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Abstract

As computational modeling, simulation, and predictions are becoming integral parts of biomedical 

pipelines, it behooves us to emphasize the reliability of the computational protocol. For any 

reported quantity of interest (QOI), one must also compute and report a measure of the uncertainty 

or error associated with the QOI. This is especially important in molecular modeling, since in most 

practical applications the inputs to the computational protocol are often noisy, incomplete, or low-

resolution. Unfortunately, currently available modeling tools do not account for uncertainties and 

their effect on the final QOIs with sufficient rigor. We have developed a statistical framework that 

expresses the uncertainty of the QOI as the probability that the reported value deviates from the 

true value by more than some user-defined threshold. First, we provide a theoretical approach 

where this probability can be bounded using Azuma-Hoeffding like inequalities. Second, we 

approximate this probability empirically by sampling the space of uncertainties of the input and 

provide applications of our framework to bound uncertainties of several QOIs commonly used in 

molecular modeling. Finally, we also present several visualization techniques to effectively and 

quantitavely visualize the uncertainties: in the input, final QOIs, and also intermediate states.

Index Terms

Uncertainty Quantification; Sampling; Molecular Modeling

1 Introduction

Computational modeling of any physical system is inherently imperfect due to a myriad of 

shortcomings. A computational model is often a discrete representation of a continuous 

model of reality. Additionally, to achieve computational tractability, one uses simplified 

model formulations, and employs algorithmic approximations, often using coarse samplings 

of parameter/search spaces. Furthermore, the available observed data of the physical system 

may itself be noisy, incomplete, or from a different context, result in our inability to capture 

all relevant factors of the system. Moreover the ones we do capture, all possess a level of 

uncertainty. In some cases, these errors are slight or insignificant, but when the errors 

combine—as they frequently do for computations that involve geometry and complicated 

(linear or non-linear) numerical systems in a multi-stage protocol—they can create a result 

that is very unreliable.

Computational molecular modeling is a sub-field of research that is especially susceptible to 

the accumulation of cascadic errors for many computed molecular properties, generally 
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defined as quantities of interest (QOI). The computations for these QOI include multi-step 

methods for protein sequence alignment and homology modeling, implicit solvation 

interfaces (i.e. molecular surfaces) generation [1], [2], [3], [4], [5], [6], configuration-

dependent binding affinity calculations [7], [8], molecular docking and structure refinement 

via molecular substructure replacement and fitting [9], [10], [11], [12], etc. For each of these 

computations, the confidence in the reported results could necessarily be bolstered if each 

estimation of a QOI in the computational pipeline also included rigorous evaluation and a 

bound on its uncertainty.

Unfortunately, the majority of current computational structure modeling and prediction 

protocols do not report the confidence on the final model, quantity or prediction they 

compute, and even when they do, they fail to rigorously consider uncertainties in the input. 

For instance, structure prediction protocols (including fitting, docking, homology modeling, 

etc.) addresses uncertainties in an indirect way by reporting several structures ranked under 

some scoring function, f, with the assumption that at least one of the predicted structural 

models would be close to the truth. However, it is not clear how to ascertain the quality or 

confidence on individual models in the ranked list or whether a near-accurate structure 

model is present in the entire ranked list at all.

Similarly, protocols for computing specific properties of molecules like surface area, binding 

free energy, solvation, etc., usually provide theoretical guarantees on the computational 

approximation errors due to numerical approximations, discretization, etc., but do not 

address the inherent uncertainty of the input itself. While some work does attempt to bound 

the uncertainty on individual input models (see, for example, [14] for X-ray crystallography 

or [15], [16] for NMR structure prediction using probabilistic analysis), determining how 

this uncertainty propagates to future stages in a pipeline is left unaddressed. An exception is 

recent work by Lei et al. [17] that addresses the influence of conformational uncertainty on 

biomolecular solvation under elastic network dynamics on an input structural model, where 

the individual residue positions are independent and identically distributed Gaussian random 

variables.

In this article, we present a mathematical and an empirical framework, both of which take 

into account uncertainties present in the input to any computational step and provide an 

upper bound on the uncertainty of the outcome. We also provide intuitive visualization tools 

to visually inspect uncertainties on a structural model at different stages of a pipeline. We 

believe these to be invaluable additions to rational design and analysis protocols in 

molecular modeling.

We define statistical uncertainty quantification as a certificate expressed as a tail bound Pr[|f 
− E[f]| > t] < ε. In other words, a probabilistic certificate is a function of a user-defined 

parameter, t, that the computed value, f(X), of a QOI, expressed as some complicated 

function or optimization functional involving noisy data X, is not more than t away from the 

true value (with high probability). In our framework, we treat each component of X as 

random variables (RVs). Then we adopt a method of bounded differences, which is a 

modification of Markov and Chebyshev inequalities, used for independent RVs to provide 

Chernoff-like bounds. However, this is not quite applicable to most biophysical QOIs since 
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the components of X need not necessarily be independent. We show that for such cases, a 

variation of the Chernoff-Hoeffding bound, namely the Azuma inequality [18], may be 

applied. Here a stochastic processes is formulated as a Doob martingale and the Azuma 

inequality applied to such a martingale becomes what is known as McDiarmid’s inequality 

[19]. In the methods section, we describe this framework in greater detail and also show an 

example application to compute such certificates for functions with decaying kernels. In 

molecular biology applications, this family of functions include the van der Waals 

interaction energy, atom-atom contact potentials based on distance cutoffs, integrals over 

point neighborhoods, etc.

McDiarmid bounds often tend to be too conservative (capturing the worst possible case). 

Furthermore, analytically deriving such bounds is quite challenging for more complicated 

functions. To address this, we have also developed an alternative technique where we 

approximate the distribution of values of the QOIs over the space of input uncertainty, and 

then estimate the tail bounds based on the distribution. The reliability of this estimation 

hinges upon a sufficient and low-discrepancy sampling of the uncertainty space. We 

employed a recently-developed pseudo-random sampling algorithm which requires fewer 

samples to achieve the desired accuracy. Our empirical analysis over a diverse set of proteins 

(from the Zlab benchmark [20]) showed that a fairly small number of samples often suffices 

to generate a robust approximation of the distribution of the QOI.

