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ABSTRACT

Autonomous robotic systems can automatically perform ac-
tions on behalf of users in the domestic environment to help
people in their daily activities. Such systems aim to reduce
users’ cognitive and physical workload, and improve well-
being. While the benefits of these systems are clear, recent
studies suggest that users may misconstrue their performance
of tasks. We see an opportunity in designing interaction tech-
niques that improve how users perceive the performance of
such systems. We report two lab studies (N=16 each) de-
signed to investigate whether showing physical motion, which
is showing the process of a system through movement (that
is intrinsic to the system’s task), of an autonomous system
as it completes its task, affects how users perceive its per-
formance. To ensure our studies are ecologically valid and
to motivate participants to provide thoughtful responses we
adopted consensus-oriented financial incentives. Our results
suggest that physical presence does yield higher performance
ratings.
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INTRODUCTION

There is a growing number of systems able to automatically
perform actions on behalf of users. Such systems are becom-
ing increasingly widespread in the domestic environment to
help people in their daily activities, such as water sprinkling’
and vacuum cleaning. Moreover, as the domestic environ-
ment becomes increasingly instrumented with smart sensors
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through the Internet of Things (IoT), autonomous systems will
be essential to manage the wealth of data such sensors gener-
ate, relieving their users of significant cognitive and physical
workload involved in performing their daily activities.

While the potential benefits of automatic systems are clear,
there are open questions around how users would perceive
such systems and their operation [16]. Recently, researchers
have investigated the usefulness of existing IoT products, such
as the Nest thermostat [25] and vacuum cleaning robots (e.g.
iRobot’s Roomba) [20, 12]. Results from these studies suggest
that because these systems operate autonomously, users do not
normally attend to them while they undertake their tasks, so
there could be a mismatch between the system performance
and users’ perception of it. As such, we see an opportunity in
designing interaction techniques that may improve how users
perceive the performance of automatic systems. In particu-
lar, we focus on notifications: notification systems are often
necessary to alert users when the autonomous operation has
been completed (given that users may not attend to it). Is
it possible, then, to engineer notifications generated by au-
tonomous system to influence users perception of the system
performance?

Against this background, in this paper we report on two lab
studies designed to investigate whether showing in person the
physical motion of an autonomous system as it completes its
task can affect how users perceive its performance. Physical
motion refers to the robot’s movement as it processes its task,
hence the motion we refer to is intrinsic to the system’s task
(this is in contrast to “physical motion” as being independent
of task execution). Consensus-oriented financial incentives
were used to increase the ecological validity of the studies[4]
and motivate our participants to provide thoughtful responses.
In particular, the first user study (N=16) focused on comparing
two situations: (i) a moving robot in the process of docking
and (ii) a static robot that has already completed its task. The
aim was to see whether motion can positively change peo-
ple’s perception of the performance of an autonomous robot.
Our results demonstrate that this is indeed the case: our par-
ticipants almost unanimously rated the performance of the
moving robot higher compared to a non-moving robot. In the
second user study (N=16), we instead focused on investigating
whether seeing the motion in person or through a video feed
makes a difference. The results suggest it does: physical pres-
ence yields higher performance ratings. Indeed, the findings
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of this paper provide implications for how the feedback of
autonomous systems can be enhanced to support how people
perceive the performance of such systems.

RELATED WORK

Our research aims to evaluate how visual cues can change
people’s perception about the performance of autonomous
robots. As such, we are building upon prior research that has
studied transparency for the intelligibility of robotic systems,
perception of motion in robots and interactive artefacts, and
perception of motion in robots through video and animation.
We next elaborate on the literature in these three key areas in
turn.

Transparency for the Intelligibility of Robots

Robots are expected to become part of people’s everyday
life in homes and public areas (e.g. in hotels, trade shows,
workplaces, museums) [19, 11]. Therefore, robots should be
transparent about their decisions and actions so that people
would feel that they understand their behaviour [13].

Kim et al. [13] examined whether different levels of trans-
parency have an effect on people’s judgement of blaming an
autonomous robot or someone else at the moment the robot
presents an unexpected behaviour in a cooperative scenario. In
more detail, the robot delivered assemblies of toy pieces that
participants place in a tray that the robot had. In particular, a
highly transparent robot provided audible feedback about its
status. However, they do not focus on how people perceive the
performance of the robot with different levels of transparency.
Boyce et al. [1] implemented an external interface (screen
display) to make the operation of the robot more transparent.
Their results showed that increasing transparency can help
users understand a robot’s environmental conditions and sta-
tus. In contrast to both of these studies, we do not enhance
the existing structure of robots. Instead we utilise their current
setup as a way to keep the design of the robots as simple as
possible.

