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Abstract 

This paper presents a formal specification for the deflection 
network, which has been proposed for high speed metropoli- 
tan area communication infrastructures in recent years. The 
network is modeled as a closed system with unbounded I/O 
queues. UNITY (Unbounded Nondeterministic Iterative 
Transformations) logic, which is a fragment of linear tempo- 
ral logic, is used to formulate the properties of the network. 
In the UNITY model, a system is viewed as a mathematical 
object; the properties of the system are expressed by using 
a set of logical relations. A topology independent specifica- 
tion that clarifies the nodal structure and processing of the 
deflection network is developed. 

1 Introduction 

Formal methods are mathematical techniques for specifying 
and verifying complex systems. The use of formal meth- 
ods eliminates inconsistencies, ambiguities, and incomplete- 
nesses that may remain undetected with informal specifica- 
tions [6]. 

In this paper, we develop a formal specification for deflec- 
tion networks [2, 3, 5, 18, 211, which have been proposed in 
recent years as alternatives to bus and linear topology net- 
works commonly used for local area communications. De- 
flection networks eliminate buffering resources that may be- 
come congested. The absence of congestion makes the be- 
havior of the networks similar to that of conventional lo- 
cal area networks. The simplified nodal structure enables 
nodes to follow the link speed as close as possible. Their 
mesh-connected topologies increase the throughput and can 

support communications in a large metropolitan area. 
As in the case of many proposed parallel and distributed 

systems, formal specifications for deflection networks have 
not appeared in the literature. We model a deflection net- 
work as a closed system and develop a specification for the 
network using the logic of UNITY (Unbounded Nondeter- 
ministic Iterative Transformations) [4, 19, 20, 231. 
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UNITY logic is closely related to temporal logic [15, 16, 
171. It enables us to develop descriptive, non-operational 
specifications for programs. A program is viewed as a math- 
ematical object and not in terms of its possible executions. 
The elimination of operational reasoning makes UNITY logic 
a formal method. 

The computational model of UNITY separates the con- 
cept of termination, which is central in traditional transfor- 
mational programs, from the problem solving process. The 
UNITY model captures parallel and distributed programs 
that are ongoing (reactive) and nonterminating. 

UNITY logic is surprisingly simple and compact. Its 
design decisions avoided introducing notational artifacts. 

In his forward to Chandy and Misra’s work of UNITY [4j, 
Hoare states that a complete theory of programming in- 
cludes methods for: 

l specifying programs, 

l reasoning about specifications, 

l developing correct programs, and 

l transforming programs for executions on available ma- 
chines. 

Dijkstra’s work [ll] provides the methods for sequential pro- 
gramming. Chandy and Misra’s UNITY does the same for 
parallel and distributed programming. 

The UNITY methodology has been applied to a variety 
of design and specification problems [8,9, 10, 14, 22, 25, 261. 
In [8, 91, formal specifications for a static (fixed routes) 
wormhole message router for a multiprocessor interconnec- 
tion network (a grid of N x A4 switches, where N is the 
number of input lines and M is the number of output lines) 
are studied. The router is modeled as a closed system in [8]. 
Whereas, [9] attempts to model it as an open system. Our 
closed-system assumption in modeling deflection networks 
is influenced by [S]. 

The goals of this paper are to develop a formal specifica- 
tion for deflection networks and to identify methodological 
elements that provide a common foundation for the design 
and specification of data networks. 

The remainder of this paper is organized as follows. Se+ 
tion 2 gives an overview of the UNITY computational model 
and logic; we re-define the operators of [lQ, 201, which are 
derived from [4], using the notion of the &rmgest inuari- 
ant [23]. Section 3 describes the characteristics of deflection 
networks. A formal specification for deflection networks is 
developed in Section 4. Section 5 concludes this paper. 
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2 Overview of UNITY 

This section gives an overview of the UNITY computational 
model and logic. 

