 

in the form of figures that become visible only under certain 

conditions.  

The practice of watermarking can be defined as 

imperceptibly altering an object to embed a message about 

it [12]. Embedding a watermark w into a host object C 

produces a new object Cw, such that w can be reliably 

located and extracted even after Cw has been subjected to 

transformations [8].  

In digital watermarking the host object C is a carrier signal 

of information, and the watermark w is a digital marker. 

The watermarking process is achieved through the 

introduction of errors not detectable by human perception 

[11]. Similar to traditional watermarking, digital 

watermarks can only be perceptible under specific 

conditions such as after using special extracting algorithms 

[33]. Unlike traditional watermarking, in digital 

watermarking when the carrier signal is copied or 

transferred, the watermark is also carried with the copy. 

Watermarking methods have been used in various 

applications including digital audio, images or videos. 

Typically, these are used for owner identification, content 

authentication and copy control [12]. Similarly, data hiding 

is particularly popular with biomedical data because of the 

need to imperceptibly carry metadata or additional sensitive 

data such as name, ID, or sensitive medical data [37]. In 

biomedical research, data hiding techniques embed data 

reversibly, since it is important to use it in its original state 

in the analyses. In our case though, we can be flexible as 

the host data is not sensitive. In this context, data hiding can 

improve management efficiency, provides an additional 

layer of security, and can ensure confidentiality, availability 

and reliability [7].  As such, data hiding allows us to embed 

a set of metadata or sensitive data, imperceptibly, within 

another data set or digital file. 

Finally, we observe that cryptographic techniques offer 

orthogonal benefits regarding these concerns. For this 

reason, data hiding techniques often encrypt the data before 

it is hidden. However, the key advantage of data hiding is 

the “physical” binding between carrier signal and digital 

marker in a manner that is transparent to computational 

infrastructure, can survive data migration, and does not give 

rise to software compatibility issues. 

Properties of Data Hiding Techniques 

Multiple data hiding techniques exist, and they can be 

classified in terms of three key properties [18].  

• Robustness: Robust techniques are those where data can 

be extracted successfully even after the carrier signal has 

undergone malicious attacks, modifications or 

transformations. This feature is particularly desirable in 

cases where the host is prone to modifications, either 

intentional, or unintentional. An example would be lossy 

compression. Fragile techniques are those where minor 

distortions affect the hidden data. This can serve useful 

tamper-proofing purposes (e.g., loss of hidden data can 

reveal and localise modification of data).  

• Imperceptibility: Data hiding techniques are considered 

as imperceptible when data is imperceptible to human 

under typical use. Hidden data can only be extracted 

algorithmically by an authorized user. Good 

imperceptibility also suggests high fidelity between the 

original work and the one containing data. 

• Capacity: Refers to the size of the payload that can be 

encoded within a unit of a host object. 

Traditionally in data hiding literature, there is a tradeoff 

between these three properties. Depending on the 

application domain, the priority of these properties varies. 

An additional constraint in the case of smartphones and 

mobile sensors is energy consumption and computational 

complexity. Previous work has highlighted that data hiding 

is more efficient than cryptography in terms of complexity 

and energy usage, and therefore more appropriate for 

resource-constrained hardware [18].  

Data Hiding and Smartphone Sensor Data 

Smartphone sensing techniques introduce a variety of 

applications and opportunities, such as activity recognition, 

health monitoring and intelligent transportation. However, 

smartphone sensor data may contain sensitive information, 

including GPS location, medical states (e.g., heart rate and 

travelled steps) and user profiles (e.g., identity, age, gender 

and calendar reminders). This challenges researchers in the 

design of smartphone sensing systems [20]. 

Although researchers can alleviate these problems using 

cryptography and privacy-preserving data mining 

techniques, existing approaches are still insufficient to keep 

information imperceptible or to prove the authenticity of 

sensor data [19, 22]. For this reason, data hiding techniques 

can benefit users, for example by hiding sensitive data 

within non-sensitive data. Furthermore, data hiding 

techniques can be used to prove ownership of smartphone 

sensor data without compromising anonymity. By 

embedding identification information into sensor data, 

sensing systems that collect data from multiple users (e.g. 

in crowdsensing) can easily verify the source of data and 

filter untrusted sources without establishing secure access 

APIs or explicit authentication mechanisms. 