Perception of motion in robots and interactive artefacts
Prior studies in HCI, HRI and UbiComp have examined
whether people can infer intentionality, emotions or be moti-
vated to interact with robots or artefacts through the visualisa-
tion of motion [15, 17, 10, 9, 2, 3]. Instead, in our study, we
use the motion of a robot as a visual cue to change how people
perceive the robot’s performance. Closer to our work, Hoff-
man et al. [6] conducted a study where an anthropomorphic
robot, Travis, was used as a speaker dock and music listen-
ing companion. Participants observed, listened and evaluated
songs played by Travis. For some participants, Travis moved
on-beat with the songs played. In contrast, other participants
interacted with a moving Travis that was off-beat with the
songs. The rest of the participants were introduced to a static
Travis. Their results showed that participants rated songs sig-
nificantly higher when the robot is moving on-beat with the
songs than when it is static. Indeed, they pointed out the role
of "personal robots as contributors to, and possibly amplifiers
of, people’s own evaluation of external events" [6].

These findings focus on the evaluation of events that are ex-
ternal to the system e.g. asking people whether they enjoy

what they hear, instead of asking them about the quality of the
sound produced by the system. Moreover, this work is about
entertainment applications, while we look more at mundane or
practical applications. In particular, we focus on how people
evaluate the performance of such systems. Moreover, they
centered their research on anthropomorphic robots. Instead,
we are particularly interested with everyday systems (e.g. sys-
tems that are used in everyday situations such as cleaning or
cooking robots). This is because it may not be practical to
modify everyday systems to be anthropomorphic. We intend
to focus on maintaining the simplicity of such systems.

Perception of robots motion through video and animation
Previous studies showed how people perceive robots through
their physical movement [6]. However, there are other alterna-
tives to interact with robots, such as, videos and animations.
Such modalities allow people to visualise robots remotely with-
out having a physical interaction with the system. Takayama
et al. [21] examined people’s perception of virtual animated
robots through a lab study. For the study, the robot covered
a variety of activities, such as opening a room, delivering a
drink, requesting help from a person to plug into an outlet,
and ushering a person into a room. Their results suggest that
people are positively influenced by animations showing the
outcome of a robot and more specifically that they read robot
behaviour with more certainty. However, while the focus of
their study is on training we are interested in real time inter-
action with robots. Additionally while their work is based on
virtual animated robots, ours use physical ones. Wainer et al.
[24] ran a study with participants that interacted in a collab-
orative task with an embodiment robot v.s. non-embodiment
robot (e.g. simulated and video). In more detail, participants
resolve a Towers of Hanoi puzzle following the instructions
of the robots. Their results suggest that people perceive an
embodiment robot more helpful and enjoyable in comparison
with a non-embodiment robot. However, they did not analyse
whether people perceive that one type of robot works better
than the other, which we present as our key contribution.

MOTIVATION

A large body of work from cognitive psychology investigated
how motion and other sensory cues influence our perception
of the world. We started from this work to design notifica-
tion mechanisms that could influence people’s perception of
autonomous robots.

In psychology “perception” is defined as the process that peo-
ple follow to identify, interpret, and understand their environ-
ment, with the support of sensory (i.e. physical) and cognitive
cues (referred to as high-level of knowledge) that the nervous
system processes [18]. Studies have shown that humans can
extract high level information from very basic motion cues
[8]. However, in some cases, physical cues are insufficient for
the brain to interpret the environment. Hence, the brain uses
existing knowledge as a way to make sense of sensory signals
(e.g. sight) [5].

Our perception of the world is sometimes influenced by more
than one sensory channel. For example, McGurk and Mac-
Donald demonstrated that speech perception is influenced by
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Figure 1. This figure shows a layout of the rooms where we conducted the experiment.

both sound and vision [14]. Vines et al. [23] reported a study
where participants rated how much they liked audiovisual clips
of clarinet players to investigate how different visual cues af-
fect people’s evaluation of the musicians’ performance. They
found that participants gave a lower score to a clarinettist who
did not move compared to a clarinettist with more expres-
sive body motion. This result suggests that an appropriate
visual cue can improve people’s rating of a non-visual prop-
erty. Building on such a corpus, we set out to explore whether
motion can be leveraged to influence people’s perception of
autonomous robots.