2.1 UNITY Computational Model 

The UNITY computational model (program model) is built 
upon a traditional imperative foundation and a state tran- 
sition system. 

A UNITY program consists of a declaration/initialization 
of variables and a set of atomic, terminating, deterministic, 
guarded, multiple-assignment statements. A UNITY pro- 
gram has no control constructs. In each step of execution, 
a statement is selected nondeterministically and executed. 
(Executing a statement whose guard is false does not change 
the values of the variables.) Nondeterministic selection is 
constrained by the fairness rule, i.e., every statement is se- 
lected infinitely often. 

The execution of an assignment statement corresponds 
to the transition from one state to the next. An execution 
sequence will be either infinite or end in a state in which no 
statement leading to another state exists, (i.e., a fized point 
of the program is reached). 

Fairness is an important hypothesis in the study of par- 
allel programs. It guarantees that the computations exhibit 
all behaviors manifested by the execution of programs. In 
a multiprocess program, different processes will be individ- 
ually allowed to proceed [l, 12, 16, 191. 

2.2 UNITY Logic 

The verification of a sequential program involves placing 
predicates at specific points; the predicates hold when the 
control reached the points. This is not the case for a UNITY 
program since UNITY does not have the notion of program 
control. The properties that must be satisfied are associated 
with the entire program. 

2.2.1 Notation 

Quantification A quantified expression is written in the 
form 

(Op x : R(x) : T(x)), 

where Op is an associative and commutative operator (e.g., 
A, V, +, etc.), z is a list of dummy variables whose scopes are 
delimited by the angle brackets, R(z) is a predicate giving 
the ranges of dummy variables over which the quantification 
is to be done, and T(z) is the term of the quantification. 
(When T(z) is a predicate, we will write V instead of A and 
3 instead of V. Note that R(z) may be omitted if the ranges 
(domains) of dummy variables are understood.) 

Hoare Triple The Howe triple [13] has the form 

{PMd, 

where p and q are predicates and s is a program statement. 
Its meaning is that if s is executed in a state where p holds, 
then q will hold after the execution of 3. 

Inference Rule An inference rule is written as 

g, 

where P and Q are lists of properties. Its meaning is that if 
P holds, then we may infer that Q to hold. 

Set A set consisting of all elements x that satisfy the prop- 
erty P is written in the form 

ix I PI. 

A finite set may be specified by enumerating its elements 
between curly brackets. The cardinality of a finite set A is 
denoted by #A. 

Operators The operators that we use are summarized be- 
low, ordered by increasing binding power. 

I 

initially, co, stable, constant, invariant, transient, c-) 

A,V 

+, -, min, max 

“.” (function application) 

The definitions of operators initially, co, stable, con- 
stant, invariant, transient, and I+ are given later in this 
subsection. All other operators have their usual meanings. 

2.2.2 UNITY Logic Operators 

We adopt the notion of the strongest inuotiont [23] and re- 
define the operators of [19, 201. Note that although the 
operators of [19, 201 are derived from the original work of 
UNITY [4], they are developed for generic (discrete) oc- 
tion systems, which consist of a number of actions that 
may change the state of the systems, and are not specific 
to UNITY. 

A predicate p is stronger than predicate q if p =S q. The 
strongest invariant, denoted by SI, is the strongest predicate 
X that satisfies the following condition: 

(initial condition * X) A (Vs : s E F : {X}s{X}), 

where F is a program (a set of program statements) and s 
is a program statement. The strongest invariant SI char- 
acterizes the set of states that are reachable during some 
execution of the program F. 

initially p means that p holds for the initial state of 
every execution sequence. 

initially p 5 initial condition * p 

p co q (p constrains q) means that if p holds for some 
reachable state, then q holds for the next state. 

pcoq=(Vs:sE F:{SZI\p}s{q}) 

stable p means that if p holds for some reachable state, 
then p continues to hold for all succeeding states. (In 
the program model, once p is established, it is pre- 
served by every statement.) 