Our framework is general, and could theoretically be applied to model the uncertainties of 

any QOI under uncertainties from any source. For the purposes of this article we have 

chosen to limit our applications and examples to a selected few QOIs and sources of 

uncertainties, leaving our software tools open to researchers who would like to explore any 

other of the many possible sources of uncertainty and QOIs. We have chosen to understand 

the effect of small positional uncertainties of atoms in high resolution crystal structures. We 

used B-factors reported in PDB files as an implicit description of positional uncertainty of an 

atom. The QOIs we considered are surface area (SA), volume, internal van der Waals energy 

or Lennard-Jones potential (LJ), coulombic energy (CE), and solvation energy under both 

generalized Born (GBSA) and Possion-Boltman (PBSA) models for single molecules; as 

well as interface area, and binding free energy calculation for pairs of bound molecules. (For 

completeness, we also describe and provide some results from a protocol to identify large-

scale conformational changes based on changes in internal angles.)

The use of B-factors as a representation of the positional uncertainty comes with two 

simplifying assumptions. First, we assume that the reported B-factors are accurate, even 

though there can be other equally-good or better assignments of positional uncertainty based 

on the same electron scattering data. For methods that improve the B-factor estimation see, 

among others, [21], [22], [23], [24], [25]. Second, even though there may be correlations 

between the B-factors of collections of atoms—primarily due to the way positions and 

uncertainties are resolved from raw data—we treat each coordinate as independent random 

variables. This assumption can be relaxed, but would require a slightly more involved 

definition of the distribution of uncertainties (see Methods for details).
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Our empirical study on 57 x-ray structures of bound protein complexes showed that 

positional uncertainties translate to relatively low uncertainty for simple quantities such as 

exposed surface area (e.g. ~5% probability of having more than 2% error), but significant 

uncertainties for complex QOIs such as total energy (e.g. >10% probability of having more 

than 5% error). Our study clearly establishes the value in computing and reporting such 

certificates, to add credibility (or caution) to reported values, especially for complex QOIs 

which involve propagation of uncertainty from simpler QOI in the calculation. Furthermore, 

we found that 500 samples were more than sufficient to compute reliable certificates for any 

QOI we considered, even for molecules involving more than a thousand atoms (having 

thousands of dimensions in the uncertainty space).

The distribution of values from the quasi-Monte Carlo protocol can be used as a rich source 

of data for quantitative visualization of uncertainties at different levels of granularity. 

Current visualization and modeling tools (for example, PyMol [13], Chimera [26], Coot 

[27], JMol [28], etc.) allow one to visualize B-factors using color maps on the atoms, 

smooth surface, or scalar field (or volume). However, they fail to highlight the functional 

relevance of these input uncertainties. For example, if the QOI is the optimal conformation 

of a ligand when it binds to a particular protein found using computational means (typically 

by minimizing a scoring function such as PB energy (see Fig 1C)), the uncertainties of the 

atoms near the binding site would have a higher effect on the QOI. We present visualization 

techniques that reflect exactly how the uncertainties of different atoms affect the QOI (see 

Figure 1B, for example). These provide functionally important information about the 

molecule and aid rational design by focusing on more significant sets of atoms. In this article 

we present several novel, relevant, quantitative and easy to interpret visualization techniques 

and enhance existing ones to aid different steps of a typical molecular modeling pipeline.

We have developed software which implements the mathematical framework of sampling 

needed for statistical UQ, use existing tools to compute the QOIs [7], [29], [30], [31], [32], 

and compute uncertainty bounds as well the visualization directives which can be directly 

loaded into existing molecular, surface/volume visualization software [13], [33]. We 

envision our methods and tools would enable the end users tools to achieve both quantitative 

and visual evaluation of various molecular modeling QOIs for correctness—or the lack 

thereof.

2 Methods

Statistical uncertainty quantification aims to provide a certificate bounding the probability of 

error in the QOI. Such a certificate can be expressed mathematically as a Chernoff-

Hoeffding [34] like bound as follows:

(1)

where f(X) is the QOI computed on noisy data, X, and t is a user-defined threshold. The 

certificate reports ε, a probability that the error in f(X) is greater than t. In other words, we 

want to guarantee that the probability of the error being over the threshold is very small.
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In this article, we adopt a loose uncertainty bound on Doob martingales as introduced by 

Azuma [18] and Hoeffding [35] and later extended by McDiarmid [19]. The McDiarmid 

inequality is stated as follows:

Definition 2.1 (McDiarmid Bound): Let (Xi) be independent RVs with discrete space Ai. 

Let f: Πi Ai → ℝ, and . Then, for t > 0,

We present the derivation of the McDiarmid bound and prove that it is applicable to general 

cases, even when the variables are not independent; followed by an example application for 

a function involving summations over decaying kernels in the next couple of sections.

McDiarmid bounds often overestimate the error, and it is often not easy to compute ck 

analytically for many QOIs with complex functionals. An alternate approach is to 

empirically compute the certificates using quasi-Monte Carlo (QMC) methods [36], [37]. 

Assuming that the distributions of the input RVs are known, we sample the joint space and 

evaluate f for each, leading to an estimation of the distribution of f over the joint uncertainty 

space. Then, it becomes trivial to compute the uncertainty of individual values of the QOI, as 

well as providing certificates like Equation 1. Correctness of this empirical approach 

depends on the quality and size of the samples. We discuss our characterization of the input 

uncertainty space and the sampling technique in later subsections, and provide experimental 

results which show that certificates can be robustly computed using significantly few 

samples than the dimension of the space would imply.

2.1 Thoretical framework for statistical uncertainty quantification

One often uses Chernoff-Hoeffding style bounds to provide uncertainty bounds theoretically 

when the underlying RVs are independent and one is analyzing the sum of the random 

variables. In practical situations the random variables have dependencies. In such cases, one 

can still prove large deviation bounds using the theory of martingales, specifically Doob 

martingales and their extension.

Definition 2.2: Let  and  be a sequence of random variables on a space Ω. 

Suppose E[Xi|Z1, …, Zi−1] = Xi−1. Then (Xi) forms a martin-gale with respect to (Zi).

Essentially, the expected value of the ith observable is the same as the observed value of the 

(i−1)th, irrespective of the values of all other observables. The Azuma inequality for 

martingales bounds errors as follows:

Claim 2.3 (Azuma inequality): Let (Xi) be martingale with respect to (Zi). Suppose |

Xi−Xi−1| ≤ ci. Then
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Now consider a variation, the Doob martingale, constructed in the following way:

Claim 2.4: Let A and (Zi) be random variables on space Ω. Then, Xi = E[A|Z1, …, Zi−1] is a 

martingale with respect to Zi. This is called the Doob martingale of A with respect to (Zi).

