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Abstract 

Standard evolutionary theory states that learned in- 
formation will not be transferred into an underlying 
genotype. There is, however, a hypothesis that is con- 
sistent with the belief that learned behavior somehow 
influences the course of evolution. This hypothesis 
is called the Baldwin effect and it has been shown 
to occur in experiments with artificial life by Hinton 
and Nowlan and Ackley and Littman. A analysis was 
done of the effects of mutation and crossover rates on 
a computational model of the Baldwin effect which 
showed that this effect is most pronounced in asex- 
ual populations with low mutation rates. It was also 
noticed that the learning that occurred through the 
Baldwin effect exhibited the punctuated equilibrium 
behavior that is believed to be a part of all evolution. 

1 INTRODUCTION 

There is no physical mechanism for translating 
knowledge acquired during a single lifetime to the 

Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial 
advantage and that copies bear this notice and the fidl citation on 
the lirst page. To copy otherwise, to republish, to post on servers 
or to redistribute to lists, requires prior specific permission and/or a 
fee. 
SAC 99, San Antonio, Texas 
01998 ACM l-S8113486-4/99:0001 S5.00 

Aaron Konstam 
Trinity University 

San Antonio, Texas 
akonstam@trinity.edu 

genetic code SO that it will be available for genetic 
propagation via selection, crossover, and mutation. 
Indeed, the conception of a genotype composed of en- 
coded learned behavior (a conception referred to as 
Lamarckian evolution) has been discredited in pop- 
ulation genetics for nearly 100 years. There is, how- 
ever, a hypothesis that is consistent with both the 
denial of Lamarckian evolution and the belief that 
learned behavior somehow influences the course of 
evolution. This hypothesis is called the Baldwin ef- 
fect, after the nineteenth century geneticist Baldwin 
[2], and it remains a controversial topic even today. 
The Baldwin effect states that there are phenotypic 
tendencies rewarded in organisms that learn a cer- 
tain skill, and that these rewards serve to change the 
criteria for fitness. Therefore, even though learning 
cannot directly affect the underlying genotype of an 
organism, the genetic makeup of the organisms that 
did the learning will in effect be rewarded. Individ- 
uals with these genes will, therefore, be favored for 
further evolution, 

The Baldwin effect has been shown to occur in ex- 
periments with artificial life by Hinton and Nowlan [5] 
and Ackley and Littman [l]. However, showing that 
it occurs is only the first step in understanding how 
it operates. Mitchell [8] identi&s the study of the 
Baldwin effect as an important future direction for 
research in evolutionary programming [8, page 1831. 
Likewise, Levy [7], Whitley [12], and Fogel [3] indi- 
cate that understanding the mechanics of the Bald- 
win effect should shed light on the importance (if any) 
of learning in evolution - artificial or otherwise. 
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2 IMPLEMENTATION 

A simulation of the Baldwin effect consists of two ma- 
jor components: one, a model of the selective forces 
of evolution, and two, an analogous and biologically 
justifiable model of learning. The two components 
that have been used in this simulation are, broadly, 
the genetic algorithm and the artificial neural net- 
work learning to classify a set of input vectors. More 
specifically, we have used a GA with floating point 
allele values to model evolution, and a Kohonen Self- 
Organizing Feature Map [6, 41 to model learning. 

Throughout the simulation we used a class hier- 
archy developed by Sutton and Santamaria at the 
University of Oklahoma [lo]. This provided a con- 
venient and clear conceptual paradigm in which the 
functionality of the simulation was separated into log- 
ical components. 

The simulation was divided into three parts: the 
Agent (the collection of neural nets and genetic al- 
gorithms), the Environment (the input space of n- 
dimensional vectors) and a simulation manager that 
takes care of the communication between the two. 
Figure 1 [lo] gives a graphical depiction of how the 
simulation was structured. The algorithm used for 

Figure 1: Agent-Environment Model 

the simulation is described below ignoring most of 
the low level details of the implementation. 

1. Create a population of m Kohonen Self- 
Organizing Feature Maps with parameters spec- 
ified by the user. 

2. Access the input space of n-dimensional vectors. 

3. Create a manager responsible for handling com- 
munication between agents and the input vec- 
tors. 

Run the simulation for a specified number of iter- 
ations while the nodes learn to classify the input 
vectors. 