stable p 3 p co p 
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constant p means that p is true for all reachable states 
if p is initially true and false for all reachable states if 
it is initially false. 

constant p E (stable p) A (stable -p) 

invariant p means that p holds initially and contin- 
ues to hold for all succeeding states. (In the program 
model, p is preserved by every statement.) 

invariant p E (initially p) A (stable p) 

or simply 
invariant p E SI * p 

transient p means that if p holds for some reachable 
state, then -p holds (p being falsified) for a later state. 
(In the program model, if p holds at a point, there is 
at least one statement whose execution falsifies p and 
that statement is going to be selected for execution 
due to the fairness rule of the model.) 

transient p 3 (3s : s E F : (5’1 A p}s{-p}) 

p r-) p (p leads to q) means that if p holds for some 
reachable state, then q holds for a later state (within 
a finite number of execution steps). Formally p I+ q 
holds if and only if it can be derived by a finite number 
of applications of the following three inference rules: 

1. (Basis) 

p A -q co p V q, transient p A -q 
p*tg 

1 

2. (Transitivity) 

P+-+-,> q-r 
per ’ 

3. (Disjunction) For any set S of predicates, 

(Vp : p E s : p I+ q) 
(3p : p E s : p) * q’ 

The operators co, stable, constant, and invariant are 
used to specify safety properties, which claim that undesir- 
able state transitions will not occur during the execution of 
the program. The operators transient and I+ are used for 
progress properties, which claim that the program performs 
useful work. 

3 Characteristics of Deflection Networks 

Deflection networks employ an adaptive routing method that 
can be applied to the networks in which the in-degree and 
the out-degree (the number of incoming links and the num- 
ber of outgoing links) of each node are equal. (Note that 
the deflection networks are not necessarily regular. Different 
nodes in a network may have different connectivities.) The 
networks operate in a slotted mode with fixed length pack- 
ets. The switching and transmission processes take place 
on a time slotted basis. Generally, all links are one slot in 
length, i.e., every packet travels one link per slot. (Links 
may be multiple slots long in some networks.) A packet 
from an input source enters the network if an empty slot is 

Figure 1: Manhattan Street Network. 

available. When two or more simultaneously arriving pack- 
ets contend for the same output link, a contention resolution 
mechanism is invoked to select a packet that gets the use of 
the link. The packets that lost a contention are deflected 
(misrouted). Because the in-degree and the out-degree of a 
node are equal, it is always possible to assign each one of 
simultaneously arriving packets to a distinct output link. 

For each time slot, a node of a deflection network 

1. extracts a packet addressed to the node, 

2. injects a source packet if the node obtains an empty 
slot (i.e., a slot has been received empty or a packet 
has been extracted), and 

3. selects a switching configuration. 

The switching and transmission of packets follow the above 
process. 

The buffering resources required by the standard store- 
forward method are eliminated in deflection networks. 
Hence, there is no internal congestion. The behavior of the 
networks is stable. Packets are accepted as long as nodes 
recognize empty slots. The simplified nodal structure accel- 
erates the nodal processing speed. 

The most widely studied deflection network is the Man- 
hattan Street Network (MSN) [18]. The MSN has the topol- 
ogy (Figure 1) that resembles the one-way streets and av- 
enues in midtown Manhattan. The MSN has two incoming 
links and two outgoing links at each node and hence has 
the same degree of connectivity (number of links) as a bidi- 
rectional loop network. The alternation of row and column 
directions keeps inter-nodal distances small. The symmet- 
ric topology supports simple identical routing strategies at 
all nodes. The network provides multiple paths between a 
source and a destination and increases the throughput with 
the number of nodes by decreasing the fraction of the net- 
work capacity needed to communicate between nodes. 