Many projects have considered data hiding techniques, 

especially watermark-based methods, in smartphone-driven 

scenarios. Miao et al. [27] developed an Android 

application that uses digital watermarks to protect the 

ownership and integrity of digital photographs. They 

showed that the proposed approach can resist some 



common attacks, such as contrast change and compression. 

Zhou et al. [40] developed a system named AppInk that 

generates watermarked apps from the source code of 

original apps, to detect unauthorised apps which are 

repackaged by attackers. Suzuki et al. [35] developed a 

video annotation system which embeds real-time high-

frequency audio watermarks into video data of a 

smartphone camera. Because high-frequency audio is 

inaudible to humans, the audio quality of watermarked 

video data is not compromised. Hence, users can add 

annotations into video in the form of audio watermarks. 

Furthermore, data hiding has been used as a barcode-like 

mechanism. For example, previous work embeds hyperlinks 

within posters or videos [9], such that a mobile device can 

decode this information but it is not perceptible to humans. 

Similarly, researchers have shown how to embed 

information within an audio channel transmitted over 

loudspeakers [26] or the phone [30], a technique that can be 

used for ad-hoc secure pairing, verification, and 

synchronisation.  

In the context of sensor networks that may have to operate 

in untrusted environments, data hiding can meet the 

requirements of data integrity and authentication in 

communication. For example, Wang et al. [38] proposed an 

adaptive watermarking approach to achieve secure image 

transmission with low distortion and energy cost. Similarly, 

Zhang et al. [39] presented an end-to-end authentication 

scheme that employs watermarking for secure data 

aggregation. In these cases, watermarks are embedded by 

each sensor node, and the server can verify the sources of 

the incoming data despite an untrusted communication 

network.  

Our work builds on previous research in many ways. The 

recent proliferation of scientific and commercial platforms 

for sensor data has given rise to the need to consider 

“sensing” as the application itself. Therefore, we aim to 

provide users a transparent way to embed one set of 

smartphone sensor data within another. This will allow 

users to adopt services on a variety of platforms without 

necessarily trusting them with their sensitive data. Much 

like sensor nodes operating in an untrusted network [38, 

39], we can enable users’ personal devices to share sensor 

data with each other via untrusted platforms. Additionally, 

our approach establishes a physical binding between a 

sensor stream and annotation data, either to prove 

ownership of the sensor data (as demonstrated with photos 

[27]), to provide additional context (as has been shown for 

videos [35]), or for ad-hoc communication purposes (as has 

been used in ad-hoc pairing [26, 30]). 

STUDY 

Our objective is to investigate the feasibility of hiding one 

sensor stream within another on a smartphone. Due to the 

plethora of sensors, it is important to identify their main 

types for our purposes. Modern smartphones can provide 

sensor data across the following broad categories [21]: 

• hardware sensors that include motion sensors (e.g., 

accelerometer and gyroscope), position sensors (e.g., 

GPS and magnetometer), environmental sensors (e.g., 

light sensor and barometer), and multimedia hardware 

(e.g., microphone and dual-cameras).  

• software sensors that include operating system data (e.g. 

CPU load, network connections, app usage) and 

application data (e.g. calendar data, browsing history, 

music listening data). 

• human input, which captures phenomena that are 

imperceptible for hardware or software sensor, mainly 

using smartphone-based surveys and the Experience 

Sampling Method [23]. 

Given the diversity of data sources, there are two important 

characteristics that we consider for data hiding purposes: 

• frequency: some sensor data may be collected at high 

frequency, such as accelerometer and magnetometer data. 

Other sensors may provide data with much lower 

frequency, such as heart rate sensors, GPS, or human 

input text. Furthermore, some data may be constant, such 

as user identifier, names and date of birth. 

• privacy sensitivity: some data may be highly sensitive if 

exposed, such as date of birth, user identifier, or heart 

rate data. Other data may be less sensitive, for example 

accelerometer and gyroscope values. 