STUDY DESIGN

A user study was designed and conducted to analyse the effect
of motion, as a visual cue, on people’s perception. Specifically,
the study was designed to test the following hypothesis:

H1 — The visualisation of automation, which is show-
ing system process through motion (that is intrinsic to
the system), is an effective visual cue that can positively
change people’s perception of the system.

Experiment 1

Experiment Design

For this experiment, we selected the Roomba robot because
it is an off-the-shelf product designed for domestic everyday
use. A within-groups design was used to compare the effect of
the visual cue and its absence on the same set of participants,
where participants evaluated and compared the performance
of two Roomba robots in vacuuming the carpets in two rooms
where each was located. Two conditions were defined in our
experiment: no-motion and motion. In the no-motion condi-
tion (the control condition), participants saw the robot after
it completed its task, having already returned to its charging
base. In contrast, in the motion condition (the ‘treatment’
condition) participants saw the robot moving as it docked in

its charging base, having completed its cleaning duties. This
movement is the visual cue at the centre of our study. In prac-
tical terms, the motion condition was implemented through
a Wizard of Oz approach whereby an experimenter activated
the robot seconds before participants arrived. The study was
fully counterbalanced: half of the participants saw first the
robot in the motion condition, vice versa for the other half.
Moreover, the rooms and the robots were also alternated and
fully counterbalanced: half of the participants saw the robot
in the motion condition in Room A and the other half saw
the robot for the same condition in Room B. The first robot
participants saw was referred to as simply ‘robot A’, and the
other one ‘robot B’, regardless of the condition (so that the
naming would not influence the results).

At the beginning of each experiment, participants were told
that the task was to compare two different algorithms imple-
mented on each of the two robots. After this introduction,
participants were asked to visit two rooms and were given a
questionnaire asking them to evaluate on a 5-point likert scale
the cleanliness of the carpet (from “1 - dirty” to “5 - clean
without any chance to improve”). They were then asked to
move to a different room to wait until the Roombas finished
vacuuming the carpets. Participants were explained that they
had to wait in a different room because the algorithms were
still work-in-progress so we did not want their judgement to
be influenced by their trajectories. Figure 1 shows the layout
of the room. While waiting, participants were asked to play a
puzzle game % on a 13” screen laptop. When the two robots
had completed their tasks, participants received a text-based
notification shown on the laptop indicating that they could go
and evaluate the performance of the Roombas. After receiving
the notification, participants visited both rooms one after the
other. As described above, in one room they found the robot
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Figure 2. On this figure, we can see one of the rooms where the experi-
ment took place.

already docked, while in the other they saw it docking. After
participants had seen the robot docking, we told them that the
robot’s action of docking was not related to the robot’s task
of cleaning the carpet. As such, they were allowed to see this
part of the robot’s process.

After visiting each room, they were asked to continue the
questionnaire and evaluate whether there is an improvement
with the cleanliness of the carpet on a 5-point likert scale
(from “stayed the same, did not have an improvement” to
“better than before”). The post-task question was phrased
differently from the pre-task questions, so the answers cannot
be directly compared.

Once they evaluated both rooms, participants were asked to
compare the performance of the Roombas. To try and ensure
that participants would provide a significant and thoughtful
evaluation, we designed a performance-based reward mech-
anism. Participants were asked which of the Roombas they
thought most people would select as the one with the best per-
formance (including the option that both had the same level of
performance), and they were told that only if they selected the
most popular choice at the end of the study (after we collected
data from all participants) they would be rewarded with a £10
voucher (hereafter referred to as reward-based question). To
check whether participants subjective judgement of the Room-
bas differed from what they expected the majority of people
to choose, after they answered the first question they were pre-
sented with a second question, asking them which robot they
personally consider to be the one with the best performance,
regardless of other people’s opinion. This second question
(referred later as non reward-based question) had no effect on
the reward received by the participants.