The weak form of the McDiarmid inequality (below) is an analog, and derives from the 

Azuma inequality:

Claim 2.5: Let (Xi) be independent random variables. Let f: Πi Ai → ℝ for sets Ai. Also, 

suppose that . Then, for t > 0,

This now completes the derivation of the McDiarmid bound given in Definition 2.1.

2.1.1 Relaxing independence requirements by extensions of Doob martingale
—McDiarmid’s inequality assumes that the function has Lipschitz properties and the RVs 

are independent of each other. This lead to relatively clean bounds. However, if one wishes 

to analyze a very general scenario, then we can proceed as follows.

First, there is a sequence of random variables  taking values in some set A. They can 

be dependent in any way. Consider any function f: An → ℝ. Then, by Azuma’s inequality 

(mentioned earlier), we can have a certificate bound of the form

where the only assumption we need is

Thus, the change in expectation on fixing the i-th random variable should not be too large. 

One can easily see that the conditions required for McDiarmid’s inequality immediately 

imply the above hypothesis and thus the certificate bound follows. However, one can also 

put practically minimal restriction on the random variables and do the above computation on 

the amount of perturbation in the expectation, at the cost of notational aesthetics.
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We give more details now. As before there is a sequence of random variables  taking 

values in a set A, say, arbitrarily dependent on each other. Consider any function f: An → ℝ. 

Define a sequence of random variables for i = 1 to n − 1:

By definition, Bi is a function of X1, …, Xi. Note that the sequence  forms a 

martingale with respect to Xi.

Suppose we had |Bi+1 − Bi| ≤ ci for i = 1 to n − 1. Note that

and

Then, by using Azuma’s inequality on the martingale sequence (Bi), we get

Note that the only requirement we needed for the certificate bound was |Bi+1 − Bi| ≤ ci. We 

placed no restriction on the underlying random variables. We will now reduce this to a 

slightly stricter, albeit easier to analyze requirement.

Suppose for every i, and every x1, …, xn, , we have

Then,

which is bounded by ci by assumption. Therefore, we can then use Azuma’s inequality on 

the above martingale.

Rasheed et al. Page 7

ACM BCB. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We highlight this with a simple illustration. Consider the single kernel model at a single 

point. This will illustrate the main point. We will again consider the 2 dimensional kernel 

defined by

Let (X, Y) be a variable following a joint distribution. Note that we do not require 

independence between X and Y. Define

We will demonstrate that for most reasonable distributions (e.g. those that are Lipschitz-

bounded), it is relatively straightforward to prove

This immediately implies that both

Using Azuma’s inequality, we conclude the required large deviation bound certificate.

2.2 Analytical uncertainty bounds for biophysical quantities

The theoretical framework presented above can be applied to functions that possess the 

Lipschitz property. Here we consider a function which is expressed as a summation over 

decaying kernels of the form shown below.

(2)

where bk are non-negative constants, ak are constants, and A and B are two sets of points, 

such that each of the points are uncertain.

We chose this function since it fits many molecular QOIs. For example, this maps easily to 

the van der Waals energy calculations, computing contact properties (e.g. number of atom 

contacts at a binding interface, binding interface area etc.), and many similar biophysical 
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quantities of interest. In such applications the uncertain quantities will be the positions of the 

atoms.

In the following, we introduce some notation and then analytically express the uncertainties 

of successively more complex functions.

2.2.1 Notation—A single decaying kernel in the above summation is represented as:

(3)

where the kernel is centered at x1 and evaluated at x2. The following result is immediate:

Lemma 2.6: For a given set of ak and bk, fx1 (x2) = f0(Δx) where Δx = (x2 − x1).

When both x1 and x2 are uncertain but bounded such that every component x1i of x1 is 

sampled from the interval [l1i, u1i], and every component x2i of x2 is sampled from the 

interval [l2i, u2i], then we can assume that every component Δxi of Δx is also bounded by the 

interval [li, ui] computed based on [l2i, u2i] and [l1i, u1i]. The error of fx1 (x2) due to the 

uncertainty of x1 and x2 can hence be equivalently computed as the error of f0(Δx) due to the 

uncertainty of Δx. In our discussion, we shall often drop the Δ when the context does not 

require the distinction.

2.2.2 Uncertainty of a single kernel at a single point—We begin with the simplest 

case when the kernel is embedded in 2D (the 1D case is trivial):

(4)

Assuming that x and y are sampled from the intervals [lx, ux] and [ly, uy] respectively where 

lx, ly, ux and uy are non-negative, we can define the maximum deviation due to the change of 

x as

Note that g1(y) = f1(lx, y) − f1(ux, y) is positive for lx < ux, and . Hence, g1(y) is 

maximized when y = ly. So,

(5)
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D1y can also be computed the same way. Using McDiarmid’s theory of bounded differences, 

we have the following result:

Lemma 2.7: For the decaying kernel f1 in Equation 4, 

where D1x and D1y are defined in Equation 5.

The above results can be readily extended to d dimensions for the function f2 defined below:

(6)

Let, f2i(x, y) represent f2(x) such that the value of the ith component is fixed to y. So we 

define the maximum deviation of f2 due to the change of one variable xi between the range 

[li, ui] as:

(7)

Again g2i(x) is positive and  for all components xj of x. Hence, g2(x) is 

maximized when xj = lj for all j where lj is the lowest possible value for xj.

(8)

Lemma 2.8: For the decaying kernel f2 defined in Equation 6, 

 such that D2i is defined as in Equation 8.

Note that Lemmas 2.7 and 2.8 hold even when a < 0 (i.e. negative).

2.2.3 Uncertainty of multiple kernels at a single point—Now we extend the scope 

to consider functions which are expressed as a sum of n decaying kernels centered at the 

origin.

(9)

Let  denote the kth decaying term in Equation 9. Now, the maximum deviation 

will be defined similar to Equation 7.
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(10)

where  is defined the same way as D2i in Equation 8 for the kth kernel.

Lemma 2.9: For the sum of decaying kernel f3 given in Equation 9,

such that D3i(x) is defined as in Equation 10.