In the diagram below we map out many of the possible 

smartphone sensors in terms of their frequency and 

sensitivity. Data hiding is ideal for hiding low-frequency 

sensitive data into high-frequency non-sensitive data. It is 

challenging to objectively map the privacy concerns that 

may be associated with any particular sensor, since they can 

vary across users and strongly depend on what other data is 

available. For instance, gyroscope is typically used together 

with accelerometer to detect activities such as walking, 

standing, sitting and lying can be recognised with high 

accuracy 96% [3], while on the other hand complex 

activities (e.g., cooking, cleaning and sweeping) are still 

considered challenging to recognise [13]. Therefore, we 

rely on subjective assessment, heuristics, and our review of 

literature [19, 22, 28] to rate the privacy concerns for each 

sensor. We summarise the different types of sensor data in 

terms of frequency and sensitivity in Figure 1. 

DATA HIDING METHODOLOGY 

In data hiding techniques the payload can be hidden either 

in the time or frequency domain of the carrier. We adopt a 

time domain technique, and specifically a substitutive 

insertion method: parts of the carrier signal are replaced by 

the payload signal.  Specifically, we apply the Least 

Significant Bit (LSB) substitution scheme, replacing the 

carrier signal’s least significant bits with bits of the 

payload. This approach enables embedding data of high rate 

and size, while causing relatively insignificant 

modifications to the original values [15, 29].  



More importantly, our method is appropriate for real-time 

data hiding on limited-resource platforms such as 

smartphones, due to its low time complexity, and can 

therefore guarantee that the embedded data is synchronised 

with the carrier data. For example, let us assume that we 

need to embed a heart rate value into a stream of 

accelerometer values. We first obtain the binary 

representation of the heart rate value, which for instance 

can be a 32-bit integer. The next step is to embed each bit in 

the oncoming accelerometer stream, by replacing the LSBs 

of consecutive accelerometer values that have also been 

converted to binary form (see Figure 2). One bit is used for 

a flag to denote the existence of embedded data, and 

additional bits are used for the payload. Depending on how 

much we can afford to distort the carrier values, we can opt 

to replace two or more LSBs. 

 

Figure 1. Sensitivity and frequency of different sensor data. 

Authenticated encryption prior to embedding enables us to 

detect errors or tampering of the hidden data. Therefore, we 

apply the Advanced Encryption Standard (AES) in 

Galois/Counter Mode (GCM) [14, 32] to encrypt and 

authenticate the embedded data. GCM is a mode of 

operation that supports simultaneous encryption and 

authentication of a data stream in an efficient, parallelisable 

manner. To ensure the integrity of the data, an 

authentication tag is generated at the end of the input 

stream. The GCM mode is nonce-based which means that a 

unique public identifier called nonce or initialisation vector 

needs to be used for each set of data. Both the nonce and 

the secret encryption key are needed for decryption and to 

check the integrity of the data. Any tampering of the 

encrypted hidden data will be detected during the 

decrypting phase. 

For our evaluation we implemented our method on Android 

smartphones. We developed a pair of applications that run 

simultaneously and communicate via Intent messages 

within Android. The sensing application collects the 

sensitive data to be hidden and passes it to the data hiding 

application. The latter encrypts the received data, hides it 

into the carrier signal, and potentially stores it or transmits 

it to a third party. The two-application architecture was 

chosen to allow flexibility in practical scenarios, and to 

conduct a realistic assessment of performance. To extract 

the hidden data, the receiving party needs access to the 

carrier signal (sorted by timestamp), knowledge of the data 

types, how many LSBs are used, the pre-shared nonce, the 

authentication tag and encryption key. 

 

Figure 2. The Least Significant Bit (LSB) method replaces the 

least significant bits of the carrier signal with data to be 

embedded. 

Distortion of the Carrier Signal 

The distortion produced by hiding data into the carrier 

signal depends on the data type of the carrier signal and the 

number of LSBs. For example, given 32-bit integer types as 

the carrier signal, using n (0<n<32) LSBs for data hiding 

will produce an error from –(2n-1) to 2n-1. The cases where 

floating-point numbers serve as carrier signals are more 

complex. Suppose the carrier signal is a 32-bit single 

precision floating number f [17] defined as 

𝑓 = (−1)𝑠 × 𝑐 × 2𝑞 ,  (1) 

where s stands for the sign bit; c for the significand; and q 

for the exponent. 