4 Formal Specification 

We are interested in developing a specification that clari- 
fies the structures of deflection networks and can aid the 



construction of physical networks. We develop a topology 
independent, packet-level specification. The specification is 
based on a global observation. The network is modeled as 
a closed system. The development of the specification pro- 
ceeds with the following principles: The specification for 
a system should be sufficiently strong to rule out any un- 
desired behaviors of the system. At the same time, the 
specification should be sufficiently weak to provide imple- 
menters with the freedom to satisfy the specification in the 
most convenient and efficient way. In other words, it should 
avoid overspecifying the elements that are not essential to 
producing the desired system [26]. 

4.2 I/O Queues and Network Medium 

In order to model the behavior of a deflection network, we 
must be able to distinguish the locations of packets in the 
network precisely according to the topology and the nodal 
structure of the network. 

We abstract the inputs and outputs as unbounded queues 
of packets. Let S, D, and M be the set of locations in the 
input (source) queues, the set of locations in the output 
(destination) queues, and the set of locations in the network 
medium. We define the sets as follows: 

4.1 Basic Model and Topology 1 5 i 5 d”, 1 5 Ic}, 

We start with a general graph model and make refinements 
on the model so that sufficient details of deflection routing 
can be specified. 

A network is a directed graph G = (V, E), where V is 
a set of nodes (vertexes) and E is a set of directed links 
(edges). The set E is a binary relation on the set V. (Note 
that the general graph model does not allow multiple links 
connecting two nodes in the same direction. That is the case 
for most general data networks.) 

We identify each node in a network by a unique integer. 
Let n be the number of nodes in the network. Then the set 
V is defined as 

V zz {v 1 v E N, 1 < v 5 n}, 

where N denotes the set of natural numbers. 
A deflection network has the following topological prop- 

erties: 
(Vu, w : v, w E V : (v, us) E E+), 

where E+ denotes the transitive closure of E, and 

(Vu : v E V : #{w 1 (v,w) E E} = #{w 1 (w,v) E E}). 

The first property specifies that a deflection network is 
strongly connected. The second property states that each 
network node has equal in- and out-degrees, which are de- 
noted as d” for each node v, i.e., 

d”=#{wI(v,w)EE} 

or equivalently 

S 5 {(t,v,i,k) ( (t,v,i,k) E Q, t = l}, 

D~{(t,v,i,k)I(t,v,i,k)~Q, t=2}, 

M={(t,v,i)It,i~N, l<t<3,vEV, lsisd”}. 

The components v, i, and Ic are a node id, a link id, and 
a position number. The component t of an element in M 
indicates the location of a packet inside a node (Figure 2). 
The details appear later. 

The sets S and D have countably infinite elements. An 
order of elements in the sets may be given by Cantor num- 
bering. The order of locations is important only in the same 
queue. The component Ic determines the order of locations 
in a queue. 

Instead of writing locations in the forms (t,v, i,k) or 
(t, v, i) in the specification, we often use the following more 
intuitive notations of the forms: Sm”ik denoting (1, v, i, k), 
dst”ik denoting (2,v,i,k), in”i denoting (l,v,i), SW”i de 
noting (2,v, i), and out”i denoting (3,v,i). 

Figure 2 shows the locations in a node. (The node id 
is omitted in the figure.) We assign an input queue and an 
output queue to each link. This clarifies the nodal processing 
of the deflection network. 

We use the symbol l- to denote the connection of nodes 
(which outgoing link of a node connects to which incoming 
link of another node). The expression out”i l- in’“j is true 
if output link i of node v connects to input link j of node 
2~. The operator has the same binding power as =, #, and 
so forth. The following statements hold: 

d” E #{w I (w,v) E E}. (v, W) E E ti (3, j :: out”i I- inwj), 
Note that the transitive closure R+ of a relation R can be 
constructed by the following rules: 

As mentioned in the previous subsection, topological 
properties are static. We assume the following property: 

OUtVi I- inWj A out”,, I- ifl'jt * i = i' A j = j'. 