2.2.4 Uncertainty of a multiple kernels at multiple points—Let us define a 

volumetric function in d dimensions as a sum over multiple kernels defined at multiple 

points belonging to the set A as follows:

(11)

Now, f4 can be expressed as:

(12)

Since, f4 is a simple summation over independent points, the result in Lemma 2.10 follows 

immediately from Lemma 2.9.

Lemma 2.10: For the sum of decaying kernel f4(A, y) given in Equation 11,
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such that D3i(Δx) is defined as in Equation 10.

2.2.5 Uncertainty of a integral over multiple kernels at multiple points—Finally, 

we bound the uncertainties in the integral function we mentioned at the beginning of this 

section in Equation 2.

Lemma 2.11: For the sum of decaying kernel F(A, B) given in Equation 11,

such that D3i(Δx) is defined as in Equation 10 and Δx = (x2 − x1).

2.3 Empirical uncertainty quantification

The basis of empirical uncertainty quantification is to approximate the distribution of the 

function f(X) under the space of perturbations of the uncertain variables X. This 

approximation is done by sufficiently exploring the space and accumulating the 

measurements/observations or computed values of f. Depending on X and the function f, 
different exploration methods can be beneficial. We have chosen to use the quasi-Monte 

Carlo (QMC) method. This is general and one can prove that the approximation of the 

distribution of f(X) produced by QMC has bounded error.

2.3.0.1 Bounded error of estimation through low-discrepancy sampling: We define the 

modulus of continuity, ω(f, t), for a function f on a d-dimensional product space ℐd, as

(13)

where δ(u, v) is the distance between two samples. Essentially, ω(f, t) is the maximum 

change of f between two close samples.

Now, we define the discrepancy of a set P of N samples, with respect to a collection of 

subsets, , as:

(14)

where μ is the Lebesgue measure (high-dimensional volume), and  is the universe. In other 

words, DN (P, ) captures the how evenly the points cover the universe.

The following theorem establishes the bound on the approximation error for the distribution 

of f (adapted from Theorem 2.13 of [38]):
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Theorem: If f is continuous in ℐd, then, for any set of samples P = {x1, x2, …, xN } such 

that xi ∈ ℐd, we have:

(15)

In our case, we want to approximate a distribution. Notice that the above theorem guarantees 

that if low-discrepancy sampling is performed, the cumulative distribution function (CDF), 

as well as the moments, will be approximated with bounded error. Note that a simpler QMC 

strategy can be applied to find the minimum ck for each xk, and hence derive the loose 

McDiarmid bound.

In the next few subsections we detail the application of empirical UQ on molecular 

modeling scenarios. In particular, we discuss the identifying the sources of uncertainties, 

defining their distributions, defining the joint space and finally the specific sampling 

techniques.

2.3.1 Structural uncertainties in molecular structures—The two most common 

representation of molecular structure in atomic detail both express the position of each atom- 

one using Cartesian coordinates, and the other using internal coordinates (which is a series 

of bond lengths, bond angles and dihedral angles). In the first representation, the degrees of 

freedom or the space of configurational uncertainty is related to each coordinate value; in the 

latter representation, typically the dihedral angles are the only degrees of freedom since 

bond lengths and angles are considered constants.

X-ray crystallography can, in most cases, identify the expected locations of each atom by 

analyzing a 3D reconstructed electron density map of a molecule derived from the 

diffraction pattern from a crystal lattice of the molecule. Clearly, the expected location is 

determined as one from a distribution of possibilities: typically, one that best fits the density 

while satisfying other constraints including the protein’s primary, secondary and tertiary 

structure, as well as biophysical interactions. To capture the inherent uncertainty and the 

distribution of other possible locations of the atom, a temperature factor or B-factor is also 

reported.

B-factors are derived from structure factors, which are based on the Fourier transform of the 

average density of the scattering matter. The structure factor, F(h⃗), for a given reflection 

vector, h⃗, is the sum of the optimized parameters for each atom type j, and position  and as 

defined by the following equation:

where fj is the scattering factor, Bj is the B-factor for atom j, and  is the 3-dimensional 

position of each atom [39].
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If we assume that the static atomic electron densities have spherical symmetry (or, more 

specifically defined by a trivariate Gaussian, u⃗), this can be converted into the anisotropic 

temperature factor commonly used, T(h⃗) [40]:

where the univariate Gaussian form (needing not the direction of h⃗, but only its magnitude) 

is described by:

(16)

Finally, the B-factor is defined as B = 8π2〈u2〉. Thus, a B-factor of 20, 80, or 180Å2 

corresponds to a mean positional displacement error of 0.5, 1, and 1.5Å, respectively. Other 

metrics, such as R-factor [41] or diffraction-component precision index (DPI) [42] can be 

used to provide more insight into these uncertainties. However, throughout this paper we 

will use B-factors as they are commonly available in the PDB.

When using an internal coordinate system, the assumption is that the entire molecule is like 

a connected graph embedded in 3D space. Each node of the graph is an atom, and each edge 

represents a bond. So, knowing the position of any one atom, the location of all other atoms 

can be uniquely determined, given the bond length, bond angle (angle at a node between two 

bonds), and dihedral angles (given three successive bonds, the dihedral angle is defined as 

the angle between the two planes formed by bonds 1 – 2 and 2 – 3) of all other atoms. 

Moreover, internal coordinates successfully capture the dependence of one atom’s position 

on the positions of all its neighbors. Also, since bond lengths and angles have been 

empirically observed to be constants (or nearly so), this representation allows one to reduce 

the number of degrees of freedom to only the change of dihedral angles (henceforth called 

torsion angles since the change is similar to a twisting motion around a bond).

2.3.2 Parametrizing the space of uncertainties—Given the x-ray structure M 
containing n atoms of a protein or a complex of two proteins in the PDB file format, we 

extract the anisotropic B-factors  and  for each atom ai ∈ M. The distribution of the 

position of the atom in each direction is modeled as a Gaussian distribution whose PDF is 

defined as:

(17)
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where  is the standard deviation derived as  from the B-factor, and the mean  is 

the expected position of the atom. Note that for some x-ray structures only an isotropic B-

factor Bi is reported. In that case we simply assume .

To represent a protein with internal coordinates, the ϕ and ψ angles of the backbone are 

considered the random variables. We shall express each such degree of freedom using a 

random variable distributed uniformly between a range [lower, upper] where the limits of the 

range are derived from the so-called Ramachandran plot [43], which is an empirical study of 

dihedral angle values observed in protein structures.