If we use n (0<n<23) LSBs (which determine the 

significand c) for data hiding, we must know the exponent 

value q (which depends on the magnitude of the floating 

number) to quantify the maximal amount of error |Emax|. It 

can be calculated as 

|𝐸𝑚𝑎𝑥| = ∑ 2𝑖−24+𝑞𝑛
𝑖=1  (2) 

This formula reveals that a small number of LSBs will 

produce negligible errors with floating-point numbers. 

However, the absolute amount of error can be very high for 

large q. Although q can be up to 127 to represent a valid 

real number [17], smartphone sensors generally output 

much smaller readings in practice, such as accelerometer 

[25]. Thus, floating-point numbers are ideal carrier signals, 

since data hiding can have a negligible distortion on them. 

EXPERIMENTAL DESIGN 

We evaluated the performance of our approach by running 

experiments with off-the-shelf smartphones. Considering 

the availability of AES/GCM encryption, we selected 6 

smartphones with Android OS version 5.0 or above:  

Samsung Galaxy S6 edge (5.1.1); two samples of Motorola 

Moto G X1032 (5.1); LG Nexus 5 (5.1.1); Motorola Moto 

G2 (5.0.2); Yota YotaPhone 2 (5.0).  



Experiment  Device Marker Carrier LSBs 

E1 All 

Magnetometer 

(3 x 32-bit float) 

(normal, UI, game, fastest) 

Accelerometer 

(3 x 32-bit float) 

(normal, UI, game, fastest) 

2 

E2 S6 

Magnetometer 

(3 x 32-bit float) 

(normal, UI, game, fastest) 

Accelerometer 

(3 x 32-bit float) 

(normal, UI, game, fastest) 

3 

E3 S6 

Heart rate sensor 

(32-bit int) 

(normal, UI, game, fastest) 

Accelerometer 

(1 x 32-bit float) 

(normal, UI, game, fastest) 

2 

E4 S6 

GPS 

(3 x 64-bit double) 

(0.1, 0.2, 1, 10 Hz) 

Accelerometer 

(3 x 32-bit float) 

(normal, UI, game, fastest) 

2 

E5  S6 

Human input 

(8-bit char) 

(1, 10, 100, 200 Hz) 

Accelerometer 

(1 x 32-bit float) 

(normal, UI, game, fastest) 

2 

E6 S6 
Device ID 

(16 x 8-bit char) 

Accelerometer 

(1 x 32-bit float) 

(normal, UI, game, fastest) 

2 

Table 1. Experimental parameters. The frequencies “normal, UI, game, fastest” are Android standards, and may perform 

differently across different handsets. The Least Significant Bit includes a 1-bit flag field. 

We installed our pair of Android applications on each 

handset. We first launched the data hiding application to 

initialise the encryption and carrier signal. Then, we 

launched the sensing application to collect the data to be 

hidden, and pass it along for hiding. Because it is 

impractical to exhaust all the combinations of multiple 

variables, we designed 6 experiments to examine a range of 

conditions as summarised in Table 1. 

We use the accelerometer as the carrier signal in all the 

experiments, and we consider 4 different sampling rates for 

it, as defined by Android. In E1 and E2 we hid 

magnetometer data at 4 different sampling rates. In E3 we 

hid heart rate data at 4 different sensing rates. In E4 we hid 

simulated streaming GPS data (64-bit double type in 3 

dimensions: latitude, longitude and altitude) generated at 4 

different frequencies. In E5, we hid simulated human input 

text at varying frequencies. In E6 we hid a device ID (an 

Android device ID has 16 characters). 

For experiments E1, E2 and E4, we used 3 axes of the 

accelerometer as the carrier, since in those experiments we 

effectively had 3 streams of data to hide. In the other 

experiments only the x axis was used as a carrier. In 

experiments 5 and 6, the data hiding application used the 8-

bit ASCII format. The experiments had a combination of 

sampling frequencies of the data to hide, and 4 frequencies 

of the carrier signal. Orthogonally, E1 had 6 different 

phones. Each condition ran for a period of 5 minutes, 

during which the performance of the system was monitored. 