(a,b) E R 
(a,b) E R+’ 

(a, b) E R, kc) E R 
(a,c)~R+ ’ 

The distance from node v to node w is given by the 
function A, which is defined as 

A:E+-+N. 

The distance between two nodes is usually defined as the 
smallest number of hops between the nodes. We leave the 
criteria for distance measurement to implementations. 

The topological properties are static. We assume that 
there are no topological changes during the execution of the 
system, i.e., the following statements are assumed: 

(Vu :: constant v E V), 

(Vu, w :: constant (v, w) E E). 

(Vv,w,i, j :: COIlStad 0Ut”i I- inWj). 

4.3 Packet Representation 

A packet has the format (s,r,i, k,h,z), where s, r, i, Ic, 
h, and z are, respectively, the source node, the destina- 
tion node, the queue (link) id, the packet (position) number, 
routing information, and the data portion of the packet. In 
the specification, a packet is represented by a variable (a 
or p). The components of a packet are accessed through 
the following access functions: souse, destination, queue, 
number, rinfo, and data (e.g., Given a = (s,r,i, k, h,z), 
s0urce.a = 3). Note that the third and fourth components 
i and k are not necessary in implementations. We argu- 
ment the packets with those components in order to uniquely 
identify each packet in the model. Note also that the fifth 



component h is optional and may not be needed in some 
implementation. 

Let P’ be the set of all logical packets and P be the set 
of all physical packets that actually exist in the system. The 
set P’ is defined by the domains of the components of its 
elements as follows: 

P*~{(s,r,i,k,h,t)Is,r~V, i,kEN, l<i<d,, 

1 5 k, h,t E A}, 

where A is the set of all strings (data that can be represented 
by computers). The set P is a subset of P’. Throughout 
the execution of the model, the set P is unchanged. 

Packet Existence 

(Va : cx E P’ : constatnt a E P) (1) 

Property 1 states that no packets will be created or de- 
stroyed in the model. Only packets that initially exist con- 
tinue to exist. 

The location of a packet in the system is given by the 
function 0, which is defined as 

O:P+SuMuD. 

We define a predicate empty as 

empty.z E (Va : a E P : 8.a # 2). 

The predicate empty.z is true.if there is no packet at the 
location z and false otherwise. 

For the rest of this paper, the domain of packets is P 
and may be omitted in an expression. 

Packet Location 

invariant (Va,/? : a # p : 8.0 # 8.p) t-4 

Property 2 means that no two packets have the same loca- 
tion, i.e., the function 0 is a one-toone (or an injective) 
function. (This implies that a packet can not move to a 
location that is occupied by another packet.) 

Network Initialization 

initially (Va :: 0.~2 E S) (3) 

Property 3 means that initially all packets are in the input 
queues and there are no packets in the output queues and 
in the network medium. 

Figure 2: Locations in a node. 

Packet Validity 

initially (Va, v, i, k :: 8.a = sm”ik e 
s0urce.a = v A queue.a = i A number.& = k) 

initially (Va :: (3 :: destinati0n.a = v)) 

initially (Va :: (3z :: data.a = z)) 

(4) 

(5) 

(6) 

(Va, v, w, i, k, z :: stable s0urce.u = v A 

destination.0 = w A queue.a = i A 
number.& = k A data.a = z) 

invariant (Vex :: (3 :: finfo.cr = h)) 

(7) 

(8) 
Properties 4-8 state that each packet must have a valid 
(s, P, i, k, h, z) value, which (except h) must not be changed 
during the execution of the system. 

The position number of a packet is unique in its input 
queue. The number is assigned to each packet based on 
the initial location of the packet. The triple (s, i, k), where 
s, i, and k are a source node id, a queue (link) id, and a 
position number, uniquely identifies a packet in the model. 
This allows the existence of multiple packets that have the 
same source node id, the same destination node id, the same 
routing information, and the same data value in the model, 
i.e., in the set P. 