2.3.3 Sampling and curating configurations—The joint distribution, either defined as 

the product space of Gaussian distributions for the B-factor case, or of independent uniform 

distributions for the torsion angles case, represents the space of possible configurations for 

the molecule. Let N be the number of degrees of freedom in either representation, and start 

by generating a sample from the uniform distribution Uk ~ (0, 1)N using a pseudorandom 

generator which guarantees low discrepancy sampling in high dimensional product spaces 

(described in the next section).

To convert each uniform sample to the joint distribution for the B-factor case, we use entries 

from Uk to produce a tuple 〈 〉. Each number  from this tuple is mapped to a 

sample from a Normal distribution, , using the Box-Muller method [44], and finally 

appropriate translation and scaling is performed to get a sample from the corresponding 

Gaussian distribution as . These samples 〈 〉 are used as displacement 

values for each of the n atoms in the new configuration.

For torsion angles, each entry in Uk is mapped from [0, 1] to the [lower, upper] range by 

simple uniform scaling, and the desired configuration in Cartesian space is computed using 

the Denavit-Hartenberg transform [45].

It is possible that for both methods outlined above some sampled configurations might result 

in severe clashes between non-consecutive atoms. Those configurations with high number of 

clashes are discarded. Additionally, as bond angles and lengths are not maintained under the 

B-factor sampling model, we subject each sample configuration to a brief minimization 

round with Amber 12 [46] using the ff03 forcefield [47]. Finally, we prepare each sample for 

further calculations by protonating and assigning partial charges using PDB2PQR [48] in 

amber mode.

2.3.4 Efficient low-discrepancy sampling—A major issue with the practicality of 

QMC is that it suffers from the curse of dimensionality. Specifically, if m samples are 

required to achieve a discrepancy ε in one dimension, then at least md samples will be 

necessary to achieve the same level of discrepancy in d dimensions, if the sampling is 

carried out naively (i.e. product of samples in each dimension). For the type of applications 

we are interested in (i.e. a required discrepancy of < 1% and dimension ~1000), the number 

of samples would be prohibitively high.
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The low-discrepancy product-space sampler developed by Bajaj et al. [49] reduces the 

number of samples significantly: from md to only , where , 

while still ensuring the same discrepancy bounds. Note that this is polynomial in m and d. 

(See Figure 2 for a summary of the number of samples required for different values of d and 

ε.) Furthermore, this method guarantees that for any given number of samples, the 

discrepancy of the sampled set is optimal. Hence, it can be applied iteratively.

The basic intuition behind the sampling strategy of Bajaj et al. is as follows. Low-

discrepancy sampling in one dimension (e.g. the interval [0, 1]) is trivial: for ε discrepancy, 

sample at m = 1/ε equal points along the interval. In d dimensions, using this naive approach 

independently in each dimension requires md samples, and the discrepancy over the entire 

hyper-rectangle is highest along the diagonal: . If, instead, the coordinates of a single 

sample are generated dependently, the same discrepancy can be achieved using much fewer 

samples. Deterministic sequences with these guarantees exist (such as the Sobol or Halton 

sequences [50]), and the work of Bajaj et al. improves upon these through randomization, 

thus reducing some of the bias observed in deterministic methods.

In our application, we have explored iterative sampling and considered the sampling to be 

sufficient when the approximation of the moments of the distribution of a QOI converge. We 

found that convergence was achieved with relatively few samples in practice. Please see 

Results for details.

3 Results and Discussion

In this section, we detail the results of applying our QMC-based UQ framework to generate 

Chernoff-like bounds (see Methods) for a set of 57 protein complexes. Additionally, we 

provide a protocol to determine the number of samples required to guarantee the accuracy of 

the empirical certificates for specific proteins. The results clearly establish the necessity of 

rigorous quantification of uncertainties, and also shows that such an endeavor need not be 

prohibitively time consuming. Finally, we describe some visualization protocols which 

provide interactive and intuitive representations of the computed uncertainty measures.

3.1 Uncertainty quantified computation of molecular properties

3.1.1 Benchmark and experiment setup—We applied the QMC approach for 

empirical UQ of computationally evaluated QOIs to 57 crystal structures with 2 bound 

chains each. We took the “rigid-body” cases of antibody-antigen, antibody-bound and 

enzyme complexes from the Zlab benchmark 4 [20]. We used this docking benchmark as we 

were interested in demonstrating how uncertainty in QOI reported on a single protein is 

magnified when combined with another protein, such as is often done with computing 

protein binding affinity.

For each of the complexes, we applied the sampling to the receptor and the ligand (the two 

chains in the structure) separately, and evaluated the uncertainty measures for the calculation 

of surface area, volume, and components of free energy including Lennard-Jones, 

Coulombic, dispersion, GB and PB. We also computed the uncertainties in the binding 
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interface area, and change of free energy. In the following subsections we explore different 

aspects of this analysis.

3.1.2 Uncertainty of unperturbed models—Figure 3 shows the distribution of values 

computed for the sampled models for PDB structure 1OPH-chainA. The red lines in the 

figures marks the value computed on the original coordinates, and emphasizes the fact that 

the original coordinates do not always provide the best estimate of the expected value of a 

QOI. The z-scores for these structures, with respect to the expected value and standard 

deviation derived from the empirical distribution, are 0.33, −0.82, 1.37, and 0.25 for area, 

volume, GB, and PB, respectively. This emphasizes the importance of applying some form 

of empirical sampling to find the best representative model (one which minimizes the z-

score, for instance).

3.1.3 Certificates for computational models—We also determined the likelihood of 

producing a large error in the calculation of QOI, due to the presence of uncertainty in the 

input, in terms of Chernoff-like bounds. For each model in the dataset, we generated 1000 

low-discrepancy samples, and then computed the probability, ε, of a randomly sampled 

model having more than 0.1%, 0.5%, 1%, 2%, 5% and 10% error (t). Error is defined as |x′ 
− E[x]|/E[x], where x′ is the value computed for a random model and E[x] is the expected 

value over all samples.

Table 1 lists Chernoff bounds as described above for the two chains of 1OPH, and Table 2 

shows corresponding data for the full dataset. The rows named Δarea(A) represent the 

quantity area(A+B) − area(A) − area(B) computed while keeping B fixed and sampling the 

distribution of A; rows named Δarea(B) report the same quantity while keeping A fixed and 

sampling the distribution of B.