EXPERIMENTAL RESULTS 

Figure 3 summarises the results in E1, where magnetometer 

data was encrypted and embedded into the accelerometer 

data using 4 different sampling rates on 6 handsets. The 

dark red shades represent the magnetometer records that 

were hidden, and the light blue shades above red shades 

represent the number of magnetometer records that could 

not be processed due to the too high bit rate of the payload, 

and therefore had to be dropped. 

E1 primarily acted as a “stress test” to highlight 

performance differences across handsets. As such, we 

induced record dropping due to the relatively high volume 

of magnetometer data that we attempted to hide, as well as 

variances in the capabilities of the handsets. The results 

show that the sampling rate at “normal” and “UI” was 

consistent across handsets. However, the handsets 

performed substantially differently at the “Game” and 

“Fastest” sampling rates, for instance with the S6 

outperforming G1 handsets by a factor of 2. 

We further investigate the variation in the carrier frequency 

across handsets in E1. Figure 4 shows the average 

accelerometer delay, which denotes the time gap between 

two adjacent samples. Sensing delay is an indirect measure 

of the ability to execute data hiding.  



 

Figure 3. Results of E1. The number of magnetometer readings which are successfully hidden is shown in red, and those dropped is 

shown in blue. The y axis is on a base-2 logarithmic scale.

Based on the sensing delay, we can estimate the capacity of 

accelerometer as a carrier signal on each device. Figure 5 

presents the capacity of one axis of the accelerometer for 2 

LSBs (1 bit flag & 1 bit payload). We observe that at the 

fastest sampling rate, all handsets can provide a capacity of 

more than 10B/s, with the highest being 26.8B/s for the S6. 

If 3 axes are used, then the capacity increases by a factor of 

3. In addition, the capacity increases proportionally for each 

additional payload bit we use. Therefore, we expect the S6 

with 3 axes and 3 LSBs (1-bit flag & 2-bit payload) to 

provide 26.8 × 3 × 2 = 160B/s capacity. 

Once our data hiding application received a new 

magnetometer data reading, it executed AES/GCM 

encryption and hid the ciphertext bits into the incoming 

accelerometer records. When the ciphertext bits are more 

than the payload of one accelerometer record, phones have 

to embed the rest cipher bits into more incoming 

accelerometer records.  

 

Figure 4. Average sensing delay of accelerometer for different 

handsets in E1. 

In Figure 6 we show the computational overhead that 

encryption induced in E1.  Results show that, on average, 

all the handsets were able to finish the task of encryption 

plus data hiding for one sample within 0.6 ~ 6.2ms for any 

condition (max: 302.13ms due to CPU scheduling). Of this 

time, less than 0.2 ~ 0.8ms on average (max: 428.95) was 

spent on just data hiding. 

Figure 7 shows the performance of the S6 handset across all 

experiments, and therefore for multiple data types. As 

expected, using an additional LSB in E2 doubled its 

capacity. In E3 we noted that the heart rate sensor hardware 

did not alter its sampling rate, contrary to Android API 

specifications. In E4, as expected, the results show that the 

number of GPS records we could hide was approximately 

half of the magnetometer in E1. In E5 the hidden data was 

simulated human entry text, which was on average 3 times 

faster than E1. In E6 we hid a Device Identification code, 

and therefore the sampling rate did not vary.  

 

Figure 5. Average capacity using one-axis accelerometer 

carrier on 6 phones, using 2 LSBs (1 bit flag & 1 bit payload). 



 

Figure 6. Average processing time for encryption & hiding (blue), or just hiding (red) in E1. This is the time needed for one 

magnetometer record. The y axis is in base-2 logarithmic scale.  

 

Figure 7. Performance of the S6 handset across all experiments. Number of readings which are successfully hidden is shown in red, 

and those dropped is shown in blue.  The y axis is on a base-2 logarithmic scale. 