External validity was a key factor in the design of the ex-
periment to test the effectiveness of visual cues in people’s
perception when they evaluate the performance of the robots.
Therefore, we were particularly careful in keeping a number
of variables that could affect participants’ perception of the
performance of the Roombas constant. These variables were
determined through pilot studies:

o Cleanliness of carpets: The Roombas did not actually clean
the carpets during the experiment.

e Robot’s environment: The rooms used in the experiment
were similar to maintain the same conditions (see Figure 2).

Moreover, the robots were switched between the two rooms
to maintain a fully counterbalanced study design.

e Roombas’ task completion time: Both of the Roombas were
simulated to vacuum the rooms in 10 minutes and were
working simultaneously.

e Robot’s model: The two robots used in the experiments
were of the model iRobot Roomba 500.

o Evaluation time: Participants were only allowed 15 seconds
to evaluate the carpets in each room. This was done to avoid
participants spending more time in one room than the other.

Participants

A total of 16 participants (12 female, 4 male) took part in the
study and 15 of these were members of the university: PhD
and Masters students, none of which had technical background
(e.g., not from Computer Science or Engineering). One partic-
ipant was a homemaker. The ages of these participants ranged
from 24 to 53 years old (M = 32.00, SD = 7.46).

Results

Selection of robot with best performance. For the reward-
based question, 15 out of the 16 participants selected the
moving robot (motion condition) as the one with the best per-
formance. The remaining participant selected the robot in the
no-motion condition as the best performing one, while nobody
indicated that the robots had the same level of performance.
For the non reward-based question, only one participant ex-
pressed a different opinion from that of the previous question,
saying that both robots had the same performance. In total,
14 participants considered the moving robot as the better per-
forming robot when answering the non reward-based question.
These results are illustrated in Figure 4.

Cleanliness of the carpets. A Mann-Withney test revealed
a statistically significant effect (U = 67.50,p < .05,r = .41)
of the motion on the rating of how clean the rooms were
after the operations of the robots. The room in the motion
condition was rated on average as cleaner (mdn = 2.5) than the
room in the no-motion condition (mdn = 1.5). Figure 3 shows
the means comparison of the two groups. No statistically
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Figure 3. Comparison of evaluation means for rooms’ carpet after
robots clean, with 95% confidence confidence bars.
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significant differences were found on the ratings of how clean
the rooms were before the operations of the robots between
the conditions.

Discussion

The results of Experiment 1 confirms H1: motion can be
used to change people’s perception of how well an automated
or automatic system works. The data shows clearly that the
change is in the positive direction: all except 2 participants
agreed that the robot in the motion condition was the one with
the best performance. All except 1 declared that they thought
the moving robot would be considered by other participants
as the one with the best performance. This finding is further
confirmed by the ratings that participants expressed through
the likert scales. In the motion condition the room was rated
as cleaner than in the no-motion condition, after the robots’
operations. As expected, no differences were found on the
rating of the rooms before the robots’ operations. These results
show that the visualisation of automation can be used as a tool
to change people’s perception of the performance of automated
or automatic systems, even in the case of systems that are not
anthropomorphic, extending what was previously reported in
the literature [6].

Experiment 2

The results from the first experiment clearly show that seeing
a robot moving had an effect on our participants’ perception
of its performance. However, it as far as I know noted that
the movement was seen in person. Could the same effect be
observed if the movement of the robot is experienced through
a video feed? Indeed there might be situations in which users
are unable to directly see the movement of a robot. To answer
this question we designed a second experiment to compare
how people perceive the performance of a Roomba when
people watch a video of it docking in comparison to watching
a Roomba docking in person. As such, we defined a new
hypothesis:

H2 — Physical visual cues are more effective than
video-based cues at positively influencing how people
evaluate an autonomous robot that show such cues.

Experiment Design

The design of experiment 2 is the same as experiment 1, ex-
cept that the no-motion condition was replaced by a video
condition. When participants received the notification that
the robot had completed its task in the video condition, they
were presented a video showing the Roomba docking. This
is similar to the motion condition, but mediated over a video,
rather physically seen in the same environment. In this new
condition, a video of a Roomba docking was displayed on the
laptop computer where the participants played the video game
(cfr Experiment 1), and this served as a notification that the
Roomba has completed its operation, rather than the text-based
notification. For practicality the video was a pre-recorded clip,
but it was presented to participants as a live feed from the
room (the two rooms had no external windows, making such
mockup realistic). Moreover, to avoid details on the video that
can change people’s perception we used a VGA resolution. To
guarantee that participants associate the video-based notifica-
tion with the correct Roomba the notification was presented to
the participants before they visited the room. To accomplish
this, the research investigator carried the laptop throughout the
duration of the study, including when the rooms are about to
be evaluated. Before entering the rooms where the Roombas
were, the investigator would show the laptop’s screen. For
the video condition, this means that they would see the video-
based notification right before they enter the corresponding
room, therefore guaranteeing that they associate the video with
the correct Roomba.