As can be seen in these tables, for most of the QOIs, the probability of incurring more than 

5% error is negligible. Also note that the probability of error is higher for Δ QOIs simply 

because the errors of individual quantities are being propagated and amplified. Uncertainties 

are also higher in more complex functionals.

3.2 Number of samples sufficient to provide statistically accurate certificates

The results reported in the previous two subsections highlight the importance of UQ and also 

shows that mean values of QOI do not always correlate well with the those computed on the 

original molecules, so statistical bounds across a set of samples are needed. However, it is 

important to note that single statistics that deviate greatly from the mean (“rare” events that 

are actually plausible biological configurations) can have a great effect on these first and 

second moments. Therefore, it is important to ensure that the distributions generated through 

sampling accurately represent the underlying distributions, instead of just a poorly-sampled 

subset. While the number of samples required with our pseudo-random number generator is 

drastically lower than a naive exponential sampling method, it is still prohibitive to generate 

all possible samples. However, in all the simulations we ran, we have found that this 

theoretical bound overestimates the requirement and much fewer samples is sufficient.
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In this section, we present a protocol for determining the number of pseudo-random samples 

needed to achieve robust certificates, or the minimal number of samples before the gain 

achieved through additional sampling is negligible.

For each QOI, we select a subset of r samples and calculated ε for given values of t (see 

Equation 1) on this reduced dataset. We did the same for s random samples (where s > r), 
and computed the distance (L2 norm) between the two. If the distance was less than a given 

threshold, τ, then we determined we had reached saturation; otherwise, we increased the 

number of reduced samples, r (potentially also s), and repeated the above calculations.

As the full set of samples is not always available, we determined the saturation for both the 

full dataset (where s = 1000) and a reduced, incremental comparison (s = r + 10, averaged 

over 50 trials). For the experiments in this section, we calculated ε for 6 different values of 

τ. Since the expected distance between any two random points in 6d space is 0.9689 (an 

analytic form for such distances has been derived in [51], and the precomputed values for 

several dimensions are available online [52]), we chose τ at 0.05, which is much lower than 

0.9689, as our measure of convergence.

Table 3 shows the number of samples needed to reach saturation for a number of QOI, 

compared to the number of samples predicted by our incremental method. For instance, the 

Chernoff-bound calculated for on the incremental method for PB energy with 1OPH chain A 

(top table) reached saturation after 287 samples; with only 174 samples, we were able to 

achieve Chernoff-like bounds with at least 95% accuracy, when compared to the full dataset. 

This trend was repeated over all 104 individual chains, suggesting that the incremental 

approach is a good method to use when a “full dataset” has not already been computed. 

Figure 4 shows a plot of both metrics as the number of samples is increased.

Figure 5 shows the number of samples needed before the relative error (when computed on 

the full dataset) is negligible for several QOI, compared with the total B-factor of the protein 

(a statistic that attempts to incorporate the entire molecular uncertainty) and number of 

atoms. As can be seen in these figures, neither total B-factor nor number of atoms are 

capable of predicting the number of samples needed. Indeed, the number of samples 

required to predict accurate distributions of values is not linked to any extrinsic property 

(such as size of the protein, total B-factor, etc.), but is instead linked to intrinsic properties of 

the distribution and how often the “rare” events happen. Thus, if the rare events are more 

common (such as chain I of PDBID:1DFJ in Figure 5), it is necessary to generate more 

samples. The incremental sampling approach provides an accurate procedure for computing 

confident probabilistic bounds by generating more samples for proteins that have higher 

intrinsic uncertainty.

3.3 Visualizing Uncertainties in Molecular Properties

3.3.1 Visualizing uncertainties in computed QOIs—While there are many methods 

for visualizing uncertainties in molecular structure (i.e. coloring by B-factor), these methods 

highlight the inherent uncertainties in the molecular structure and their parameterization, but 

do not directly highlight the effect of these uncertainties on computed properties of the 

molecule. Specifically, we are interested in bounding the propagated uncertainty in the 
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calculated property, and also localizing the origins of uncertainty which disproportionately 

affect the outcome. This is carried out using the statistical QMC framework described above. 

Below we discuss some techniques which allows one to visually explore such uncertainties.

3.3.1.1 Pseudo-electron cloud: One method for visualizing such uncertainty is a pseudo-

electron cloud, where samples are combined into a single volumetric map whose voxels 

represent the likelihood (over the set of samples) of an atom occupying the voxel. Figure 

6(A) shows such a visualization for 1OPH chain A. Note that this data is not simply useful 

for visualization, but can be used as the representation of the shape of the molecule for 

docking and fitting exercises to incorporate the input uncertainties directly into the scoring 

functions (see also Figure 10).

3.3.1.2 Localized uncertainty in molecular surface calculations: In many applications, 

instead of a volumetric map, one uses a smooth surface model to compute QOIs like area, 

volume, curvature, interface area etc. In such cases, a visualization like Figure 6(B) can be 

very descriptive. It shows a single smooth surface model (based on the original/mean 

coordinates), and the colors at each point on the surface show the average distance of that 

point from all surfaces generated by sampling the joint distribution. Unsurprisingly, most 

parts of the surface in the figure show very low deviation, and only the narrow and dangling 

parts show high deviations. Comparing this with the rendering of B-factors (in Figure 7(A)) 

shows that even though some parts of the surface are in regions with high B-factors, the 

uncertainties do not affect the surface computation as much. Hence, higher temperature 

factors may not always result in a higher uncertainty in computed property, and a sensitivity 

analysis with low discrepancy sampling is warranted.

3.3.1.3 Uncertainty in energy calculations: We use the same technique to show the local 

impact of compounded QOIs, or those using primary QOIs as input. Computation of MM-

PBSA energy first evaluates the PB potential on a volume which encapsulates the molecule 

and the solvent. This potential calculation itself requires a smooth surface representation of 

the molecule as input, along with the positions and charges of the atoms. In this case, not 

only can we bound the bound the overall uncertainty of the final value of PB energy, but can 

also bound the uncertainties of intermediate PB potentials calculated at each voxel. We do 

this by defining the PB potential at each voxel as a separate QOI, and evaluate the QOI 

(potential at a given voxel) for each sample generated with the QMC sampling protocol. 