Also, in E3 we observed that the accelerometer sampling 

rate was unexpectedly doubled compared to all other 

experiments (for UI speed: 30ms in E3 vs 60ms in other 

experiments). This is a phenomenon that we were able to 

reliably reproduce. Given the lack of official documentation 

we believe that on this particular handset, using the heart 

rate sensor triggers additional mechanisms that increase the 

sampling rate of the accelerometer. Figure 8 shows the 

average processing time of encryption and data hiding on 

S6 across all experiments. Considering encryption plus data 

hiding (blue), the average processing time follows the 

complexity of payload types and the number of LSBs: E1 

(32-bit float on 3 axes, 2 LSBs): 2.49ms; E2 (32-bit float on 

3 axes, 3 LSBs): 2.56ms; E3 (32-bit int, 2 LSBs): 1.14ms; 

E4 (64-bit double on 3 axes, 2 LSBs): 2.92ms; E5 (8-bit 

ASCII, 2 LSBs): 0.74ms; E6 (8-bit ASCII, 2 LSBs): 

0.52ms. Similar to the worst case (among all handsets) in 

E1, the worst cases in E2-E6 ranged from 40.76ms to 

380.67ms. When considering only data hiding (red), the S6 

handset was able to finish within 0.9ms on average across 

all 6 experiments. The worst cases in E2-E6 ranged from 

57.29ms to 593.36ms. 



 

Figure 8. Average processing time (S6 handset across all experiments) for encryption & hiding (blue), or just hiding (red) in E1. 

The y axis is in base-2 logarithmic scale. 

CPU Utilisation 

We also considered the impact of our data hiding method 

on CPU utilisation. We logged CPU utilization data for the 

S6 handset in E1 using the Android Device Monitor. We 

consider encryption and data hiding as two independent 

processes, since they are separate functions in our source 

code and can be monitored independently in CPU 

utilisation analysis.  

 

Figure 9. Inclusive time of CPU utilization (%) on S6 handset 

in E1. Separate utilisation is shown for encryption (red) and 

hiding (green).  

Figure 9 presents the results of encryption vs. hiding at 

different accelerometer sampling rates. Note that 100% of 

inclusive CPU time would indicate that the whole period 

when the data hiding application is running its thread uses a 

CPU. These results show that our software does not occupy 

the CPU all the time, meaning that the CPU may set the 

application thread into the wait state to save energy. We 

also observe that the CPU was occupied more often with 

data hiding rather than encryption, even though one call to 

the data hiding function takes much less time than one call 

to the encryption function (Figure 6). This disparity is due 

to the fact that each record of data to be hidden is encrypted 

once, but requires many calls to the data hiding function, 

since only 1 or 2 bits can be hidden at a time. For instance, 

a 32-bit payload is encrypted once but requires 32 calls to 

the data hiding function when using 2 LSBs (1-bit payload 

& 1-bit flag). 

 

Figure 10. Maximal distortion of acceleration for different 

LSBs and floating-point exponents. The y axis is in base-2 

logarithmic scale. 

Distortion 

According to standards [17], to represent a floating-point 

number v, the exponent value q in equation (1) must be 

maximised with the constraint that 2q is not greater than |v|. 

This means that the amount of error increases as the 

maximal possible value of |v| is greater. According to the 

measurement range of common smartphone accelerometer 



[25], q is at most 8. Figure 10 depicts the maximal 

distortion that we theoretically induce for different LSBs 

and exponents. The number of LSBs (i.e., n) depends on the 

experiment settings. 

We contrast the theoretical prediction with empirical data of 

the distortion in the carrier signal in E1 and E2 on the S6 

handset. The handset was placed on the flat table so that the 

z axis of accelerometer showed the gravity which was about 

10m/s2, as meaning that a floating point number needs q=3 

to represent this value. 

In E1 (where 2 LSBs are used) we recorded 2.861×10-6m/s2 

as the maximal absolute value of error in the carrier signal. 

This result exactly matches our theoretical estimation which 

is given by equation (2) when n=2 and q=3. Similarly, in E2 

(when the number of LSBs was 3), we logged the maximal 

absolute error 6.676×10-6m/s2. This also exactly matches 

our theoretical estimation where equation (2) has n=3 and 

q=3.  