The value of h, routing information in the packet header, 
may be used for contention resolutions in implementations. 
The domain of h is depend on implementations. Generally, 
h is a counter, i.e., a positive integer. Note that h does not 
have to have an atomic value; h may have a composite value. 
We leave the treatment of this field to implementations. As 
stated by Property 8, the value of h may change during the 
execution of the system. 

4.4 Packet Move 

Every packet in input queues must eventually move in some 
output queue, i.e., 

(Va :: 0.a E S c) 8.a E D). 

We defme the detailed properties of packet moves below. 

70 



Queue Move 

(Va, V, iy k : k > 1 : 0.a = SPC”ak CO @.a = S7T”i/C V 

@.a = src”;k - 1) (9) 

(Va,v,i,k : k > 1 : @.a = src”,k e 
@.a = src”,k - 1) (10) 

(Va,~,i, k : k > 0 : @.a = dst”ik CO @.a = dst”ik V 

0.a = dst”,k + 1) (11) 

(Vo,u,i,k : k > 0 : @.a = dst”ik ct 
@.a = dst”ik + 1) (12) 

Properties 9-12 define the packet moves in input and output 
queues. Property 9 states that a packet at the position k 
in an input queue will either stay at the same position or 
move to the position k - 1 and there are no other possible 
moves. Property 10 guarantees that the packet will move 
to the position k - 1 in a finite number of execution steps. 
Properties 11 and 12 specify the analogous moves for packets 
in output queues. 

Injection 

(VCr,V,i 1: @.a = SfC"il CO @.a = S1‘C",l V 

0.0 = SW”i) (13) 

(Va,tl,i :: 0.0 = SpC"ilc) @.a = SW"~) (14) 

Properties 13 and 14 specify that a packet at the head of an 
input queue must be injected into the network within a finite 
number of execution steps and there are no other moves. In 
order to implement Property 14, certain injection control 
mechanisms must be present for source lockout prevention. 
(Source lockout is a situation that a node is busy routing 
transit packets all the time and hence source packets can not 
be injected at the node.) Property 14 must be implemented 
in order for Property 10 to hold. Recall that no two packets 
can be at the same location (Property 2). Hence, the packet 
at the head of an input queue must be injected into the 
network so that the following packets in the queue can make 
their moves. (All packet moves must satisfy Property 2.) 

Eventual Delivery 

(V% v :: 8.a E M A destination.a = u I+ 

(3, k :: 8.0 = dst”ik)) (15) 

Every packet injected into the network must eventually reach 
its destination. The routing algorithm in an implementation 
has to guarantee this property. The mechanisms to eliminate 
livelock (the indefinite circulation of packets without reach- 
ing destinations) must be present in deflection networks. 

From Properties 10, 14, and 15, we can deduce (by apply- 
ing the transitivity rule of e) the following property, which 
we gave earlier in this subsection: 

(Va :: 8.a E s l-b 8.a E D). 

Note that for any packet in an input queue, there are only 
finitely many packets ahead of it in the queue. The packet 
will be out of the input queue within a finite number of 
execution steps. Hence, the property is technically correct. 

The following properties define the packet moves in the 
network medium. 

Node to Node Hop 

(VCr, V, i :: O.cU = 0Ut”i CO 0.a = OUt”i V 

Pw, j :: 0Ut”i I- inWj A @.a = ifl”j)) 

(Va,v,i :: O.a = out”, +P 

(3W,j :: OUtV; I- inWj A 0.Q = in”j)) 

Delivery 

(‘da, w, i :: 0.a = in”i A destinationxx = v CO 

8.a = in”i V Q.a = dst”il) 

(Va, v, i :: Q.a = in”i A destinotionxx = v I+ 

@.a = dst”il) 

Transit 

(Vcqv, i :: 0.o = in”i A destinati0n.a # v co 

@.a = if&“i V 8.Ct = SW”i) 

(Va, u, i :: O.a = in”i A destinati0n.a # v I+ 

8.a = SWvi) 

Switching 

(VCX,u,i :: 8.a = SW”i CO 0.a = SW”i V 

(3j :: 0.a = 0Ut”j)) 

(Va,v,i :: 0.a = SWvi 0 (3j :: O.a = 0Ut”j)) 

(1’3) 

(17) 

(18) 

(19) 

(‘JO) 

(21) 

(22) 

(23) 

Properties 22 and 23 specify that a packet will be switched 
at a node. In an implementation, the routing algorithm at 
each node determines the value of j in the properties. We 
will make refinements on Property 23 later for more specific 
implementations. 