Hence, we derive a distribution for each voxel. The means and standard deviations of these 

distributions are rendered in Figure 7(C) and (B) (respectively), showing the positive and 

negative potential regions, as well as regions that have varying potential. Comparing the 

input uncertainties (B-factors in 7(A)) to these third level propagated uncertainties shows 

that while in some regions the uncertainties had a cancellation effect, in other regions they 

were amplified.

3.4 Applications to internal angle sampling

Throughout this paper, we have identified a protocol for showing the uncertainty in QOI that 

exists in the presence of atomic uncertainty. We have stressed that this same protocol could 
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also be used to model uncertainty on QOI when the underlying molecules are sampled from 

their internal (torsional) angles. However, there is one major distinction.

For proteins, small changes in torsion angles can result in huge conformational shifts; 

therefore, the QMC sampling protocol defined in this paper does not produce uncertain 
states of the same protein, but completely new configurations. To test our QMC sampling 

protocol with torsional angles, we used Calmodulin, a protein that undergoes large 

conformational shifts when bound with calcium (see Figure 8). We sampled from the closed 

structure of Calmodulin (PDBID:1CFD), which contains 148 residues, providing 296 

degrees of freedom, and generated 1000 samples according to the QMC protocol defined 

above.

Unlike with the atomistic sampling protocol, providing bounds for QOI like as surface area 

or volume (that are expected to change substantially with each new configuration) do not 

bound uncertainty, but instead deviations due to configurational shifts (see Figure 9, where 

the surface area and energy vary much more than the surface area and energy of atomistic 

sampling, as found in Figure 3). Hence, for internal angle sampling, we focus on 

uncertainties for QOIs which are computed over a collection of configurations instead. For 

example, define a QOI as the possible binding site on a protein (receptor). We define this as 

the probability, over possible configurations and transformations of the binding partner 

(ligand), that an atom (i.e. a point on the surface) of the receptor would be in contact (within 

a distance cut-off).

Given a calibrated scoring function ℱ with bounded errors, specific configurations sA and 

sB of two molecules A and B, and a low dispersion sampling of the space of relative 

orientations SE(3), we can compute a list of the top k ranked orientations of sA with sB (e.g. 

through protein-protein docking). Let the i-th orientation be expressed using a 

transformation Ti which is applied to sB (denoted Ti(sB)). Now, for each atom a on molecule 

A, let BS(a, sB) be a random variable denoting the event that a is in contact with sB upon 

binding; i.e. a is on the binding site. Now, we define the probability of BS(a, sB) as follows:

(18)

where cont(a, Ti(sB)) is 1 if at least one atom in Ti(sB) is within a cutoff distance from a, 

otherwise it is 0.

Eqn 18 establishes the binding site probabilistically. Given an accurate docking tool and 

molecules in favorable configurations, the probabilities would be high for small contiguous 

regions of protein A, and low in other regions. On the other hand, almost equal probability 

across A would indicate poor docking prediction, and/or poor affinity between the 

molecules.

3.4.1 Inhibitor selection based on binding site overlap—We can perform the samp 

procedure for protein-ligand docking, where the ligand is typically a small (non-protein) 
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molecule. During ligand optimization for binding, one needs to sample the configuration for 

the ligand and then, for each configuration, apply docking to predict the best ranked 

orientations (of the sample configuration). In such cases, we augment the definition of the 

probability of an atom being on the binding site by summing over all configurations. In other 

words, let R be the receptor and L be the ligand, and let r ∈ R be an atom on R, then:

(19)

where L represents the configurational space of the ligand, L, and  is the N discrete 

samples taken from this space.

Given this probabilistic estimate of the binding site, we define a new scoring function to 

rank the ligand configuration+ orientations. For a given orientation Ti of a given 

configuration sL, we define its score as follows:

(20)

Hence, configurations of the ligand which can bind at highly probably binding sites are 

rewarded.

A visualization of Equation 20 is shown in Figure 10. For this particular example, we 

obtained a correct configuration of a ligand that inhibits the κB kinase β, from the protein 

data bank model 3RZF, and a wrong configuration of the same ligand from the model 

3QAD. We started with the wrong configuration, generated 1000 samples, and docked each 

of them using Autodock [32] to the kinase. Figure 10 shows two ligand conformations. The 

one on the left has a poor RMSD (3.24) with respect to the known correct configuration (and 

orientation) of 3RZF, and the one on the right has a favorable RMSD (1.069). Interestingly, 

both of them received the same score, −8.2, from AutoDock. However, the left one had a 

bindScore of 55213, and the right one had 55667, showing that bindScore correctly 

identifies the correct configuration.

4 Conclusions

In this article we have shown that even subtle uncertainties present in high resolution X-ray 

structures can lead to significant error in computational modeling. Such errors are 

propagated and compounded when output from one stage of modeling is used in the next. 

We considered the uncertainties in atomic position reported through B-factors and evaluated 

how they create uncertainty in computed quantities of interest (e.g. surface area, van der 

Waals energy, solvation energy, etc.). While some existing computational protocols attempt 

to bound the uncertainties/error due to algorithmic or numerical approximations, they do not 

account for the uncertainties in the input. However, our empirical study on 57 x-ray 

structures of bound protein complexes showed that there significant probability (> 10%) of 
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having more than 5% error in total energy calculation (PBSA) purely due to input 

uncertainties. Hence, one must account for and bound such uncertainties.

We have shown that input uncertainties can be modeled as random variables and the 

uncertainty of the computed outcome (a dependent random variable) can be bounded using 

Chernoff-like bounds introduced by Azuma and Mc-Diarmid. We have also shown that such 

bounds are also applicable when the input random variables are dependent, and show how 

one can theoretically bound the probability of error for Coulombic potential calculation (and 

any summation of distance dependent decaying kernels in general). In the future, we aim to 

derive similar bounds for other biophysically relevant functions.

We have also introduced an empirical quasi-Monte Carlo approximation method based on 

sampling the joint distribution of the input random variables to produce an ensemble of 

models. The ensemble is used to approximate a distribution of values for the quantity of 

interest. This distribution in turn can be used to bound the uncertainty of the calculation in 

terms of statistical certificates. A very interesting and promising outcome from application 

of this framework to a large set of protein structures for a wide variety of calculations 

showed that one typically needs fewer than 500 samples before the QMC procedure 

converges, hence it is quite practical to perform and report such certificates in modeling 

exercises. Currently, we are working on providing bounds for binding free energy of large-

scale conformational shifts through torsion angle sampling.