DISCUSSION 

Performance 

Our results show that smartphone sensor streams can 

provide sufficiently high capacity for common data hiding 

scenarios, especially when used with high frequency carrier 

signals. Depending on the security concerns of smartphone 

sensing systems, a variety of smartphone data types, such as 

floating numbers (e.g., magnetometer and GPS), integers 

(e.g., heart rate) and characters (e.g., human input text and 

device ID code) can be a suitable payload hosted in the 

carrier signal. 

Indicatively, we measured on the S6 handset a maximum 

capacity of 26.8B/s with a 1-axis accelerometer carrier 

signal. Give the expected distortion shown in Figure 10, the 

capacity for 7 LSBs on a 3-axis carrier signal is 526B/s, 

with expected distortion between 10-5m/s2 and 4×10-3m/s2. 

To extract this hidden data, a recipient requires knowledge 

of: 

• the data type of the host signal; 

• the data type of hidden data; 

• the number of LSBs used in the host signal; 

• the host signal sorted by timestamp; 

• the information for decryption (in the case of 

AES/GCM, they are the nonce, the authentication 

tag and the decryption key). 

Beyond the confidentiality and integrity provided by 

AES/GCM encryption, hiding data into another sensor 

stream obscures the existence of sensitive and private data 

secret by making it imperceptible. Thus, as Lane et al. [22] 

have called for, using our approach the type and value of 

sensitive data streams are not accessible or noticeable to a 

third party, taking one step closer towards the preservation 

of privacy. For example, an attacker may find it useful to 

know that a user is uploading location data, even if they 

cannot see the actual data. Our method alleviates this 

concern by obscuring the existence of such sensitive data. 

In practice, this means that sensitive data is not stored in a 

separate database field (thus making it perceivable to third 

parties). In addition, if the payload is an encrypted identity 

code such as a device ID, it can be used to verify the 

authenticity of the carrier signal source. 

Implementation Issues 

Our approach has a manageable computational cost (Figure 

9), making it practical for smartphones [18] and allowing 

power-efficiency OS techniques to reduce its energy 

footprint, for example setting threads to sleep mode. In 

addition, the theoretical predictions regarding the distortion 

caused by our technique (Figure 10) have been empirically 

confirmed, thus guaranteeing the level of fidelity between 

the original carrier signal and the signal containing hidden 

information.  

This is important for a range of applications. Certain 

applications that use accelerometer data require high 

precision, such as gesture recognition [34], while other 

applications like scrolling via tilting [5] require crude 

precision since smartphone accelerometers and gyroscopes 

produce measurement errors anyway [10]. Our method is 

flexible enough to account for varying needs regarding the 

fidelity of processed data, by trading off fidelity and 

capacity. 

Our approach can be adopted by existing sensing systems 

that already support smartphone sensor data. In particular, 

we envision that a user with multiple devices (e.g. phone, 

tablet, smartwatch) would be able to transparently share 

sensitive between those devices via existing platforms. As 

long as each device has access to the sensor data, it is 

possible to extract and decrypt hidden data on the client, 

without allowing the platform to gain access, or even know 

that the hidden data exists. This is possible without 

modifying the platform itself, and not requiring additional 

“encrypted” fields to be supported.  

Medical Sensor Data 

Due to its technical characteristics, our proposed data 

hiding technique can help to address the legislation that 

many countries have to protect sensitive data, especially 

medical sensor data [4, 36]. In general, the development of 

medical information systems has been a challenging and 

costly affair for many countries [16] due to the complex 

privacy requirements.  

For instance, it is challenging to enable users to retain 

control of their own data after it has been entered in the 

system, and giving them access to this data is often a thorny 

issue [2]. Our method enables users to retain control of their 

sensitive data even after it has been uploaded on a 

healthcare information system. For example, during 

consultation a user could decrypt sensitive information 

using the secrets stored in their personal device, and show it 

to the doctor. 