We included some new questions in the final questionnaire. In
addition to the reward-based and non-reward-based questions,
participants were also asked why the robot they selected per-
formed better than the other, with a view to understand the
motivation behind their choices. Moreover, they were asked
whether they would prefer watching a video of the Roomba
working or watching the Roomba physically finishing its task
and why.

As in experiment 1, we were particularly careful in keeping a
number of variables that could affect participants’ perception
of the system performance constant. These variables were the
same as those listed for experiment 1.

Experiment 2
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Figure 5. Comparison of evaluation means for rooms’ carpet after
robots clean, with 95% confidence confidence bars.



Participants

A total of 16 participants (10 male, 6 female) took part in the
study and all of them were members of the university: under-
graduate and postgraduate students, including a wide range,
from Computer Science, English literature, Mechanics, Eco-
nomics and Psychology students. The ages of the participants
ranged from 19 to 37 years old (M = 22.00, SD = 4.39).

Results

Selection of Roomba with the best performance. In total
13 of the 16 participants considered that the Roomba in the
motion condition performed better than the Roomba in the
video condition. The remaining three participants indicated
that the Roomba in the video condition performed the best,
while nobody suggested that both robots had the same per-
formance. All participants answered in the same way the
reward-based and non reward-based questions, i.e. they all
believed their answer would be the most popular one. These
results are illustrated in Figure 7.

Reasons for choosing one Roomba over the other. The re-
sponses to the question about why participants selected a par-
ticular Roomba as the one performing the best were summa-
rized through open coding. Each response was associated to
one or two codes, with five codes used in total: details, relative,
generic, room features, and clean already. Figure 6 illustrates
the frequencies of these codes for those who preferred the
motion condition and those who preferred the video condition.
The code details was associated to responses which referred
to specific issues in the room, such as “crumbs which lie close
to chair legs” and “coffee stains.” The code relative was used
when the responses referred to the comparison of how clean
the room was before and after the operation of the robots, such
as: “Found the room cleaned by Roomba A much cleaner
than it was initially” and “biggest change in cleanness”. Com-
ments coded as generic included “cleaned the room better”
and “The carpet of room B was cleaner than room A”. The
code room features was used when participants referred to the
influence of room features on the performance of the robots,
such as “less corners for roomba to have difficulty with” and
“It seemed to clean tighter spaces better”. Finally, one partici-
pant stated that the room was clean to start with (“Because the
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Figure 6. Reasons expressed by participants for preferring one Roomba
over the other in Experiment 2.
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Figure 7. Comparison between participant’s evaluation of the two differ-
ent modalities. Note that all participants responded to the reward and
non-reward based questions in the same way.

Room B is clean already so it is hard to evaluate the Roomba
B performance”) so this response was coded as clean already.

Cleanliness of the carpets. A Mann-Withney test revealed
a statistically significant effect (U = 70,p < .05,r = .39) of
motion and video on the rating of how clean the rooms were
after the robots’ operations. The room was rated on average as
cleaner in the the motion condition (mdn = 3) than in the video
condition (mdn = 2). Figure 5 shows the means comparison
of the two groups.

Modality preference. Ten participants preferred the video
over seeing the robot physically move; four participants pre-
ferred seeing the robot in person; while the remaining two
participants did not have a preference for how they see the
robot.

Reason for preferring a modality. The responses to the ques-
tion about why participants selected one modality over the
other were summarized through open coding. Each response
was associated to one code, with six codes used in total: better
understanding, convenience, emotional, generic, reliable and
subjective. Figure 8 illustrates the frequencies of these codes.
An example in the better understanding category included “I
can understand which part of the room have been cleaned”.
The convenience category included “I do not have to be there
till the end”, “Can observe the room situation remotely”, and
“This will save our time while we are doing some other work
during the time Roomba was doing its task...”. Comments
categorised as emotional included “fun” and “...physical pres-
ence has a more personal effect”. Comments in the generic
category included ““You can see the Roomba working physi-
cally and the video is helpful” and “Able to see functionality
of the roombas”. An example comment in category reliable
category included “On the video you can’t see what is happen-
ing”. Finally, the subjective category included “I’m personally
a visual person so it illustrates it much better...”.