Choose agents that took the fewest number of 
learning iterations (i.e., the fittest) and create a 
new population according to the operations of 
selection, mutation, and crossover. These op- 
erations are applied to the initial weights of the 
neural network (as opposed to the weights as op- 
timized through the Kohonen algorithm). 

Record statistics on the old population (average 
fitness, best fitness, representative chromosome 
schemas, standard deviation in fitness, etc.). 

Repeat steps 3-6 for a specified number of gen- 
erations. 

The hope was that, in the later trials of the simula- 
tion, the neural networks would require fewer learn- 
ing iterations to learn the task, resulting in an in- 
creased average fitness among the population. This 
is what occurred. 

3 KOHONEN SELF- 
ORGANIZING MAP 

The Kohonen Self-Organizing Map (SOM) designed 
by Tuevo Kohonen [6] is a variation of the traditional 
Artificial Neural Network. It is a third generation 
neural network, meaning that many of its functional 
characteristics are thought to mirror those found in 
biological fact. 

An SOM consists of a collection of nodes of neurons 
that are each connected to every other node and each 
node has associated with it a set of input weights w. 
The SOM also has associated with it a metric for 
determining which nodes are in the neighborhood N 
of a given node. 

When the network is presented with a vector zi at 
its input, it computes the neural response sj of the 
node j using the formula: 

Sj = Wj . Xi (1) 
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Normalize both wj and xi before computing the dot 
product, sj, and refer to the node that produces the 
largest value of s as node k. Since the dot product 
of the normalized wk and Xi vectors is the cosine of 
the angle between them, we can conclude that the 
winning node is the one with the weight vector closest 
to the input vector in its spatial orientation. We can 
then say that node k giving the largest s is closest 
to recognizing the input vector. We allow the nodes 
to learn by applying a Aw to their weights using the 
formula: 

AWk =cY (Xi -Wk) (4 
where Q is a constant in the range [O,l] called the 
learning constant. The learning process is applied 
to the maximum response neuron and neurons in its 
defined neighborhood. 

This training process can be described by the fol- 
lowing algorithm: 

1. A cycle: for every input vector 5i 

(4 

(b) 

(cl 

Apply vector input to the network and eval- 
uate the dot products of the normalized 
weights on each node and a normalized in- 
put vector. Call these dot products s. 

Find the node k with the maximal response 
,?k. 

Train node k. and all the nodes in some 
neighborhood of k, according to the learn- 
ing equation above. 

(4 

(4 

Calculate a running average of the angular 
distance between the values of Wk and their 
associated input vectors. 

Decrease the learning rate, cr. 

2. After every M cycles, called the period, decrease 
the size of the neighborhood N. 

3. Repeat steps l-2 for some finite period of time 
or until the average angular distance calculated 
above is below a certain tolerance. 

The effect of this process is to train the SOM to clas- 
sify the input vectors into groups that will be charac- 
terized by particular values of wk. In our simulations 
we used 10 input vectors and hi, the number of cycles 
in a period, was also 10. 

4 HARDWARE AND SOFT- 
WARE PACKAGES USED 

This simulation makes extensive use of GALib, a li- 
brary of genetic algorithms and statistical tools [ll]. 
GALib is a thoroughly documented, production qual- 
ity C++ class library. In addition to making several 
very basic functions (crossover, mutation, selection) 
much easier to implement, the library also provides 
basic statistical analysis of the results. The imple- 
mentation of the Kohonen Self Organizing Feature 
Map was based on the presentation found in Rao[9]. 

5 RESULTS 

The first experiment was designed to gauge the ef- 
fects of different mutation rates upon the emergence 
of the Baldwin effect. 3-dimensional input vectors 
were used to train the SOM. Data on the effects of 
each mutation rate was collected from 20 trials of 
1,000 generations each. Mutation rates (pm) of 0.001 
to 0.01 in increments of 0.001 were used. Then the 
average learning iterations per generation (ALI) was 
plotted against mutation rate. The value of AL1 plot- 
ted was the average of the 20 trials for each value of 
p,. In all the runs the crossover probability (pc) was 
kept constant at 0.2. The results are plotted in Fig- 
ure 2. We observe in this figure that average fitness 
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Figure 2: AL1 vs. Mutation Probability 

decreased as the mutation rate increased in a roughly 
linear fashion. Fitting the results to a linear equation 
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using the least square method yielded the following 
equation: 

.-iLI = 267788p, + 301 (3) 

A subsequent run of the simulation showed that the 
equation’s predictions were correct to within 8% of 
the actual data points. 