Crowdsensing 

Additionally, our technique enables the verification of the 

authenticity or owner of smartphone sensor data. This is 

particularly relevant to mobile crowdsensing scenarios, 

either user-driven [6] or agent-driven [24], with diverse 

application including environmental monitoring and 

intelligent transportation. In such settings, malicious users 

or faulty systems can upload tampered or faked data to 

damage the systems or to defraud benefits if the systems 

offer rewards for uploading certain data. In this scenario, 

our technique can offer crucial digital evidence for 

forensics [28] to ensure the authenticity of smartphone 

sensor data. For example, this can be achieved by 

smartphone applications embedding an encrypted unique 

identification number into every uploaded sensor data 

stream. When the streams are received, their authenticity 

can be established by inspecting the identification number. 

If the received data stream does not contain the ID assigned 

to a particular client, the systems can consider the data 

invalid and ignore it.  

Along the same lines, initiatives such as Crawdad and 

Crowdsignals are building up large archives of sensor data. 

Using our technique, it is possible for users to “physically” 

embed in this data a unique signature that serves as proof of 

ownership of the data, and can be used to confirm that no 

tampering has taken place. The “physical” binding means 

that even if this sensor data is shared between scientists via 

email, database services, physical media, and across a 

variety of file formats, the hidden data persists. This 

property also ensures that it is “future proof”, in the sense 

that if in the future new ways of sharing data is established, 

the hidden data will remain available as proof of who owns 

or generated this sensor stream. 

LIMITATIONS AND FUTURE WORK 

We have only verified our approach on 6 phones with 

Android OS 5.0 or above, and we are aware that 

approximately 65% of Android smartphones run a lower 

version that 5.0 at time of writing.  We expect our method’s 

performance to vary across different handsets, but only in 

terms of capacity and CPU load. The other features of our 

method should remain invariant. 

Clearly, our method has not been tested on other operating 

systems, such as Symbian, iOS and Windows, and this 

would be a crucial next step for our work. A key challenge 

may be that the implementation of AES/GCM may be 

unavailable on other handsets, meaning that an ad-hoc 

algorithm may be needed. Although developers can employ 

other encryption algorithms, this may downgrade the 

performance and security level. Another technical issue is 

that the computational efficiency in other handsets 

environments can be significantly lower than Android 5.0, 

meaning that they cannot use high-frequency sensor data as 

the carrier signal. 

In addition, we have not tested our method with a broad 

range of external sensors or devices (such as smartwatches). 

Platforms with higher constraints (such as smartwatches) 

may find it challenging to attain high capacity data hiding.  

During the selection of carrier signals, objectively 

quantifying the sensitivity of each sensor can provide 

greater robustness to the data hiding mechanism. This 

requires a substantial body of future work. The positions of 

sensors (i.e., their sensitivity) in Figure 1 may depend on 

various factors, such as social context, network 

environments and capabilities of attackers. 

Our future work will also include a mechanism to balance 

the tradeoff between capacity and fidelity in carrier signals. 

A large number of LSBs leads to high capacity and low 

fidelity in the carrier signals. Therefore, this mechanism 

should adaptively identify a suitable upper bound of LSBs 

in different types of data hiding scenarios. 

CONCLUSION 

We propose a data hiding method to embed sensitive 

information into smartphone sensor data streams. Our 

method combines encryption with data hiding, and can be 

adopted by smartphone sensing systems to secure sensitive 

data or to prove the authenticity of data. Due to the 

imperceptibility of data hiding techniques, an 

unauthenticated party does not notice the type and value of 

hidden sensitive data stream by interception, thus 

alleviating some of the privacy problems of smartphone 

sensing systems mentioned in literature [22].  

We evaluated with a variety of handsets, data types, and 

settings. Our experimental results show that it is feasible to 

encrypt and embed common types of smartphone data (e.g., 

magnetometer readings, heart rate, GPS location, human 

input text and device identification code) into high-

frequency sensor streams, such as accelerometer, in real 

time. Moreover, we show that AES/GCM encryption and 

data hiding operations have manageable impact on the CPU 

utilisation of the sensing application thread, meaning that 

our approach will not be bottlenecked by resource-

constrained environments of smartphones. We demonstrate 

that our approach is able to maintain high fidelity after data 

hiding, and can provide strong guarantees regarding fidelity 

by adjusting the number of LSBs used for hiding. Our 

findings make this data hiding method attractive for 

smartphones sensing systems that collect sensitive data or 

require high data authenticity, such as medical systems and 

digital forensics applications. 
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