Up to this point, we specified only individual packet 
moves. Now, we must model and specify synchronized 
packet moves. First, we define an invariant on packet lo- 
cations. Then, the synchronized packet moves are specified 
in terms of the number of packets at a node. 

Relative Packet location 

(Vt,v, i :: invariant lempty.(t, v, i) =+ 

(Vs, j : s # t : empty.(s, w, j))) (24) 

Property 24 specifies the relative locations of packets in a 
node. For example, if there is a packet at in”i for some i, 
no other packets can be at sw”j and out”* for all j and k 
at the same time. 

Synchronized Packet Move 

(Vt, v, k : k > 0 : #{i 1 -empty.(t, u, i)} = k co 
#{i 1 Tempty.(t,u, i)} = k V 

#{i 1 Tempty.(t, w,i)} = 0) (25) 

Property 25 implies that the switching and transmission of 
packets need to be synchronized. The number of packets 
that are at in”i, where i ranges from 1 to d,, will remain 
the same or drop to zero. This implies that the packets at 



in”,, 1 < i 5 d, must move at once. The same property 
holds for packets at sw”i and out”i, 1 5 i 5 d,. Although 
the property is written in terms of the number of packets 
at a node, it globally synchronizes the node-to-node packet 
moves in the network. Packets coming into a node must be 
coming at the same time. Since ail those packets are coming 
from distinct nodes, the transmissions of the packets at the 
nodes must be synchronized. 

A packet at srcVil (the head of an input queue of a node) 
can be injected into the network if there are no other pack- 
ets at in’i, sw”i, and out” , or it may be injected at the 
same time that the packet at in”i is moved to dst”il, i.e., 
an incoming packet on link i is extracted. There are no 
other cases that a packet at the head of an input queue can 
be injected into the network. Transit packets have higher 
priorities than source packets. 

4.5 Selecting Switching Configuration 

In this subsection, we make refinements on Property 23 for 
optimized switching. 

The underlining routing scheme, which determines the 
path from the source to the destination for a packet when 
no contentions occur, is shortest path routing. The criteria 
for the shortest path is the criteria for the function A. 

Let W, denote the set of integers ranging from 1 to n, 
i.e., 

W,, E {i 1 i E N, 1 5 i 5 n}. 

We define the set C, as 

cv={KIK:w,& +wd,, 

(vi,j:i,jEwd,,i#j:K.i#~.j)}. (26) 

The set C, is the set of all permutations on w& , represent- 
ing all possible switching configurations at node u. There 
are d,! possible switching configurations (i.e., #CV = d,!). 
(Note that a permutation is a one-to-one function from a 
finite set to the set itself.) 

We also define the distance function 6, as follows: 

6, : wd, X v + N, 

&.(i,w) E A.(v, connect,.i) + A.(connect,.i,w), 

where the function connect is defined as follows: 

connect v : wd, + v, 

connect,.i = w 3 (3j :: OUf”i I- inwj). 

The value of i indicates the output link from which the dis- 
tance is measured. The function gives the distance from 
node v to node w through V’S neighbor u to which output 
link i of u reaches. 

Although we define the function 6 as a local function of 
each node, the procedures implementing this function will 
be identical for all nodes in a typical symmetric topology 
network. 

The function 9 is defined in terms of 8 as follows: 

9 : (3: 1 -empty.z} --f P, 

9.z = a s 8.a = 2. 