Discussion

The results of Experiment 2 suggest that seeing the robot
moving in person positively influences the perception of its
performance, compared to seeing it through video. All except
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Figure 8. Reasons expressed by participants for preferring one notifica-
tion modality over the other in Experiment 2.

3 participants agreed that the robot in the motion condition was
the one with the best performance. This finding confirms our
hypothesis H2. Our participants’ ratings of the cleanliness of
the rooms further confirm such result: in the motion condition
the room was rated as cleaner than in the video condition, after
the robots’ operations.

The qualitative data about why participants selected one spe-
cific robot as the one performing better provide further evi-
dence of the effect of the two different notifications and their
potential to influence people’s perception of the robots. As
illustrated in Figure 6, participants provided generic answers
to this question only in three instances. In contrast, in the ma-
jority of cases our participants’ answers included specific and
tangible reasons to support their choice, despite the fact that
the Roombas did not actually clean either of the two rooms.

Even though the performance ratings clearly indicate that the
Roomba in the motion condition is the most successful one,
when participants were asked about their general preference
regarding the modality most of them chose the video. The
most frequent reason to support this choice was convenience.
Such contrast between performance ratings and general pref-
erence seems to suggest that participants were not aware of
the bias that the motion condition caused on their performance
rating. It should also be noted that while the performance
rating was related to a financial incentive the question about
general preference was not. Therefore it is also possible that
participants answered the latter more casually.

GENERAL DISCUSSION AND IMPLICATIONS

The results of both of our experiments indicate that the feed-
back delivered with notifications can have a considerable influ-
ence on people’s perception of the performance of autonomous
robotic systems. In particular, seeing the robot moving as it
finishes its operation in person led our participants to rate its
performance higher than not seeing any motion, or seeing the
same motion over video.

Compared to prior work [6, 22], the type of motion displayed
in our study is very simple, making it very easy and cost
effective to take advantage of our findings in existing designs.
Indeed, in the case of the Roomba, the motion cue we studied

is simply part of the standard operation of the robot. However,
additional measures may need to be put in place to drive
the user’s attention to the motion. For example, presence or
location sensing (including e.g. smartphone apps to detect the
user’s location) may be employed to activate the system when
users are physically close to them, or on their trajectory home,
leveraging prior work on pattern recognition on GPS traces

[7].

These results could potentially apply to a wide range of devices.
In the domestic context, smart appliances such as vacuum
cleaning robots, washing machines (e.g., seeing the spin cycle
confirms the clothes will be clean and dry) and dishwashers
(e.g., hearing the dishwasher rinse and shut down confirms
all dishes have been cleaned) could be timed according to
GPS traces such that when they detect (or predict) that the
owners are nearby, they would finish their cycles [7]. A similar
approach could also be used for prototyping machines, such
as 3D printers, laser cutters and CNC machines.

In addition, the results of our experiments highlight new re-
search opportunities around different ways to present visual
cues as new forms of feedback for autonomous robots. While
our results, even though on a small sample, show a clear ef-
fect, they also open a number of new research questions, for
example: Is this effect long lasting? Does it apply to any kind
of robots, or even other ubicomp (non-robotic) systems? Is
the timing of the cues that are presented important? We be-
lieve that the effect we observed may even influence people’s
inclination to adopt such systems: more research is required
in such a direction.

CONCLUSION

In this paper, we have presented two lab experiments, each
with 16 participants, designed to investigate whether seeing the
motion of autonomous robots in person can positively change
people’s perception about the performance of the robots. In-
deed, our findings suggest that people’s perception of the
performance of an autonomous robot can be improved for
the better through showing them the robot moving, in such a
way that they would see it in person. Showing the motion of
autonomous systems acts as a visual cue to help people per-
ceive the performance of such systems correctly. In contrast
to previous work, our results apply to systems which are not
anthropomorphic, hence, the implications can be relevant to a
large number of systems. Therefore, we hope that the results
presented in this paper will stimulate designers to integrate
motion in the feedback of their systems, and researchers to
further explore this area.
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