We have also shown that many of the current methods for visualizing protein uncertainty is 

limited: displaying surface uncertainty simply by B-factor is insufficient, as uncertainty from 

X-ray crystallography does not necessarily track natural shifts in protein conformation. We 

have displayed several different visualization techniques for displaying not only atomic 

uncertainty, but also uncertainty in energy calculations. Displaying 3-dimensional 

uncertainty of quantities such as the Poisson Boltzman potential can provide valuable 

information that a single potential map cannot.
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Fig. 1. An illustrative example of quantifying and visualizing uncertainties
Atomic coordinates of molecules, are often reported with a measure of the uncertainty (e.g. 

B-factors). Currently available software hardly incorporate the effect of such uncertainties 

into their results or visualization. For example, currently, one is able to see the distribution 

of high and low B-factors on the structural model of a molecule (1OPH) as is shown in (A), 

rendered using PyMol [13]. However, we would like to understand the uncertainty in a 

computed quantity of interest (QOI), and also understand how the input uncertainties affect 

this outcome. Consider, for example, a specific QOI, the Poisson-Boltzman (PB) 

electrostatic potential inside and outside the same molecule. We show this potential field in 

(C), the molecule itself is rendered as its backbone only. The potential is rendered using blue 

(positive), white (neutral) and red (negative) colors. Now, using our empirical uncertainty 

quantification model, we can (and should) further compute the uncertainty, expressed as the 

standard deviation, σ, computed across an ensemble of slightly perturbed samples of the 

molecule, of the potential computed at every voxel. This uncertainty is visualized in (B). 

Note that the standard deviation is quite high in some regions. Notice that while (A) and (B) 

have some correlation (high uncertainty in structure tend to correlate with high uncertainty 

in function), it provides a more accurate and application-specific picture of effect the 

underlying uncertainty.
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Fig. 2. 
Number of samples needed to maintain ε discrepancy. Note that the y-axis is log-scale, so 

the number of samples (N) required for the naive method grows exponentially in d (number 

of dimensions), whereas the pseudorandom method (PRNG) grows as a function of log d.
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Fig. 3. 
Histogram of sampled QOIs for 1OPH:A. The red vertical line is the value of ℱ computed 

using the original coordinates reported in the PDB.
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Fig. 4. 
Plot showing the rate of convergence for statistical certificates, computed for the calculation 

of free energy (MM-PBSA). For each number of samples, r, the Chernoff-like bounds were 

computed, and then compared with either those computed on the entire dataset (red line) or a 

partial dataset containing r + 10 samples (blue line). Noise in the plotted lines are due to 

differences in samples selected; reported values are the average over 50 trials. Plot is for 

1OPH chain A.
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Fig. 5. Convergence of sampling protocol across all samples
Plot of total B-factor (a measure of both size and uncertainty) against number of samples 

needed before the relative error is negligible (τ = 0.05). QOIs are exposed surface area (left), 

LJ potential (center), and PB energy (right).
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Fig. 6. Visualization of molecular surface uncertainties
(A) A volumetric map showing the likelihood of the voxel being occupied by an atom, 

computed using a sampling of the joint probability distribution of the atom positions. (B) 

Expected deviation of each point on the surface of a single model, w.r.t. all models sampled 

based on the joint distribution of the locations of the atoms. Green colored regions are 

expected to remain more or less stable in any sample, red colored ones may vary a lot.
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Fig. 7. Visualization of molecular energy uncertainties
(A) Simple mapping of B-factors to the surface of the protein. (B) Expected deviation of 

potential energy of a given voxel, w.r.t. all models sampled based on the joint distribution of 

the locations of the atoms. Green colored regions are expected to remain more or less stable 

in any sample, red colored ones may vary a lot. (C) Display of potential energy map 

averaged over all samples.
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Fig. 8. Large-scale conformational samples resulting from torsion angle sampling
Samples of Calmodulin, which undergoes massive conformational shifts when bound with 

calcium. Left, the open and closed structures (corresponding to PDBID:1CFD and PDBID:

1CKK, respectively) are colored blue and green (respectively). Right, torsional samples of 

closed conformation (transparent), showing large conformational shifts from input molecule.
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Fig. 9. 
Distribution of simple QOI (surface area, left, and energy (GBSA), right) for samples of 

closed Calmodulin conformation PDBID:1CKK. Red dotted line shows the QOI on the input 

closed conformation, and blue shows the open (PDBID:1CFD). Note that these histograms 

do not represent structural uncertainty but changes in QOI due to conformational changes. 

Compare with Figure 3 where structural uncertainty for a different protein is bounded.
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Fig. 10. Comparing different ligand conformations using probabilistic binding site on the same 
protein
The smooth surfaces in the figures show the probabilistic binding site on the kB kinase β 
(PDBID:3RZF) for binding with an inhibitor ligand, where red is not likely and blue is very 

likely. The ligand atoms are colored according to the average probability of receptor atoms 

within a given cutoff (4Å). Hence, a ligand configuration which has a high proportion of 

blue and low amount of red/orange is a better configuration (model on the right).
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TABLE 3

Number of samples necessary to converge on statistical bounds. The process has converged if differences 

between computed values of ε do not change (detailed description of convergence can be found in the text). 

The pair of entries in each cell refer to the two variants of convergence considered: incremental, where each 

value is compared with the value computed with 10 additional samples; and global, where the value is 

compared with that computed on all 1000 samples. Data presented here correspond to PDBID:1OPH, chains A 

and B (top table) and PDBID:1DFJ, chains E and I (bottom).

1OPH B A ΔB ΔA

area 230/134 233/153 215/146 351/197

vol 119/72 102/64 103/55 332/205

LJ 79/49 240/168 315/133 324/192

CP 79/43 114/62 93/71 355/213

GB 281/143 319/202 300/207 326/211

PB 287/174 365/209 357/206 348/196

1DFJ E I ΔE ΔI

area 265/157 471/295 421/240 337/199

vol 156/69 385/273 428/257 343/218

LJ 319/223 462/361 507/361 363/206

CP 235/138 652/401 607/509 353/214

GB 341/219 335/193 296/217 303/227

PB 360/235 546/375 567/430 338/225
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