The operator min is defined as 
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(Va,U,i,o::O.a=sW”;AU=(min~:lFECv: 

(+k : lempty.sw”k : S,.(r.k, destination.@.sw”k))) 
c+ @.a = 0ut”o.i) (27) 

Property 27 specifies that the switching configuration that 
minimizes the total remaining distance of packets should 
be selected. The selected switching configuration may not 
be in favor of all the packets at the node. The switching 
configuration may result in some packets being deflected. 

Note that there may be multiple configurations (permu- 
tations u) that give the same minimum total distance. One 
of them may be selected randomly in a simple implemen- 
tation. (Routing information in the packet header may be 
used to select one of them.) Implementations may further 
examine the consequences of those switching configurations. 
Some switching configuration may prevent the packets from 
being deflected at their succeeding nodes. In networks with 
a high degree of connectivity, the examination may be diffi- 
cult and may cause nodal operations to slow down. 

4.6 Switching in 2-Connected Networks 

Property 27 specifies optimized switching in a general form. 
This subsection gives the properties for 2-connected net- 
works (d, = 2 for all v). The properties clarify the switching 
mechanism for 2-connected networks and suggest a simple 
case-analysis, which may be difficult for higher connectivity 
networks, in implementations. Note that analogous cases 
are omitted. 

(Va, p, u :: 0.a = SW”I A @./I = aw”z A 
((A.(connect,.l, destinntion.a) < 

A.(connect,.2, deatinationsx) A 

A.(connect,.l, deatinati0n.P) 1 
A.(connect,.2, destination@)) V 

(A.(connect,.l, deatinati0n.a) < 

A.( connect,.2, deatinati0n.a) A 

A.(connect,.l, destination.@) > 
A.(connect,.2, deatinati0n.p))) 

I+ 8.a = out”1 A 0.p = out”z) (28) 

w, v :: 8.a = aw”l A empty.aw”l A 

A.(conne&.l, deatinati0n.a) < 

A.(connect,.2, deatination.a) C) O.a = outV1) (29) 

Property 28 may be simplified for faster processing in 
implementations. 

5 Conclusion 

We have developed a formal specification for deflection net- 
works in UNITY logic. The specification is descriptive and 
non-operational. The network is viewed as a mathematical 
object. The advantage of this approach is that error prone 
operational reasoning is eliminated in the specification. 

We represented the I/O queues as well as the locations 
in the network medium by sets of distinct locations rather 
than sequence variables, which may seem to be more natural 
for communication networks. The set model allows us to use 
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the standard mathematical tools in the specification. This 
approach may be applied to the specifications of routing 
schemes in other types of networks. 

Although it is known that the use of a small amount 
of buffer space for each link (to hold a few packets that 
lost contentions) could reduce the number of deflections, we 
designed the nodes to be bufferless. At the level of current 
technology, buffering may be difficult in optical networks 
without electrooptic conversions, which prevent high speed 
nodal processing [2]. 

As we have seen in the specification, deflection routing 
may be difficult to implement for the networks with a high 
degree of connectivity. A large number of possible switch- 
ing configurations in high connectivity networks makes cost 
efficient, high performance implementations challenging. 

We modeled the network with its environment together 
as a closed system. This formulation avoids dealing with 
conditional properties, which add a certain degree of com- 
plexity to the development of the specification. An open 
system model imposes an examination of the composition- 
ality of the defined logic. 

We adopted the notion of the strongest invariant in deiin- 
ing the UNITY operators. This eliminates the non- 
equivalence between the axiomatic and informal operational 
semantics of the operators in [4]. However, the properties 
specified are weaker than those specified in the original logic 
of (41 in the sense that the properties hold only for reachable 
states. 

In practice, the difference in formulation of the logic has 
little effect on the derivation of programs [24]. A recent 
study of the compositionality of properties and a discussion 
of the differences in logic formulations can be found in [7]. 
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