Other simulations using input vectors of higher di- 
mensionality produced similar linear equations whose 
predicted values are consistently within 10% of the 
actual data. The equations produced are given be- 
low: 
4-dimensional: 

ALI = 27512p, + 277 

j-dimensional: 

(4) 

ALI = 2728Op, + 298 

6-dimensional: 

(5) 

ALI = 291OOp, + 306 (6) 

The rates of deterioration of fitness (the slope terms) 
were consistently within 2% of each other - even 
when the search space was expanded from 3 to 6 di- 
mensions. In each case, fitness was found to be a 
linearly decreasing function of mutation rate. 

The effect of higher crossover rates on the 
Baldwin effect is similar to that of increasing the mu- 
tation rates. Again using the least squares approx- 
imation algorithm, we arrive at the following linear 
fit for the S-dimensional vector case (p, = 0.001): 

y = 526~~ + 262 (7) 

for 0 5 p, 5 1. As in the case of mutation, increas- 
ing the probability of crossover decreases the ability 
of the network to learn. In fact, the individuals with 
the least number of learning iterations were part of 
an asexual population (pc = 0). For 400 trials of 
1000 generations each, by far the highest performing 
population operated with p, = 0 and p, = 0.001. 
In other words, most of the optimization performance 
of the algorithm seemed to be coming from straight 
selection with low mutation rates. Doing similar sim- 
ulations with higher dimensional input vectors led 

to similar results. The linear equations produced by 
least square analysis are as follows: 
4-dimensional: 

ALI = 53lp, + 273 (8) 

5-dimensional: 

ALI = 554~ + 293 (9) 

g-dimensional: 

ALI = 592c + 301 (10) 

As before, the behavior of the learning process was 
very similar in all the cases without regard to the 
dimensionality of the input vectors. 

We performed one further simulation of this 
system with a p, = 0.2 and a p, = 0.0. The 
AL1 obtained was 388. This value clearly does not 
fall on the line pictured in Figure 2. This value of 
AL1 lies between those obtained using a p, of 0.003 
and 0.004. It is also 50 points higher than the AL1 
obtained at pc = 0.2 and a p, = 0.001. F’rom 
this we believe it can be concluded that although the 
Baldwin effect can operate effectively in an asexual 
environment its efficiency is decreased by the absence 
of a small quantity of mutative pressure. 

6 THE BALDWIN EFFECT 
AND EVOLUTION 

Hillis [7> pages 2042081 points out that biologists cur- 
rently believe that evolution does not proceed as a 
steady hill climbing process. “Evolution moves by 
leaps and bounds, alternating with periods of stasis. 
Species remain in virtual equilibrium where fitness is 
suited to the environment. Then a sudden change in 
the environment, or an empowering mutation, causes 
an abrupt jump in fitness, as new and effective phys- 
ical characteristics express themselves in the phencF 
type of the species.” 

Hillis was able to produce and study this be- 
havior in his experiment with artificial organisms. 
What he found was that while the population seemed 
to be resting as far as its phenotype were concerned, 
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the underlying genetic makeup was actively evolving. 
Eventually, enough genetic change occurred to pro- 
duce the phenotype change through epistasis. This 
latter change was the abrupt change seen in the fit- 
ness of the species. 

In our studies of the Baldwin effect we have ob- 
served similar evolutionary behavior. Figure 3 shows 
the behavior of one learning run with p, = 0.002. 
As can be seen in this figure, the improvement in the 
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Figure 3: AL1 vs. generations (p, = 0.002) 

learning rate is not a smooth change. The value of 
AL1 oscillates moving slowly downward. But sud- 
denly (i.e., in relatively few generations) it decreases 
sharply. Finally, it returns to a state of relative equi- 
librium. 
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